Automatic Abstraction without
Counterexamples

Kenneth L. McMillan and Nina Amla

Cadence Design Systems

Abstract. A method of automatic abstraction is presented that uses
proofs of unsatisfiability derived from SAT-based bounded model check-
ing as a guide to choosing an abstraction for unbounded model checking.
Unlike earlier methods, this approach is not based on analysis of abstract
counterexamples. The performance of this approach on benchmarks de-
rived from microprocessor verification indicates that SAT solvers are
quite effective in eliminating logic that is not relevant to a given property.
Moreover, benchmark results suggest that when bounded model check-
ing successfully terminates, and the problem is unsatisfiable, the number
of state variables in the proof of unsatisfiability tends to be small. In
almost all cases tested, when bounded model checking succeeded, un-
bounded model checking of the resulting abstraction also succeeded.

1 Introduction

Abstraction is commonly viewed as the key to applying model checking to large
scale systems. Abstraction means, in effect, removing information about a system
which is not relevant to a property we wish to verify. In the simplest case, we can
view the system as a large collection of constraints, and abstraction as removing
constraints that are deemed irrelevant. The goal in this case is not so much to
eliminate constraints per se, as to eliminate state variables that occur only in
the irrelevant constraints, and thereby to reduce the size of the state space. A
reduction of the state space in turn increases the efficiency of model checking,
which is based on exhaustive state space exploration.

The first attempt to automate this simple kind of abstraction is due to Kur-
shan [12], and is known as iterative abstraction refinement. This method begins
with an empty set of constraints (or a seed set provided by the user), and applies
model checking to attempt to verify the property. If a counterexample is found, it
is analyzed to find a set of constraints whose addition to the system will rule out
the counterexample. The process is then repeated until the property is found to
be true, or until a concrete counterexample is produced. To produce a concrete
counterexample, we must find a valuation for the unconstrained variables, such
that all the original constraints are satisfied.

A number of variations on this basic technique have appeared [1I59]22]. Some
of the recent methods pose the construction of a concrete counterexample as a
Boolean satisfiability (SAT) problem (or equivalently, an ATPG problem) and
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apply modern SAT methods [14] to this problem. A recent approach [6] also
applies ILP and machine learning techniques to the problem of choosing which
constraints to add to rule out an abstract counterexample in the case when a
concrete counterexample is not found.

Another recent and related development is that of bounded model checking [3].
In this method, the question of the existence of a counterexample of no more
than k steps, for fixed k, is posed as a SAT problem. In various studies [74], SAT
solvers have been found to be quite efficient at producing counterexamples for
systems that are too large to allow standard model checking. The disadvantage of
this approach is that, if a counterexample is not found, there is no guarantee that
there do not exist counterexamples of greater than k steps. Thus, the method
can falsify, but cannot verify properties (unless an upper bound is known on the
depth of the state space, which is not generally the case).

In this paper, a method is presented for automated abstraction which exploits
an under-appreciated fact about SAT solvers: in the unsatisfiable case, they can
produce a proof of unsatisfiability. In bounded model checking, this corresponds
to a proof that there is no counterexample to the property of k steps or fewer.
Even though this implies nothing about the truth of the property in general, we
can use this proof to tell us which constraints are relevant to the property (at
least in the first k steps) and thus provide a guess at an abstraction that may
be used to fully verify the property using standard model checking methods.
The method differs from the earlier, counterexample-based iterative abstraction
approaches, in that counterexamples produced by the standard model checker
are ignored. The abstraction is based not on refuting these counterexamples,
but rather on proofs provided by the SAT solver. Thus, we will refer to it as
proof-based abstraction. This approach has the advantage that it rules out all
counterexamples up to a given length, rather than the single counterexample
that the model checker happened to produce.

