

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 166–169, 2003.
© Springer-Verlag Berlin Heidelberg 2003

PacoSuite and JAsCo: A Visual Component Composition
Environment with Advanced Aspect Separation Features

Wim Vanderperren, Davy Suvée, Bart Wydaeghe, and Viviane Jonckers

Vrije Universiteit Brussel, Pleinlaan 2
1050 Brussel, Belgium

{wvdperre,dsuvee,bwydaegh,vejoncke}@vub.ac.be
http://ssel.vub.ac.be

Abstract. This paper presents the visual component composition environment
called PacoSuite and the tools needed for the JAsCo aspect-oriented program-
ming language. PacoSuite allows plug-and-play component composition without
in-depth technical knowledge of the components. PacoSuite uses three con-
structs: components, composition patterns and composition adapters. A compo-
sition pattern is an abstract and reusable description of a collaboration between
components. A composition adapter on the other hand, describes transforma-
tions of a composition of components and is used to modularize crosscutting
concerns. A composition adapter is able to have an implementation in the JAsCo
language in order to invasively alter components. Compatibility of a given
collaboration is checked using finite automaton theory and the glue-code to
make the composition work is generated automatically.

1 Introduction

Current practice visual component composition environments are still far from
reaching the plug and play ideal promised by component based development [4].
Expert technical knowledge of components is required in order to be able to compose
them. There’s no support whatsoever to verify whether a given composition of
components is able to work together. Glue-code still has to be written manually to
achieve a more involved collaboration than a mere event-method connection.
Moreover, most tools don’t even support reusing such a simple collaboration. To solve
these problems, we propose a novel visual component composition environment,
called PacoSuite. PacoSuite lifts current practice component composition to a higher
abstraction level. Composition patterns are introduced as reusable and abstract
collaborations. Composition patterns as well as components are documented by a
special kind of MSC [2]. PacoSuite automatically validates a given composition using
finite automaton theory. In addition, glue-code which enables the collaboration is
generated. Recently, composition adapters have been introduced to separate cross-
cutting concerns [3] that do not fit into our current constructs. Composition adapters
describe transformations of a composition pattern independent of a specific API. In
addition, a composition adapter is able to have an implementation in the JAsCo

PacoSuite and JAsCo: A Visual Component Composition Environment 167

aspect-oriented implementation language. This enables a composition adapter to
influence the interior behavior of components. We refer to [5,6,7] for more
information on the fundamentals of this approach.

The next section describes the PacoSuite tool in more detail. Section 3 shortly
sketches the tools required by the JAsCo aspect-oriented programming language.

2 PacoSuite

PacoSuite consists of two tools: a visual documentation editor called PacoDoc and the
actual component composition environment called PacoWire. Both tools are written in
the Java language. PacoDoc allows the user to construct usage scenarios, composition
patterns and composition adapters in a user-friendly manner. Afterwards, the drawn
diagrams are exported to an XML file. PacoDoc is also integrated in PacoWire, such
that a component composer is able to view the documentation of a component at any
time. Fig. 1 shows a screenshot of PacoDoc.

Fig. 1. The documentation of the Juggler component shown in PacoDoc

PacoWire is our actual component composition tool and contains a set of components,
composition patterns and composition adapters nicely sorted into different categories.
Creating an application is as simple as visually dragging components onto a compo-
sition pattern. The drag is refused when a component is detected to be incompatible
with the selected composition pattern. Fig. 2 illustrates a screenshot of PacoWire
where the component composer is about to drag the juggler component onto the
subject role of the ToggleControl composition pattern. The ToggleControl compo-
sition pattern specifies a toggling behavior (consecutive starts and stops). The subject
role receives the commands and the control role is responsible for sending the toggle
commands. As the Juggler component is able to receive consecutive start and stop
commands (see Fig. 1), it can fulfill the subject role of the ToggleControl composition
pattern. However, when the component composer would drag the Juggler component
onto the control role, the drag would be refused because the Juggler component can
only receive messages. The JButton component from the Java Swing library for

168 W. Vanderperren et al.

instance, is compatible with the control role. After the JButton is dragged onto the
control role, glue-code that implements this collaboration can be generated. The
resulting application allows the juggler to be toggled from a single button. Notice that
it is impossible to visually wire even this simple collaboration in current component
composition environments because state information is required.

