
Compositional Analysis for Verification of
Parameterized Systems

Samik Basu and C.R. Ramakrishnan

Department of Computer Science
SUNY at Stony Brook

Stony Brook, NY 11794-4400
{bsamik, cram}@cs.sunysb.edu

Abstract. Many safety-critical systems that have been considered by
the verification community are parameterized by the number of concur-
rent components in the system, and hence describe an infinite family of
systems. Traditional model checking techniques can only be used to ver-
ify specific instances of this family. In this paper, we present a technique
based on compositional model checking and program analysis for auto-
matic verification of infinite families of systems. The technique views a
parameterized system as an expression in a process algebra (CCS) and in-
terprets this expression over a domain of formulas (modal mu-calculus),
considering a process as a property transformer. The transformers are
constructed using partial model checking techniques. At its core, our
technique solves the verification problem by finding the limit of a chain
of formulas. We present a widening operation to find such a limit for
properties expressible in a subset of modal mu-calculus. We describe the
verification of a number of parameterized systems using our technique
to demonstrate its utility.

1 Introduction

Model checking is a widely used approach for verifying whether a system spec-
ification possesses a property expressed in temporal logic [CES86,QS82]. Many
efficient verification tools been developed based on approaches such as explicit-
state [Hol97], symbolic [BCM+90] and compositional [ASW94] techniques. Tra-
ditionally, model checkers have been restricted to the verification of finite-state
systems, although recent research on constraint-based techniques (e.g. [DP99]),
symmetry reduction [ID96], data independence [Wol86], and symbolic checking
with rich assertional languages [KP00] have extended model checking techniques
to certain classes of infinite-state systems.

The Driving Problem. One class of infinite-state systems called parameterized
systems is particularly interesting. A parameterized system describes an infinite
family of (typically finite-state) systems; instances of the family can be obtained
by fixing the parameters. Consider a simple example of parameterized producer-
consumer system shown in Figure 1. A producer process P performs an action

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 315–330, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

316 S. Basu and C.R. Ramakrishnan

P
def
= a.P

C
def
= a.C

sys(N)
def
= (PN |C)\{a}

ϕ ≡ X where X =ν 〈τ〉tt ∧ [τ]X
ϕc ≡ Y where Y =ν 〈τ, a〉tt ∧ [τ, a]Y
ϕ1 ≡ Z1 where Z1 =ν [τ, a, a]Z1

ϕ2 ≡ Z2 where Z2 =ν [τ, a, a]Z2

(a) (b)

Fig. 1. (a) Parameterized System with one consumer and arbitrary number of produc-
ers. (b) Deadlock-freedom formula ϕ and property transformation results

a and continues to behave as P. Similarly, the consumer process C repeatedly
performs action a. The processes communicate by synchronization on a and a
actions. The parameterized system Sys(M, N) is specified as parallel composition
of M producers and N consumers. Our objective is to verify deadlock-freedom
property for all instances of the system Sys.

Models of many safety-critical systems are parameterized: e.g., resource ar-
bitration protocols, communication protocols, etc. Traditionally, model checkers
have been used to verify specific instances of the infinite family described by a
parameterized system: e.g., to verify that a mutual exclusion protocol is correct
for fixed numbers of objects and threads [BSW00]. Clearly, this strategy cannot
be used to verify all instances of the infinite family of systems.

Our Solution. In this paper we present an automatic technique for checking
whether any or all arbitrary instances of an infinite family of systems possess a
given temporal property. At a high level, our solution to the verification prob-
lem is analogous to program analysis. Each instance of a parameterized system
is viewed as an expression in a process algebra (specifically, CCS [Mil89]). We
then interpret these process algebraic expressions over a domain consisting of
formulas in an expressive temporal logic (specifically, the alternation free modal
mu-calculus [Koz83]). The interpretation is based on associating a property trans-
former Π for each process p in the parameterized system. Given a system s
consisting of p concurrently composed with an arbitrary environment e, Π cap-
tures the relationship between properties that hold in the environment e and
the properties that hold in the system s. For instance, consider the process P in
Figure 1(a). The process can move on a transition only if there is a concurrent
process ready to move on a transition. In order for the process P to execute the
a action, the environment must be capable of synchronizing with an a action.
Thus the process P can be seen as transforming the property (“eventually do a
transition”) to its environment (“eventually do a transition”).

The property transformer for a given process is generated based on the no-
tion of quotienting due to [And95]. Based on the property transformer, we define
a chain of mu-calculus formulas whose limit characterizes the behavior of an ar-
bitrary instance of the parameterized system. Consider the problem of verifying
deadlock-freedom for the parameterized system sys(n) for all n ≥ 1. The for-
mula to be checked for the entire system is given in Figure 1(b) as ϕ.

Consider the system sys(n) with one consumer (C) and n producer pro-
cesses(Pn). We compute the property expected of the producers alone, by trans-

Compositional Analysis for Verification of Parameterized Systems 317

forming the property ϕ using the property transformer for C process. The re-
sulting “quotient” property is the formula ϕc in the figure. Intuitively, ϕc states
that ϕ can be modeled by an environment composed in parallel to process C
if the environment can perform infinitely many a or τ actions. Therefore, if
Pn |= ϕc then sys(n) |= ϕ. Next, transform ϕc using the property transformer
for process P. The resultant property left for the environment (Pn−1) to satisfy
is ϕ1. Quotienting further using process P, the residue obtained is ϕ2. Further
transformation of ϕ2 using the property transformer for P will leave it unaltered.
Thus, we have reached the limit ϕω of formula sequence generated by iterative
transformation using property transformer of process P. Then 0 |= ϕω implies
∀n ∈ N sys(n) |= ϕ. The above discussion presents a high level view of the
technique used to verify properties for all or any members of a parameterized
system. Actual technique, however, keeps track of various restriction and rela-
beling operations applied to the processes. See Section 3,4 for details.