1.1 Related Work

The notion of proof-based abstraction has already appeared in the context of
infinite state verification. Here, a finite state abstraction of an infinite state sys-
tem is generated using as the abstract states the valuations of a finite set of
first order predicates over the concrete state. The key to this method, known as
predicate abstraction [18], is to choose the right predicates. An iterative abstrac-
tion method proposed by Henzinger et al. [20] uses a theorem prover to refute
counterexamples generated by predicate abstraction. In the case when the coun-
terexample is proved false, the proof is “mined” for new state predicates to use
in predicate abstraction.

The technique presented here is similar to this method in spirit, but differs
in some significant aspects. First, it applies only to finite state systems, and
uses a SAT solver rather than a first order prover. Second, instead of choosing
predicates to define the abstract state space, it merely chooses among the existing
constraints to form the abstraction — the encoding of the state remains the same.
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Another related technique [16] uses a SAT solver to derive an abstraction
sufficient to refute a given abstract counterexample. The abstraction is generated
by tracing the execution of the SAT solver in a way that is similar to the method
presented here. However, that method, like the earlier methods, still refutes one
counterexample at a time, accumulating an abstraction.

The key difference between the methods of [20/16] and the present one is
that the present method does not use abstract counterexamples as a basis for
refining the abstraction. Rather, it generates an abstraction sufficient to refute
all counterexamples within a given length bound. Intuitively, the motivation for
refuting all counterexamples at once is that a given abstract counterexample may
be invalid for many reasons that are not relevant to the truth of the property
being proved. In the present method, the abstraction is directed toward the
property itself and not a single execution trace that violates it.

Another important difference is that the generated abstraction is not cumu-
lative. That is, a constraint that is present in abstraction in one iteration of the
algorithm may be absent in a later iteration. Thus, strictly speaking, the method
cannot be viewed as “iterative abstraction refinement”. In the counterexample-
based methods, an irrelevant constraint, once added to the abstraction, cannot
be removed.

1.2 Outline

We begin in the next section by considering how a Boolean satisfiability solver
can be extended to produce proofs of unsatisfiability. Then, in section 3, we
introduce the proof-based abstraction method. Finally, in section 4, we test the
method in practice, applying it to the verification of some properties of commer-
cial microprocessor designs.

Benchmark results provide evidence for two significant conclusions: first, that
SAT solvers are quite effective at isolating the parts of a large design that are
relevant to a given property, and second, that if a property is true and bounded
model checking succeeds, then in most cases unbounded model checking can be
applied to an abstraction to prove the property in general.

2 Extracting Proofs from SAT Solvers

A DPLL-style SAT solver, such as CHAFF [14], is easily instrumented to pro-
duce proofs of unsatisfiability using resolution. This is based on the observation
that “conflict clause” generation can be viewed as a sequence of resolution steps,
following the so-called “implication graph”. Readers familiar with SAT methods
may find this observation quite trivial, and therefore may wish to skip this sec-
tion. Otherwise, we will now define what is meant by a “proof of unsatisfiability”,
and show how one can be extracted from a run of a typical SAT solver.

To begin at the beginning, a clause is a disjunction of a set of zero or more
literals, each of which is either a Boolean variable or its negation. We assume
that clauses are non-tautological, that is, no clause contains both a variable and
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its negation. A set of clauses is said to be satisfiable when there exists a truth
assignment to all the Boolean variables that makes every clause in the set true.
Given two clauses of the form ¢; = vV A and ¢o = —w V B, we say that the
resolvent of ¢; and ¢y is the clause AV B, provided AV B is non-tautological. For
example, the resolvent of a Vb and —aV —cis bV —¢, while a Vb and —a V —b have
no resolvent, since b V —b is tautological. It is easy to see that any two clauses
have at most one resolvent. The resolvent of ¢; and ¢ (if it exists) is a clause
that is implied by ¢; A ¢a (in fact, it is exactly (Jv)(c1 A c2)).
Definition 1. A proof of unsatisfiability P for a set of clauses C is a directed
acyclic graph (Vp, Ep), where Vp is a set of clauses, such that

— for every vertex ¢ € Vp, either
e cc (C, and c is a root, or
e ¢ has exactly two predecessors, c¢1 and ca, such that c is the resolvent of
c1 and co, and
— the empty clause is the unique leaf.