Fig. 2. Screenshot of PacoWire. The
component composer is about to drag the
Juggler component onto the subject role
of the ToggleControl composition pattern

Fig. 3. Applying the invasiveTimer
composition adapter onto the
ToggleControl composition pattern

Applying a composition adapter is also achieved by a simple drag and drop. The tool

takes care of inserting the transformations the composition adapter describes. When the
composition adapter is implemented using JAsCo, the JAsCo tools are executed trans-
parently for the user. In fact, a component composer doesn’t even have to know whether
a composition adapter has a JAsCo implementation or not. Fig. 3 illustrates a screenshot
of PacoWire, where a component composer is about to map the SignalFilter composition
adapter onto the ToggleControl composition pattern. The SignalFilter composition
adapter describes a logging aspect. The communication between the source and
destination roles is trapped and re-routed through the filter role. In this way, the filter role
is able to log the events the component composer is interested in. To apply the
SignalFilter composition adapter onto the ToggleControl composition pattern, the com-
ponent composer can simply drag one onto the other. The source and destination roles of
the SignalFilter composition adapter are then automatically mapped onto roles of the
composition pattern using an algorithm based on dynamic programming ideas [1]. The
tool issues a warning when the application of this composition adapter onto the selected
composition pattern is not valid. Afterwards, the JButton and Juggler components are
mapped onto the roles of the ToggleControl composition pattern as before. A logging
component that writes received events onto disk can for instance be mapped onto the
filter role. When the glue-code is generated, the juggling application works just as it did
before. However, every signal from the button is first rerouted through the logging com-
ponent before it is sent to the Juggler component.

PacoSuite and JAsCo: A Visual Component Composition Environment 169

3 JAsCo

The JAsCo-language has been implemented to allow composition adapters to affect
the internal behavior of components. The JAsCo-framework provides 4 tools which
are required to deploy aspects on components.

The key tool of the JAsCo-package is the BeanTransformer. To enable interaction
between aspects and components, we propose a new component model where each
public method of a component is provided with a trap. These traps reroute control-
flow at run-time, which enables the execution of aspect behavior. The
BeanTransformer-tool is responsible for transforming a regular Java Bean into a
JAsCo bean component. This tool employs state-of-the-art Java byte code adaptation
techniques for inserting traps at the appropriate places.

The JAsCo-language itself stays as close as possible to the regular Java syntax and
introduces two concepts: aspect beans and connectors. Aspect beans are used for
describing crosscutting behavior. Deploying an aspect bean within an application is
done by making use of connectors. The definition of both aspect beans and connectors
is preprocessed to a Java source code file. Afterwards, this definition is compiled to
its Java class-representation by making use of the standard Java Compiler. Both the
CompileAspect- and CompileConnector-tool are responsible for managing this
compilation-process.

The fourth tool contained within the JAsCo-package is the Introspector-tool,
which is a GUI environment that allows introspecting what connectors are loaded.
Connectors can be added and removed at run-time, which enables to dynamically
change the properties of the system. The tool displays the various hooks that are
instantiated by the connectors and the targets on which these hooks are applied.

References

[1] Bellman R.E. & Dreyfus S.E. Applied Dynamical Programming. Princeton University
Press, 1962.

[2] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, September 1993.

[3] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A. and Murphy, A.
Aspect-Oriented Programming. In proceedings of the 19th International Conference on
Software Engineering (ICSE), Boston, USA. ACM Press. May 1997.

[4] Short, K. (1997). Component Based Development and Object Modeling. Available at:
http://www.cool.sterling.com/cdb/whitepaper/2.htm

[5] Suvée, D., Vanderperren, W., and Jonckers, V. JAsCo: an Aspect-Oriented approach
tailored for CBSD. In Proc. of AOSD int. Conf., Boston, USA, march 2003.

[6] Vanderperren, W. Localizing crosscutting concerns in visual component based
development. In proc. of SERP international conference, Las Vegas, USA, june 2002.

[7] Wydaeghe, B. and Vandeperren, W. Visual Component Composition Using Composition
Patterns. In Proceedings of Tools 2001, July 2001.

	PacoSuite and JAsCo: A Visual Component Composition Environment with Advanced Aspect Separation Features
	1 Introduction
	2 PacoSuite
	3 JAsCo