Note that the domain of interpretation, the modal mu-calculus, has infinite
ascending chains, and hence the limit computation may not terminate. Never-
theless, we find that the iterative computation of the limit does converge for a
number of example parameterized systems. To handle a larger class of systems,
we also define a widening operation to accelerate the convergence, and in some
cases guarantee termination.

Related Work. A number of techniques have been proposed to verify param-
eterized systems with varying amounts of user intervention ranging from fully
automatic techniques (such as [KP00]) which focus on the domain of represen-
tations of system states, to program-transformation-based systems capable of
inferring the structure of certain underlying induction proofs [RKR+00,RR01].

One of the approaches is to reduce the infinite-state verification problem to
an equivalent finite-state one, by identifying a representative finite-state system
corresponding to a given parameterized system and temporal property (e.g. see
[EN95,EN96,ID99]). Cache coherence protocols and unidirectional token ring
protocols have been successfully verified using this approach. Recently there
have been efforts to verify infinite families by choosing an appropriate finite
representation (e.g. using regular languages or counting the number of compo-
nents in particular states, see [EN98,EFM99,Del00,PS00]). All these approaches
require a specialized way of specifying processes: as grammars [CGJ97], logic
programs [RKR+00], or rewrite rules [KP00]. In contrast, out technique directly
manipulates parameterized process specifications written in a standard process
algebraic representation that is typically used by finite-state model checking
tools. Moreover, being based on program analysis, our technique can be ap-
plied with little or no knowledge of the internals of the system under consid-
eration. This is in contrast to representation-based techniques [EN98,EFM99,
Del00,KP00] whose success depends on a clever choice of representations. An-
other approach, which requires considerable user intervention, is to generate a
network invariant for a system consisting of arbitrary number of identical com-
ponents [CGJ97,LHR97]. For chains and circular networks [SG99] presents a
method to generate such invariants automatically using a fixed point iteration

318 S. Basu and C.R. Ramakrishnan

procedure over two-dimensional strings automata. Our technique is also based
on computing the limit of an infinite chain, but one of mu-calculus formulas, and
does not restrict the network topology of the system to be verified.

An important aspect of our work is the generation of property transform-
ers using techniques from compositional model checking. Considerable amount
of research has been done on using assume-guarantee reasoning for constructing
compositional proofs [GL94,AH96,McM97,BG97,HQR98]. However, these meth-
ods typically need considerable user guidance. Closely related to our work are
the compositional model checker of [ASW94] and the partial model checker
of [And95]. The latter work defines property transformers for parallel compo-
sition of sequential automata, while we generalize the transformers to arbitrary
CCS processes. We also present a bisimulation-based procedure to reduce the size
of formulas generated by property transformers that results in smaller formulas
than the method used in [And95].

Contributions. We present a technique for automatic verification of parameter-
ized systems, representing an infinite family of finite-state systems. The tech-
nique views processes as property transformers and is based on computing the
limit of a sequence of mu-calculus formula generated by these transformers.

1. We develop a compositional model checker for CCS [Mil89] and use this
model checker to generate property transformers (Section 3).

2. We use the property transformers to define a sequence of mu-calculus for-
mula. The limit of this sequence is used to verify properties over infinite
families of systems. (Section 4).

3. To guarantee convergence of iterative procedure, we define acceleration and
widening operators (based on widening techniques used in type analysis) for
mu-calculus formula. (Section 4.1).

4. We show the usefulness of the technique by presenting its application in
verifying protocols over token passing rings (Milner’s cycle of schedulers
[And95]), mutual exclusion protocols (Java metalock [ADG+99]), and cache
coherence protocols [Del00] (Section 5). Details of the examples are available
at http://www.cs.sunysb.edu/˜lmc/compose.

2 Preliminaries

We briefly outline the syntax of the process algebra CCS [Mil89] and the logic
modal mu-calculus [BS01] used in the rest of the paper.

2.1 CCS and Labeled Transition Systems

CCS is a simple process algebra that can be used to specify a variety of systems.
Below we describe the syntax of expressions in basic CCS:

P → 0 | A | a.P | P + P | P ′|′P | P\L | P[f]

Compositional Analysis for Verification of Parameterized Systems 319

In the above, 0 denotes a deadlocked process. A ranges over process names
(agents) and a ranges over a set of actions Act = L ∪ L ∪ τ , where τ represents
an internal action and L is a set of labels and L is such that a ∈ L ⇔ a ∈ L.
Finally, L ranges over the powerset of L, and f : L → L. The operators ‘.’,
‘+’, ‘|’, ‘\’ and ‘[·]’ are called prefix, choice, parallel, restriction and relabeling
respectively. A CCS specification consists of a set of process definitions, denoted
by D, of the form A

def
= P , where P ∈ P. Each agent used in P , in turn,

appears on the left hand side of some process definition in D. Note that process
definitions may be recursive.

A labeled transition system (S,→) is specified by a set of states S and a
transition relation →⊆ S × Act × S. The operational semantics of CCS expres-
sions is given in terms of labeled transition systems where states represent CCS
expressions. See [Mil89] for a full definition of the semantics of CCS.