Theorem 1. If there is a proof of unsatisfiability for clause set C, then C is
unsatisfiable.

Proof. By induction over the depth of the DAG, and transitivity of implica-
tion, every clause is implied by the conjunction of C, hence C' implies the empty
clause (i.e., false), and is thus unsatisfiable. O

Now we consider how a standard SAT solver might be modified to produce
proofs of unsatisfiability. While searching for a satisfying assignment, a DPLL
solver makes decisions, or arbitrary truth assignments to variables, and generates
from these an implication graph. This is a directed acyclic graph whose vertices
are truth assignments to variables, where each node is implied by its predecessors
in the graph together with single clause.

As an example, suppose that our clause set is {(—a V' b), (—bV cV d)} and we
have already decided the literals {a, —c}. A possible implication graph is shown
below:

The literal b is implied by node a and the clause (—a V b), while d is implied
by the nodes b, —¢, and clause (=bV ¢V d).

A clause is said to be in conflict when the negations of all its literals appear
in the implication graph. When a conflict occurs, the SAT solver generates a
conflict clause — a new clause that is implied by the existing clauses in the set.
This is usually explained in terms of finding a cut in the implication graph,
but from our point of view it is better understood as a process of resolving the
“clause in conflict” with clauses in the implication graph to generate a new clause
(that is also in conflict). We can also think of each resolution step as applying
an implication from the implication graph in the contrapositive.
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As an example, suppose that we add the clause (—=bV —d) to the example
above. This clause is in conflict, since the implication graph contains both b
and d. Note that d was implied by the clause (b V ¢V d). Taking the resolvent of
this clause with the conflicting clause (=bV —d), we obtain a new implied clause
(=b V ¢), which is also in conflict. Now, the literal b in the implication graph
was implied by the clause (—a V b). Resolving this with our new clause produces
another implied clause (—a V ¢), also in conflict. Either of these implied clauses
might be taken as the conflict clause, and added to the clause set.

In order to generate a proof in the unsatisfiable case, we have only to record,
for each generated conflict clause, the sequence of clauses that were resolved to
produce that clause. The SAT solver produces an “unsatisfiable” answer when
it generates the empty clause as a conflict clause (actually, most solvers do not
explicitly produce this clause, but can be made to do so). At this point, we can
easily produce a proof of unsatisfiability by, for example, a depth-first search
starting from the empty clause, recursively deducing each clause in terms of the
sequence of clauses that originally produced it. Note that, in general, not all
conflict clauses generated during the SAT procedure will actually be needed to
derive the empty clause.

3 Proof-Based Abstraction

Now we will show how such proofs of unsatisfiability can be used to generate
abstractions for model checking. What follows does not rely on the fact that we
are using a DPLL-style SAT solver. Any solver which can produce a proof of
unsatisfiability will suffice, although the quality of the abstraction depends on
the quality of the proof.

Bounded model checking [3] is a technique for proving that a transition
system admits no counterexample to a given temporal formula of k or fewer
transitions, where k is a fixed bound. This can be accomplished by posing the
existence of a counterexample of k steps or fewer as a SAT problem. Note that
with a proof-generating SAT solver, in the unsatisfiable case we can in effect
extract a proof of the non-existence of a counterexample of length k. This proof
can in turn be used to generate an abstraction of the transition system in a very
straightforward way.