2.2 The Modal mu-Calculus

The modal mu-calculus [Koz83] is an expressive temporal logic with explicit
greatest and least fixed point operators. Following [CS93,And95], we use the
equational form of mu-calculus. The syntax of formulas in modal mu-calculus
over a set of propositional variables X and actions Act is given by the following
grammar : Φ→ tt | ff | X | Φ ∨ Φ | Φ ∧ Φ | 〈α〉Φ | [α]Φ.

In the above, α specifies a set of actions in positive form (as β ⊆ Act) or
negative form (as −β, where β ⊆ Act). 〈α〉Φ states that there exists an action in
α following which formula Φ holds true, while [α]Φ states that after every action
in α, Φ is satisfied. The variables used in a mu-calculus formula are defined
using a sequence of simultaneous equations where the ith equation has the form:
Xi =µ ϕi or Xi =ν ϕi, where ϕi ∈ Φ. The least and greatest fixed point symbols
µ and ν are said to represent the sign of the equation. In the remainder of the
paper,we use σ, ranging over {µ, ν} to denote the sign of an arbitrary equation.
We assume that each variable occurs exactly once on the left hand side of an
equation. The variable X1 defined by the first equation is called the top variable.
The set of equations representing some property is denoted by F . The set of all
mu-calculus equations is denoted by E .

Model Checking. Given a labeled transition system (S,→), the semantics of mu-
calculus formulas are stated such that each formula denotes a subset of S. Refer
to [BS01] for semantics of mu-calculus. We say that a mu-calculus formula ϕ
holds at a state s, if s is in the model of ϕ (denoted by s |= ϕ).

3 Partial Model Checking

Our technique for verification of parameterized systems is based on viewing a
process as a property transformer. We generate property transformers using a
partial model checker [And95]. Consider the verification of a formula ϕ over a
process expression of the form P |Q. Given ϕ and P we generate the obligation

320 S. Basu and C.R. Ramakrishnan

ϕ′ on Q such that P |Q |= ϕ whenever Q |= ϕ′. Thus we view P as transforming
the obligation ϕ on P |Q to the obligation ϕ′ on Q. This transformation is called
quotienting in [And95], where it is defined for modal mu-calculus properties and
systems specified by a LTSs.

In Figure 2 we define the property transformer using a function Π : (P×L×
F)→ Φ→ Φ where L is 2Act and F is a set of partial functions f : Act → Act
such that f(x) �= x. We use ⊥ to denote empty relabeling function which is
undefined everywhere. We define composition of two relabeling functions h = f◦g
such that h(x) is undefined if f(x) and g(x) are undefined, h(x) = f(x) if
g(x) is undefined, h(x) = g(x) if f(x) is undefined; if both are defined, then
h(x) = f(g(x)). Φ is the set of modal mu-calculus formulas. Finally P is the set
of all CCS process expressions. A process expression is said to be well-named if
all relabeling operations of the form Q[f] are such that set of visible actions of
process Q is disjoint from the range of function f .

The transformer ΠL
f (P) considers process P under a set of restricted actions

(L) and a relabeling function (f). The transformer generates a formula ψ as
the obligation of the environment of process P such that (a) modal actions are
suitably relabeled by f and (b) environment is not allowed to synchronize on
any actions in L. The transformer ΠL

f (P) transforms ϕ and generates ψ defined
over fixed point variables XP,f,L, where ϕ is defined over variables in X.

The set of visible actions of process P is denoted by vn(P). The names of
formula ϕ, denoted by n(ϕ), are the set of all actions in the modal subformulas
of ϕ and the names of all the formula variables appearing in ϕ; The names of
formula variable X are the names of formula ϕ that defines X (i.e. X =σ ϕ).
Range of relabeling f is the set of actions v such that f : x → v. The function
f ′ = f\L is such that f ′(x) = f(x) if f(x) �∈ L and f ′(x) is undefined otherwise.

Rules 1 through 5 in Figure 2 define the property transformer for proposi-
tional constants, boolean connectives, formula variables. Rule 6 states that the
property transformer for the zero (deadlocked) process, which is the identity of
the parallel composition operator of CCS, has the identity function as its pro-
perty transformer. Rule 7 states that the property transformer for an agent is
the property transformer of the process expression used to define the agent.

Property transformer of a process with relabeling function fp is property
transformer of the process under new relabeling function by composing the exi-
sting relabeling function with fp (Rule 8). Rule 9 presents the property transfor-
mer for a process with restriction Lp. The restricted actions are mapped to a set
of new names. This set is disjoint from the set of actions in the formula (n(ϕ)),
visible actions of process (vn(P)) and restricted(L) and relabeled(range(f)) ac-
tions of the transformer.