We first observe that a bounded model checking problem consists of a set of
constraints — initial constraints, transition constraints, final constraints (in the
case of safety properties) and fairness constraints (conditions that must occur
on a cycle, in the case of a liveness property). These constraints are translated
into conjunctive normal form, and, if appropriate, instantiated for each time
step 1...k. If no clause derived from a given constraint is used in the proof of
unsatisfiability, then we can remove that constraint from the problem, without
invalidating the proof. Thus, the resulting abstract system (with unused con-
straints removed) is also guaranteed to admit no counterexample of k steps or
fewer.
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We can now apply ordinary (unbounded) model checking to the abstracted
system. This process will have two possible outcomes. The first is that the prop-
erty is true in the abstracted system. In this case, since removing constraints
preserves all properties of our logic (linear temporal logic) we can conclude that
the property is true in the original system and we are done. The second possi-
bility is that the unbounded model checker will find a counterexample of greater
than k transitions (say, k' transitions). Note that a counterexample of fewer
transitions is ruled out, since we have a proof that no such counterexample ex-
ists (in both the original or the abstracted system). In this case, we can simply
return to bounded model checking using &’ as the new length bound.

This procedure, which alternates bounded and unbounded model checking, is
guaranteed to terminate for finite models, since k is always increasing. At some
point, k& must be greater than the depth of the abstract state space (i.e., the
depth of a breadth-first search starting from the initial states). At this point, if
there is no counterexample of length k, there can be no counterexample of length
greater than k, thus the unbounded model checking step must yield “true”. In
practice, we usually find that when the procedure terminates, k is roughly half
the depth of the abstract state space.

In this procedure, “false” results (i.e., counterexamples) are only found by
bounded model checking — counterexamples produced by the unbounded model
checker are discarded, and only their length is taken into account in the next
iteration. This is in contrast to counterexample-based methods such as [12/115]
922]T6] in which the counterexample produced by model checking the abstract
system is used as a guide in refining the abstraction.

Also note that the set of constraints in the abstraction is not strictly growing
with each iteration, as it is the above cited methods. That is, at each iteration,
the old abstraction is discarded and a new one is generated based on the proof
extracted from the SAT solver. This new abstraction may not contain all of
the constraints present in the previous abstractions, and may even have fewer
constraints.

In the remainder of this section, we will endeavor to make the above informal
discussion more precise. Our goal is to determine whether a given LTL formula
is true in a given finite model. However, this problem will be posed in terms of
finding an accepting run of a finite automaton. The translation of LTL model
checking into this framework has been extensively studied [15|21]10], and will
not be described here. We will treat only safety properties here, due to space
considerations. Liveness properties are covered in [13].

3.1 Safety Checking Algorithm

For safety properties, we wish to determine the existence of a bad finite prefix
— a finite sequence which cannot be extended to an infinite sequence satisfying
the property. We assume that the problem is given in terms of an automaton on
finite words, such that a bad prefix exists exactly when the automaton has an
accepting run. Such a construction can be found, for example, in [II].
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As in symbolic model checking, the automaton itself will be represented im-
plicitly by Boolean formulas. The state space of the automaton is defined by
an indexed set of Boolean variables V' = {v1,...,v,}. A state S is a corre-
sponding vector (s1,...,s,) of Boolean values. A state predicate P is a Boolean
formula over V. We will write P(W) to denote P(w;/v;) (that is, p with w;
substituted for each v;). We also assume an indexed set of “next state” variables
V' ={v],...,v,}, disjoint from V. A state relation R is a Boolean formula over
V and V. We will write R(W, W’) to denote R{w;/v;, w}/v}).

The runs of the automaton are defined by a triple M = (I,T, F), where the
initial constraint I and final constraint F' are state predicates, and the transi-
tion constraint T is a state relation. A run of M, of length &, is a sequence of
states s ... s, such that I(sg) is true, and for all 0 < i < k, T'(s;, 8i+1) is true,
and F(sg) is true. We can translate the existence of a run into a Boolean satisfia-
bility problem by introducing a new indexed set of variables W; = {w;1, ..., win },
for 0 <i < k. A run of length up to k exists exactly when the following formula
is Satlsﬁable.