Rule 10 captures the compositionality of property transformers: the property
transformer for a parallel composition of processes is simply the function compo-
sition of the individual property transformers with appropriate restriction and
relabels. First, consider process P1 in Rule 10. The transformer function for P1
is restricted on actions in L1, which are not visible to the environment of P1,
i.e. P2. Therefore, transformer function for P2 is restricted on actions in L2

Compositional Analysis for Verification of Parameterized Systems 321

1. ΠL
f (P)(tt) = tt

2. ΠL
f (P)(ff) = ff

3. ΠL
f (P)(ϕ1 ∨ ϕ2) = ΠL

f (P)(ϕ1) ∨ΠL
f (P)(ϕ2)

4. ΠL
f (P)(ϕ1 ∧ ϕ2) = ΠL

f (P)(ϕ1) ∧ΠL
f (P)(ϕ2)

5. ΠL
f (P)(X) = XP,f,L

6. ΠL
f (0)(ϕ) = ϕ

7. ΠL
f (A)(ϕ) = ΠL

f (P)(ϕ) if A
def
= P ∈ D

8. ΠL
f (P [fp])(ϕ) = ΠL

f◦fp(P)(ϕ)
9. ΠL

f (P\Lp)(ϕ) = ΠL∪L′
f (P [L′/Lp])(ϕ)

where L′ ∩ (n(ϕ) ∪ vn(P) ∪ range(f) ∪ L) = { }
10. ΠL

f (P1|P2)(ϕ) = ΠL2
f2

(P2)(ΠL1
f (P1)(ϕ))

where L1 = L− vn(P2), L2 = L− L1, f2 = f\L1

11. ΠL
f (a.P)(〈α〉ϕ) = 〈α〉ΠL

f (a.P)(ϕ) ∨
{
ΠL
f (P)(ϕ) if f(a) ∈ α

ff otherwise

}

∨
{
〈f(a)〉ΠL

f (P)(ϕ) if τ ∈ α ∧ f(a) 	∈ L
ff otherwise

}

12. ΠL
f (a.P)([α]ϕ) = [α]ΠL

f (a.P)(ϕ) ∧
{
ΠL
f (P)(ϕ) if f(a) ∈ α

tt otherwise

}

∧
{

[f(a)]ΠL
f (P)(ϕ) if τ ∈ α ∧ f(a) 	∈ L

tt otherwise

}

13. ΠL
f (P1 + P2)(〈α〉ϕ) = 〈α〉ΠL

f (P1 + P2)(ϕ) ∨ΠL
f (P1)(〈α〉ϕ) ∨ΠL

f (P2)(〈α〉ϕ)
14. ΠL

f (P1 + P2)([α]ϕ) = [α]ΠL
f (P1 + P2)(ϕ) ∧ΠL

f (P1)([α]ϕ) ∧ΠL
f (P2)([α]ϕ)

A. ΠL
f (P)(X =σ ϕ ∪ E) = XP,f,L =σ Π

L
f (P)(ϕ) ∪ ΠL

f (P)(E) ∪
{⋃(ΠL′

F ′ (P
′)(X ′ =σ′ ϕ

′) s.t X ′P ′,F ′,L′is subformula of
ΠL
f (P)(ϕ), X ′ =σ′ ϕ

′ ∈ F}
B. ΠL

f (P)({}) = {}

Fig. 2. Partial Model Checker for CCS

(= L − L1). Further, note that, relabel mapping on process P2 is transformed
by projecting off the mappings concerning names in L1.

Rule 11 arises from the fact that a.P |Q may satisfy 〈α〉ϕ in one of the follo-
wing three ways:

1. Q does an α action to Q′ leaving a.P |Q′ to satisfy ϕ. In this case, the
obligation on Q is to do an α action, followed by satisfying the obligation
left by a.P due to ϕ (first disjunct in the rhs of Rule 11).

2. a ∈ α and P does the a action, leaving P |Q to satisfy ϕ. In this case the
obligation on Q is simply the obligation left by P due to ϕ (second disjunct
in the rhs of Rule 11).

3. τ ∈ α, P does an a action that synchronizes with an a action by Q to
produce the necessary τ action. This means that the obligation on Q is to
first produce an a action and then satisfy whatever obligation is left by P
due to ϕ (third disjunct of Rule 11).

322 S. Basu and C.R. Ramakrishnan

Note that, property transformer of P , under a set of restricted actions L,
does not permit the environment Q to synchronize on any action present in L.
The third disjunct generates modal obligation for the environment on the action
f(a) only when f(a) �∈ L. Rule 12 is the dual of Rule 11.

Rule 13 presents the property transformer for process with choice operator
(P1 +P2). It is defined by considering three different cases. In the first disjunct,
selection of the processes P1 and P2 is postponed and the environment is provided
with the obligation to satisfy diamond modality. The second and third disjunct
represents the cases when the choices are made in favor of process P1 and process
P2 respectively. Rule 14 is the dual of Rule 13.

Rules A and B define a function Π : (P × L × F) → E → E which defines
property transformers over mu-calculus equations. To transform a sequence of
equations E, we construct the set of equations as per Rules A and B.

The correctness of the quotienting operation, formally stated below, can be
proved by induction on the structure of formula and process expressions.

Theorem 1 Given a well-named process expression P the following identity
holds

∀Q Q|P |= ϕ ⇔ Q |= Π
{}
⊥ (P)(ϕ)

4 Verification of Parameterized Systems

Consider a parameterized system Pn defined by parallel composition of processes
P . The parameter (n) represents the number of processes P present in the sy-
stem. Consider verifying whether the ith instance of the above system possesses
property ϕ: i.e. whether Pi |= ϕ. Let

ϕi = ΠL
f (Pi)(ϕ),

where f and L are the relabelings and restrictions applied to the process Pi.
Therefore, from Theorem 1, 0 |= ϕi ⇔ Pi |= ϕ.

Now consider verifying whether ∀i. Pi |= ϕ. Let ϕ′i be defined as follows

ϕ′i =
{
ϕ1 if i = 1
ϕ′i−1 ∧ ϕi if i > 1 (1)

By definition of ϕ′i, ∀1 ≤ j ≤ i.0 |= ϕj ⇔ 0 |= ϕ′i. Hence, 0 |= ϕ′i means that
∀1 ≤ j ≤ i.Pj |= ϕ. If ϕ′ω is the limit of sequence ϕ′1, ϕ

′
2 . . ., then, 0 |= ϕ′ω ⇔

∀i ≥ 1.Pi |= ϕ.
A dual method can be used to determine whether ∃i ≥ 1. si |= ϕ simply by

defining

ϕ′i =
{
ϕ1 if i = 1
ϕ′i−1 ∨ ϕi if i > 1 (2)

We say that ϕ′i is said to be contracting if ϕ′i ⇒ ϕ′i−1 and relaxing if ϕ′i−1 ⇒
ϕ′i. For systems indexed by a single parameter, the limit of the sequence of ϕ′is

Compositional Analysis for Verification of Parameterized Systems 323

can be computed by a fixed point iteration procedure. For details of the proof
refer to http://www.cs.sunysb.edu/˜lmc/compose.

Two problems need to be solved before this method can be implemented. First
of all, we need a procedure to check if the limit ϕω has been reached: that is
to determine the equivalence of two mu-calculus formulas. Checking equivalence
between mu-calculus properties is EXPTIME-hard [EJ88] and hence we need an
efficient procedure to compute an approximate equivalence relation. Moreover,
as remarked in [And95] the formulas resulting from property transformers tend
to be large and effective simplification procedures are needed before this method
becomes practical. While we use the simplification rules from [And95], we use a
more powerful procedure to test for equivalence between mu-calculus formulas
by constructing graphs from the formulas and checking for their bisimilarity.

The second problem arises due to the existence of infinite ascending chains
in the domain of modal mu-calculus formulas: the iteration procedure may not
always terminate. We describe a widening operator (based on definitions of wi-
dening operators over type domains) to guarantee the termination of iteration
procedure at the expense of completeness in Section 4.1. In [PS00], similar idea
has been applied on regular transition relations to ensure convergence of transi-
tive closures of parameterized systems. The distinguishing feature of our work is
that widening (acceleration) is tailored to property representation (mu-calculus)
unlike the acceleration on transition relations [PS00].

The approach presented above can be be easily applied to infinite families of
systems specified by two or more parameters by considering a multi-parameter
system as a nesting of single parameter systems. This cannot be done if the pa-
rameters are interdependent; a method capable of handling such infinite families
remains to be developed.

4.1 Accelerating Fixed Point Iterations

Widening [CC77] is a well-known technique for accelerating and guaranteeing
termination over domains with infinite ascending chains. We first present an
acceleration operation, inspired by the widening operators defined over type
graphs in the area of type analysis [HCC94], to accelerate the convergence, but
this still does not guarantee termination. This operation can be modified to yield
a widening operator for a class of mu-calculus formulas.

Let ψ0, ψ1, . . . be a sequence of mu-calculus formulas such that ψi+1 = f(ψi).
Furthermore, let the sequence be such that ∀i. ψi+1 ⇒ ψi (contracting se-
quence) or ∀i. ψi+1 ⇐ ψi (relaxing sequence). We now consider the problem of
computing the limit of such a sequence. The acceleration operation, accel , is a
monotonic function that determines a new formula ψ′ = accel(ψi, ψi+1) based on
the differences between ψi and ψi+1 such that ψ′ ≥ ψi+1. The acceleration ope-
ration is defined by considering a graph representation of mu-calculus formulas
as described below.

Formula Graph. A formula graph, called F-graph, is an and/or graph that
captures the structure of a mu-calculus formula, and is defined as follows:

324 S. Basu and C.R. Ramakrishnan

Special Transition Rule for top variable X

[X]#,σ
#,γ,σ◦−→ [φ]#,σ if X =σ φ

General Transition Rules

1(a). [ϕ1 b ϕ2]b
′,σ b,m,σ◦−→ [ψ]b,σ if [ϕ1]b,σ

b,m,σ◦−→[ψ]b,σ ∧ (b = b′ ∨ b′ = #)

1(b). [ϕ1 b ϕ2]b
′,σ b,m,σ◦−→ [ψ]b,σ if [ϕ2]b,σ

b,m,σ◦−→[ψ]b,σ ∧ (b = b′ ∨ b′ = #)

2. [ϕ1 b ϕ2]b
′,σ b,γ,σ◦−→ [ϕ1 b ϕ2]b,σ if b′ 	= b ∧ b′ 	= #

3(a). [〈a〉ϕ]b,σ
b,〈a〉,σ◦−→ ϕb,σ

3(b). [[a]ϕ]b,σ
b,[a],σ◦−→ ϕb,σ

4. [Y]b,σ
b,γ,σ◦−→ϕb,σ1 if Y =σ1 ϕ

Fig. 3. Transition relation for F-graph

Definition 1 F-graph is defined as a tuple FG = (S, ◦−→, A), where S is the set
of states labeled by a pair (α, σ), A ⊆ α×β×σ is the set of labels on transitions,
where α ∈ {#,∨,∧}, β ∈ {[a], 〈a〉, γ} and σ ∈ {µ, ν}. ◦−→ ⊆ S × A × S is the
labeled transition relation between pairs of states. The transition relation ◦−→ is
a least relation as defined in Figure 3.