IWo)A | N\ TWe W) | A |\ F(W)

0<i<k 0<i<k

In order to use a standard SAT solver, we must translate this formula into
conjunctive normal form. For this purpose, we will assume that I and T are
each a conjunction of a collection of terms. That is, I = /\j I and T = /\j T;.
This decomposition will allow us to abstract the problem by removing irrelevant
terms. Further, to simplify matters, we can assume without loss of generality
that the final condition F' consists of a single literal. To ensure this we can, for
example, create a new state variable corresponding to the formula F' and fold
the definition of this new variable into T'.

We also assume the existence of some function I" that translates each Boolean
formula into a logically equivalent set of clauses. Thus satisfiability of the above
formula is equivalent to satisfiability of the following set of clauses:

Bucy, (M Ur W) |ul | Ir@w,wim) |u{ \/ FW,

0<i<k,j 0<i<k
(1)

Also note that in general the translation of an arbitrary Boolean formula f into
CNF is exponential. In practice, the problem can be solved by adding a fresh
variable for the value of each subformula of f, as in [T7]. This construction does
not affect the satisfiability of the result formula, and produces a CNF formula
which is linear size in the size of f. The theory that follows, however, does not
depend on the manner in which translation to CNF is performed.

At this point, if BMCg (M) is found to be satisfiable, then we have a finite
counterexample, and we are done. If, on the other hand, a proof of unsatisfiability

! Actually, this is correct only when the transition relation is total. The generalization
to partial transition relations is straightforward.
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P is found for BMCy (M), then we know only that there is no counterexample
of k or fewer transitions. In this case, we build an abstraction M’ of M, such
that P is also a proof of unsatisfiability of BmMcCy(M'). We want BMCy (M) to
retain all of the clauses used in P. Thus, we let I’ be the conjunction of all the
components I; such that some clause in I'(1;(Wy)) occurs in P. Similarly, we let
T’ be the conjunction of all the components 7} such that for some 0 < i < k,
some clause in I'(T;(W;)) occurs in P. We need not abstract F' itself, since we
assume that F' is a single literal. This gives us the following result:

Lemma 1. Let M = (I, T, F), let P be a proof of unsatisfiability of BMCy (M)
and let M' = (I',T', F') where

- I'= N\, | I'(U; (Wo))ﬂVP#Q)])};

—ﬁi_A{T | Uozics DT (W) N Ve # 0}, and

M’ has no runs of length k or less, and further, if M’ has no runs, then M has
no runs.

Proof. By definition, every clause in P that occurs in BMCy (M) also occurs in
Bwmcy(M'). Thus, since P is a proof of unsatisfiability of Bmcy (M), it is also
a proof of unsatisfiability of BMCy(M'), so the abstraction M’ also has no run
of length k or less. Further, since I’, T’ and F’ are weaker than I, T and F,
respectively, it follows that every run of M is also a run of M’. m|

We can now attempt to perform unbounded symbolic model checking on M’,
to determine whether it has a run of any length. This is preferable to applying
model checking directly to M in the case when the number of variables refer-
enced in M’ is significantly smaller than the number referenced in M, yielding a
reduction in the effective size of the state space. If model checking of M’ deter-
mines that M’ has no runs, then M has no runs, and we are done. On the other
hand, if M’ does have a run, we know that its length k' is greater than k. In
this case, we restart the procedure with &’ for & (or in general, any value larger
than k' for k). The overall procedure is shown in figure [Tl

Theorem 2. If M has a run, then FINITERUN(M ) terminates and returns a
run of M, else it terminates and returns “No Run”.