Each state in formula graph is labeled by (i) a boolean connective (b) stating
whether the state is a part of “and” or “or” structure and (ii) a fixed point
operator (σ) keeping track of fixed point nature of the current state’s ancestor.
Note that the top variable X, thus, has no inherited attributes. We use a special
symbol # as its b label and synthesize the fixed point attribute from the definition
of X. Rules 1 to 4 complete the definition of transition relation for all other
cases. Rules 1(a) and 1(b) are defined by transitive closure relation and captures
action label m present in identical boolean structures and under same fixed point
operators. Note that the special symbol # can match with both ∧ and ∨ boolean
operators. Rule 2 presents the nesting of boolean structures. In this case, we use
another special marker γ to identify toggling between boolean operators. γ is
also used to mark the first transition from a formula variable.

Note that F-graphs capture only some of the structure of a mu-calculus
formula: for instance, the order of conjuncts in a disjunction is omitted. F-
graphs can be viewed as labeled transition systems. This permits us to check for
equivalence between two mu-calculus formulas based on the bisimulation [Mil89]
of their respective F-graphs.

Proposition 1 Two mu-calculus formula ϕ1 and ϕ2 are equivalent if their cor-
responding F-graphs F1 and F2 are bisimilar.

Acceleration based on F-graphs. The widening operator over type gra-
phs [Mil99,HCC94] identifies topological differences between two graphs and

Compositional Analysis for Verification of Parameterized Systems 325

procedure widen(Fϕ1 , Fϕ2)
1. clash-set := null;
2. visited := null;
3. topoclash(N1, N2);
//N1, N2 are start nodes of Fϕ1 , Fϕ2
4. visited := null
5. foreach Nc ∈ clash-set do
6. Na := anc-of(Nc, Fϕ2);
7. rearrange(Na, Nc);
8. endforeach
9. return(Fϕ2);

procedure anc-of(Nc, Fϕ2)
1. foreach Na ∈ Fϕ2 do

2. if Na
∗◦−→Nc ∧ sim(Na, Nc) then

3. return(Na);
4. endforeach
5. return(null);

procedure topoclash(N1, N2)
1. if (N1, N2) ∈ visited then
2. return;

3. if ∃N2
b,m,σ◦−→M2 ∧ ¬∃N1

b,m,σ◦−→M1 then
4. clash-set := clash-set ∪ {N2}
5. return;

6. foreach N2
b,m,σ◦−→M2 do

7. foreach N1
b,m,σ◦−→M1 do

8. visited:=visited ∪ (N1, N2);
9. remove N2 from clash-set;
10. topoclash(M1,M2);
11. endforeach
12.endforeach

procedure sim(Na, Nc)
1. if (Na, Nc) ∈visited then
2. return 1;
3. ret-val := 1;

4. foreach Nc
b,m,σ◦−→Mc do

5. ret-val1 := 0;

6. foreach Na
b,γ,σ◦−→ ∗ b,m,σ◦−→ b,γ,σ◦−→ ∗Ma do

7. visited:=visited ∪ (Na, Nc);
8. ret-val1:=ret-val1|sim(Ma,Mc);
9. endforeach
10. ret-val := ret-val & ret-val1;
11.endforeach
12.return(ret-val);

Fig. 4. Widening Algorithm

detects the state (in the graph to be widened) which leads to such a disparity
between the two graphs. This node is termed as witness to topological clash. In
the next step, an ancestor of the witness is selected with some specific property.
Finally all the transitions from the witness is directed to the ancestor resulting
in a loop. This removes the sub-graph of the witness and shortens the graph.

Following the same line, we develop an acceleration operator over mu-calculus
formulas expressing safety and reachability properties as follows. Let Fϕ be the
formula graph corresponding to the formula ϕ. We first formalize the notion of
a topological clash between the formula graphs of two formulas ϕ1 and ϕ2.

Definition 2 Formula ϕ2 clashes with ϕ1 (denoted by ϕ1 � ϕ2) if there exists
states N1 in Fϕ1 and N2 in Fϕ2 , such that the states N1 and N2 are reachable
from the start states of Fϕ1 and Fϕ2 by identical sequences of transitions and
there exists a transition from N2 that has no matching transition from N1. This
is called topological clash and N2 is said to be a witness to the clash.

Intuitively, the above relation identifies the situation when ϕ2 has an new sub-
formula that is not present in ϕ1. This type of divergence in the formula arises
when a formula keeps a count of modal operators needed to reach a distinguished
state. We discard such counters as follows. We identify an ancestor of witness
node such that the ancestor simulates the witness (see [Mil89] for definition
of simulation). Finally, the accelerated graph Fϕ′ is constructed from Fϕ2 by
removing the witness node and redirecting all its incoming edges to ancestor node
and introducing outgoing transitions of witness to ancestor. Figure 4 presents

326 S. Basu and C.R. Ramakrishnan

the pseudo-code for our acceleration operation. Procedure widen takes in two
formula graphs Fϕ1 and Fϕ2 and performs acceleration of the latter. Procedure
topoclash constructs the set (clash-set) of witness nodes to topological clash.
In the next step, for each node Nc in the clash-set a suitable ancestor Na
is detected using the procedure anc-of. Finally, procedure rearrange (Line 7
of widen) removes the node Nc and redirects its incoming and outgoing edges
to and from Na respectively. The acceleration operation defined here is only
applicable if the selected witness node is an ∧ or ∨ node and the sequence of ϕi
is contracting (Equation 1) or relaxing (Equation 2) respectively.

Note that such acceleration shortens the formula graph by merging one or
more witness nodes with their respective ancestors. In terms of abstraction of
formula, such merging amounts to discarding the exact sequence of modal actions
that is preserved in un-abstracted formula.