Proof. Suppose, toward a contradiction, that the procedure does not terminate.
Then, by lemma [1, %k increases without bound. Thus, if a run of M does ex-
ist, eventually BM Cy (M) will be satisfiable, and the procedure will terminate,
returning a run. On the other hand, if M has no run, then eventually k will
exceed 2", where n is the number of state variables. At this point, since M’ has
no runs of length up to 2" (an upper bound on the depth of its state space) it
has no runs. Hence the procedure terminates, returning “No Run”. O

A number of optimizations can be applied to this basic method in order to
produce smaller abstract models. These include a “cone of influence” reduction
on the abstract model, as well as methods to reduce the number of free combi-
national variables and to improve the proofs generated by the SAT solver. These
are omitted here due to space considerations, but are described in [L3].
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procedure FINITERUN(M = (I,T, F))
choose k >= 0
while true
let C' = BMCk(M)
if C satisfiable
let A be a satisfying assignment of C
return the run so, ..., sk, where s;; = A(Ws;)
else
let P be a proof of unsatisfiability of C
let M’ = ABSTRACT(M, P, k)
model check M’
if M’ has a run s of length &’
let k be some value > k'’
else return “No Run”
end

procedure ABSTRACT(M (I, T,F), P=(Vp,Ep), k)
let I' = A{I; | I'(Z; ))mvpyéw}
let T = /\{T ‘ U0<1<k ))) NnVe 7& (b}
return (I', T, F)

end

Fig. 1. Procedure for existence of a finite run

4 Practical Experience

A direct comparison of the proof-based abstraction method against counter-
example based methods such as [2Z2J6/T6] is unfortunately not possible, since the
performance data presented in these works is based on proprietary benchmark
problems (also, the most closely related work [16] appeared after this paper was
submitted).

To guage the effectivenss of the proof-based abstraction procedure in gener-
ating abstractions, it was tested on a set of benchmark model checking problems
derived from a sampling of properties used in the compositional verification of
a unit of the PicoJava IT microprocessor, available in open source from Sun Mi-
crosystems, Inc[d The unit in question is the ICU, which manages the instruction
cache, prefetches instructions, and does some preliminary instruction decoding.
Originally, the properties were verified by standard symbolic model checking,
using some manual directives to remove parts of the logic not relevant to each
property. To make interesting benchmark examples for automatic abstraction,
these directives were removed, and a neighboring unit, the instruction folding
unit (IFU) was added. The intention of this is to simulate the actions of a naive
user who is unable to localize the verification problem manually (the ultimate

2 The tools needed to construct the benchmark examples from the Pico-Java II source
code can be found at http://www-cad.eecs.berkeley.edu/ kenmcmil.
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naive user being an automated tool). The function of the IFU is to read in-
struction bytes from the instruction queue, parse the byte stream into separate
instructions and divide the instructions into groups that can be fed into the ex-
ecution unit in a single cycle. Inclusion of the IFU increases the number of state
variables in the “cone of influence” substantially, largely by introducing depen-
dencies on registers within the ICU itself. It also introduces a large amount of
irrelevant combinational logic.

Twenty representative properties were chosen as benchmarks. All of these
properties are safety properties, of the form Gp, where p is a formula involving
only the current time and the next time (usually only the current time). All
the properties are true. Tests were performed on a Linux workstation with a
930MHz Pentium III processor and 512MB of available memory. Unbounded
symbolic model checking was performed using the Cadence SMV system. SAT
solving was performed using an implementation of the CHAFF algorithm [I4],
modified to produce proofs of unsatisfiability (verification using a modification
of the actual Princeton zChaff implementation produced substantially similar
results).

None of the benchmarks could be successfully verified by standard symbolic
model checking methods, within a limit of 1800 seconds.

On the other hand, of the 20 benchmarks, all but two were successfully veri-
fied by the proof-based abstraction technique. In the two failed cases, the failure
was caused by memory exhaustion by the SAT solver during the bounded model
checking phase (at k values of 15 and 20 transitions, respectively). Notably, in
all cases where the bounded model checking phase completed successfully, the
unbounded symbolic model checker was able to successfully check the resulting
abstraction M’.