Note however that the acceleration operator is not a widening operator and
its range contains infinite ascending chains. Two factors prevent it from being
a widening operator. First, the nodes selected for discarding are restricted by
the definition of generated formula (contraction or relaxation) and hence not
all growth in formula graphs are even considered for pruning. For instance, se-
quence may be contracting but a formula can grow under an ‘∨’ node. This
factor for divergence disappears when we restrict the mu-calculus formulas un-
der consideration to those whose F-graphs have all and-nodes or all or-nodes.
Simple reachability and safety properties are of this form. Secondly, the selected
witness N2 may not have an ancestor Na such that Na simulates N2. Under
this circumstance, we can simply replace N2 with tt if N2 is a ‘∨’ node and ff
if N2 is a ‘∧’ node. This approximation, combined with the restriction of mu-
calculus formulas proposed above, makes the acceleration operation a widening
operation. The approximation, however appears to be very coarse and results in
considerable information loss (see Section 5).

5 Case Studies

In this section, we discuss the applicability of our technique for automatic ve-
rification of mu-calculus properties for single-parameter systems. The examples
show that our technique can be used to verify parameterized systems with dif-
ferent control structures like ring, chain and star networks.

Milner Scheduler. Milner’s Scheduler [Mil89] consists of cell processes
connected in the form of a cycle where the ith cell waits on synchronization
with (i − 1)th cell and then communicates with the (i + 1)th cell. Further each
cell is also capable of performing autonomous actions. Initially all cells except
cell(0) are waiting to synchronize on an out action from the previous cell in
ring.

We consider the verification of the following mu-calculus property that en-
codes the existence of a deadlock : ϕd : X =µ [τ]ff ∨ 〈τ〉X. Consider a system
consisting of N+1 cell processes, denoted by sys(N), and the problem of verify-
ing ∃Nsys(N) |= ϕd. The sequence of formula as defined in Equation 2 does not

Compositional Analysis for Verification of Parameterized Systems 327

converge. This is because ψi, the ith formula in the chain explicitly represents all
possible interleavings between actions of the cell(i) and the cell(0). Equiva-
lence reduction alone cannot discard such interleavings. When the acceleration
operator (Section 4.1) is used, the resulting chain converges; the acceleration
operator ignores the exact nature of interleaving between the actions. The limit
after acceleration, ϕf , leaves for the environment the obligation to satisfy ϕd
after an out action of the cell(N) or an in action of cell(0). As 0 has no
outgoing transition, 0 �|= ϕf . This implies ∀N sys(N) �|= ϕd.

Similar behavior is exhibited by token-ring protocol and queues with two or
more buffers. In all these cases, while the iterative procedure for limit computa-
tion does not converge directly, the acceleration operator forces termination.

Cache Coherence. Cache coherence protocols [AB86] are used in multi-
processor systems with shared memory, where each processor possesses its own
private cache. The protocol we considered (from [Del00]) defines four distinct
states for each processor – invalid, valid, shared and exclusive. Processors in in-
valid state have an outdated copy of the memory block in their cache; processors
in valid and shared states have the current copy of memory block in their cache;
a processor in exclusive state is the exclusive owner of the memory block.

Previous efforts [Del00] to verify data consistency involved abstracting the
parameterized system into a single infinite state system by counting the number
of processors in various states. Model checking was performed by reachability
analysis of this system. In contrast, we modeled the parameterized system and
used a least fixed point formula ϕ to detect the presence of more than one
processor in each of valid, shared or exclusive states – objective being to check
∃N sys(N) |= ϕ where sys(N) consists of N processors. The limit ϕf is obtained
after three iterations, since at any point of time at most two processors can
share the ownership of cached data. Finally 0 �|= ϕf implying data consistency
is maintained for system consisting of any number of processors.

Java Meta-lock. The Java Meta-lock is a distributed algorithm that ensures
fast mutually exclusive access of objects by Java threads [ADG+99]. The proto-
col involves synchronous communication between objects and threads and also
between the threads themselves.

We first consider the system consisting of fixed number of threads and ar-
bitrary number of objects and a least fixed point deadlock formula ϕd. Our ob-
jective is to check ∃N sys(k, N) |= ϕd, where k is the fixed number of threads
and N is the number of objects. In this example, the limit computation converges
in two iterations to yield ϕf , since each object process behaves independently
of any other object. Finally, 0 �|= ϕf ensuring freedom from deadlock for all the
members of the parameterized system sys(k, N).

Let us now consider the dual case with an arbitrary number of thread pro-
cesses and a fixed number of objects. Using the same ϕd, our aim is to verify
∃M sys(M, k) |= ϕd. The sequence of formulas generated by property trans-
former for the threads does not converge even with application of acceleration
operator. The sequence converges only after the coarse approximation performed

328 S. Basu and C.R. Ramakrishnan

by the widening operator. The reason is that in case of meta-lock protocol each
thread process can directly communicate with any other thread process. Hence
ψi, the ith formula in the sequence contains actions related to synchronization
between the ith thread and any other thread. When attempting to accelerate
the convergence of the limit computation, we find that the selected witnesses
of topological clashes (see Section 4.1) do not have an ancestor that simulates
them, and hence no reduction is possible. In this case, the widening operator
approximates the witness state with tt . Intuitively, this approximation implies
that any transition sequence leading to interaction between threads will satisfy
ϕd. However this approximation is too coarse since the resultant limit ϕf is such
that 0 |= ϕf . Due to the approximation, we cannot determine whether ϕd is
modeled by the sys(M, k).