Figure 2| shows, for each benchmark, the original number of state holding
variables (solid bars), the number obtained by manual abstraction (gray bars)
and the number of state variables remaining in the abstraction at the final itera-
tion of the proof-based abstraction algorithm, without manual abstraction (open
bars). Here, by state variables, we mean any variable v such that v’ occurs in T'.
We will refer to other variables, including inputs and intermediate variables as
“combinational variables”. A ® below the bars indicates that the algorithm did
not complete. The number of variables obtained by manual abstraction does not
necessarily reflect what could be obtained by concerted effort, but rather reflects
only a sufficient effort to make the properties checkable by standard methods.
Nonetheless, it is interesting to note that in 11 out of 20 cases a better result is
obtained by automatic abstraction.

Figure Bl shows total run time of the proof-based abstraction procedure for
each of the benchmarks, on a log scale. Comparison data are not available for
standard symbolic model checking, since no problem could be completed within

3 The primary cause of this failure appears to be inability to construct BDD’s for
parts of the combinational logic in the IFU. It is possible that some of the bench-
marks could be completed by using more advanced transition relation decomposition
techniques than are implemented in Cadence SMV.
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Fig. 2. State variables: (solid) original, (gray) after manual abstraction, (open) after
automatic abstraction.

the allotted time. Figure ll shows the fraction of total run time spent in the two
phases of the algorithm. The solid part of the bars represent the total time spent
in the bounded model checking phase, while the open part represents the total
time spent in the unbounded model checking phase. Note that in most cases,
the bottleneck is bounded model checking.

What these data clearly show is that the SAT solver is effective at isolating
the part of the logic that is relevant to the given property, at least in the case
when this part of the logic is relatively small. We have also found the technique
to be very effective at falsification, since the unbounded model checking phase
quickly guides the bounded model checker to the appropriate depth.

As an additional point of comparison, figure [l compares the performance
of the proof-based abstraction approach with results previously obtained by
Baumgartner et al. [2] on a set of benchmark model checking problems derived
from the IBM Gigahertz Processor. Their method involved a combination of
SAT-based bounded model checking, structural methods for bounding the depth
of the state space, and target enlargement using BDD’s. Each point on the
graph represents the average verification or falsification time for a collection
of properties of the same circuit model. The average time in seconds for proof-
based abstraction is represented on the X axis, while the average time in seconds
obtained by Baumgartner et al. is represented on the Y axisf Thus, a point above
the diagonal line represents a lower average time for proof-based abstraction
for one benchmark. Note that in several cases proof-based abstraction has an
advantage of two orders of magnitude. A time of 1000 seconds indicates that

4 The processor speeds for the two sets of experiments are slightly different. Baum-
gartner et al. used an 800MHz Pentium III, as compared to a 930 MHz Pentium III
used here. The results presented here have not been adjusted to reflect CPU speed.
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Fig. 3. Total verification time for proof-based abstraction algorithm.

the truth of one or more properties in the benchmark could not be determined.
Of the 28 individual properties that could not be resolved by Baumgartner et
al., all but one are successfully resolved by the proof-based abstraction method.
Excluding this failed benchmark, the largest average time for the proof-based
method is 2.89 seconds. The clear conclusion is that proof-based abstraction is
a more effective method of exploiting a SAT solver for model checking.

4.1 A Hypothesis

The fact that the unbounded model checker is able to check the abstraction in
most cases when the bounded model checking succeeds suggests an interesting
(if somewhat informal) hypothesis: that is, that bounded model checking using
SAT solvers tends to succeed when the number of relevant variables is small,
and to fail when the number of relevant variables is large. Thus far we have
tested only the case when the number of relevant variables is small. To test
the other end of the spectrum, one possible approach is to use a set of scalable
benchmarks, in which all or most of the state variables are known to be relevant.
Such examples tend to occur, for example, in protocol verification. Here, absent
any fault tolerance mechanism, a dropped bit anywhere in the system tends to
cause the protocol to fail.

We will consider first a simple model of a cache coherence protocol due to
Steven German [8]. This model is parameterized by N, number of processors. The
property to be proved is that, if there is an “exclusive” copy of a cache line in the
system, then there is no other copy. Empirically, the the depth of the state space
of this model is found to be 8 N +2 transitions. Applying bounded model checking
to the model at this depth, we find that the largest instance of this problem we
can solve within 1800 seconds is N = 4, which has only 42 state variables (of
which 37 are found to be relevant). This is quite surprising considering the
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extreme simplicity of this model relative to the PicoJava II benchmarks. In that
case, the SAT solver managed to solve CNF SAT problems with on the order of
1 million variables, while in this case it fails with only about 40,000 variables.
On the other hand, the number of relevant state holding variables is roughly
similar to what was handled in the PicoJava II benchmarks.

As another test case, let us consider a simple circuit we will call swap. This
circuit has n j-bit registers. At each clock cycle, it inputs a number 4, and swaps
the values of register ¢ and its neighbor ¢+ 1 mod j. We set the number of bits j
to [logyn] so that we can initialize all of the registers to different values. The
property to prove is that registers 0 and 1 always differ. Clearly, if we unconstrain
the value of any one register, the property will be false, since by a series of
swaps, we can transfer the value of any register to register 0. Interestingly, we
find that the largest instance of swap that we can successfully apply bounded
model checking to is n = 7, corresponding to 21 state bits. At n = 8, and k = 8,
the zChaff solver failed to solve a SAT problem with only 1396 variables in over
40 hours!

Testing SAT solvers on other hardware designs tends to confirm the following
trend: when proofs are successfully produced by the SAT solver, they tend to
involve only a small number of variables in an absolute sense. Figure [@ shows
results on the set of problems in a collection of hardware verification benchmarks
used at Cadence Design Systems. Each point represents a single benchmark
problem, with the X axis giving the original number of state variables, and
the Y axis the number of state values in the abstraction resulting from the
longest successful bounded model checking run in the proof-based abstraction
procedure. The trend is clear: successful bounded model checking runs tend
to produce proofs of unsatisfiability using a small number of state variables,
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independent of the number of original state variables. In 18 out of 20 cases, the
BDD-based model checker is able to check the abstraction. On the other hand,
a very large example provided by IBM produced a proof-based abstraction with
over 1000 state bits. We conjecture that this was possible because a large number
of these registers do not leave their initial states within the first k steps, and
that the SAT solver did not in fact reach the state space depth. This has not
been confirmed, however.

On the whole, while the case studies presented here are certainly too small
to draw general conclusions about the performance of bounded model checking,
they are consistent with the hypothesis that successful bounded model check-
ing (defined as checking up to the state space depth) depends on having small
number of relevant state variables. This suggests that a larger scale study of the
question might be in order.

5 Conclusion

We have observed that information generated by bounded model checking can
be used to improve the efficiency of unbounded model checking, by suggesting
abstractions. Perhaps more interestingly, we have seen some empirical evidence
for the hypothesis that bounded model checking succeeds when the number of
relevant state variables is small, which implies that unbounded model checking
is also likely to succeed when applied to the relevant parts of the system. If this
hypothesis holds true generally, then it may prove unnecessary in practice to
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find techniques for bounding the search depth in bounded model checking — if
bounded model checking succeeds at roughly the state space depth, then the
result can likely be confirmed by standard model checking.

Of course, the negative side of this observation is that it seems unlikely that
bounded model checking (and hence proof-based abstraction) can be applied
to global properties of systems (those that depend on most or all of the state
variables). Techniques are still required to reduce the verification problem to
“local” properties that can be proved using only a small set of state variables.
However, SAT solvers appear to have significant potential for identifying that
set of variables once a suitable property is given.

For future work, it is interesting to consider what other information can be
extracted from proofs of unsatisfiability that might be useful in model checking.
In addition, since SAT solvers seem to be so effective at isolating relevant facts, it
might be that a similar technique could also be applied to infinite state methods
such as predicate abstraction, by means of various translations from first order
to Boolean satisfiability problems. A final interesting avenue of research might
be to consider how the basic SAT algorithms might be modified to improve their
performance in terms of producing compact proofs, which would lead in turn to
better abstractions.
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