6 Conclusion

We described an automatic technique, based on program analysis techniques,
for the verification of infinite families of concurrent systems. At the core of the
technique is the use of partial model checking for generating property transfor-
mers over modal mu-calculus formulas from system specifications in CCS. In our
technique, the problem of verifying an infinite family is posed as a problem of
finding the limit of a chain of modal mu-calculus formulas. We also presented
a widening operator to guarantee termination of the analysis for a subclass of
modal mu-calculus formulas. We have implemented this technique in the XSB
tabled logic programming system [XSB00]. The utility of the technique has
been demonstrated by verifying a number of example parameterized systems
with diverse characteristics in a uniform manner. The technique, however, is too
approximate to provide useful results in certain cases where induction-based ve-
rification techniques have been successful (metalock with multiple threads and
single object [RR01]). Development of abstractions of property transformers and
widening operators which perform more fine-grained approximations is a topic
of future research.

Acknowledgments. We would like thank to Dr. K. Narayan Kumar for di-
scussion and guidance. We are also thankful to the anonymous reviewers for
their valuable comments. This work is supported in part by NSF grants EIA-
9705998, CCR-9876242, EIA-9805735, IIS-0072927, CCR-0205376, and ONR
grant N000140110967.

References

[AB86] J. Archibald and J.L. Baer. Cache coherence protocols: Evaluation using
a multi-processor simulation model. In ACM TOCS, 1986.

[ADG+99] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y.S. Ramakrishna,
and D. White. An efficient meta-lock for ubiquitous synchronization. In
OOPSLA, 1999.

Compositional Analysis for Verification of Parameterized Systems 329

[AH96] R. Alur and T. Henzinger. Reactive modules. In LICS, 1996.
[And95] H. R. Andersen. Partial model checking. In LICS, 1995.
[ASW94] H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof system

for the modal mu-calculus. In LICS, 1994.
[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 1020 states and beyond. In LICS, 1990.
[BG97] S. Berezin and D. Gurov. A compositional proof system for the modal

mu-calculus and CCS. Technical Report CMU-CS-97-105, CMU, 1997.
[BS01] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction.

In Handbook of Process Algebra. Elsevier, 2001.
[BSW00] S. Basu, S. A. Smolka, and O. R. Ward. Model checking the Java Meta-

Locking algorithm. In ECBS, 2000.
[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice mo-

del for static analysis of programs by construction or approximation of
fixpoints. In POPL, 1977.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
TOPLAS, 1986.

[CGJ97] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.
In ACM transactions on programming languages and systems, 1997.

[CS93] R. Cleaveland and B. Steffen. A linear-time model checking algorithm for
the alternation-free modal mu-calculus. FMSD, 1993.

[Del00] G. Delzanno. Automatic verification of parameterized cache coherence
protocols. In CAV, 2000.

[DP99] G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, 1999.
[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast

protocols. In LICS, 1999.
[EJ88] E. A. Emerson and C. S. Jutla. The complexity of tree automata and

logics of programs. In FOCS, pages 328–337, 1988.
[EN95] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In POPL, 1995.
[EN96] E.A. Emerson and K.S. Namjoshi. Automated verification of parameteri-

zed synchronous systems. In CAV, 1996.
[EN98] E.A. Emerson and K.S. Namjoshi. On model checking for non-

deterministic infinite state systems. In LICS, 1998.
[GL94] O. Grumberg and D.E. Long. Model checking and modular verification.

In TOPLAS, 1994.
[HCC94] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog

using type graphs. In JLP, 1994.
[Hol97] G. J. Holzmann. The model checker SPIN. IEEE TSE, 1997.
[HQR98] T. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee.

In CAV, 1998.
[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry reduction.

In FMSD, 1996.
[ID99] C.N. Ip and D.L. Dill. Verifying systems with replicated components in

murphi. In FMSD, 1999.
[Koz83] D. Kozen. Results on the propositional µ-calculus. TCS, 1983.
[KP00] Y. Kesten and A. Pnueli. Control and data abstraction:the cornerstones

of pratical formal verification. In Intl. Journal on STTT, 2000.
[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of

linear networks processes. In POPL, 1997.

330 S. Basu and C.R. Ramakrishnan

[McM97] K.L. McMillan. Compositional rule for hardware design refinement. In
CAV, 1997.

[Mil89] R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[Mil99] P. Mildner. Type Domains form Abstract interpretation: A critical study.
PhD thesis, Uppsala University, 1999.

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In CAV, 2000.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proceedings of the International Symposium in Pro-
gramming, 1982.

[RKR+00] A. Roychoudhury, K.N. Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan,
and S.A. Smolka. Verification of parameterized systems using logic-
program transformations. In TACAS, 2000.

[RR01] A. Roychoudhury and I.V. Ramakrishnan. Automated inductive verifica-
tion of parameterized protocols. In CAV, 2001.

[SG99] A. P. Sistla and V. Gyuris. Parameterized verification of linear networks
using automata as invariants. Formal Aspects of Computing, 1999.

[Wol86] P. Wolper. Expressing interesting properties in propositional temporal
logic. In POPL, 1986.

[XSB00] The XSB Group. The XSB logic programming system v2.1, 2000. Avai-
lable from http://www.cs.sunysb.edu/∼sbprolog.

	Introduction
	Preliminaries
	CCS and Labeled Transition Systems
	The Modal mu-Calculus

	Partial Model Checking
	Verification of Parameterized Systems
	Accelerating Fixed Point Iterations

	Case Studies
	Conclusion

