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Abstract. Hybrid dynamic systems include both continuous and discrete state
variables. Properties of hybrid systems, which have an infinite state space, can
often be verified using ordinary model checking together with a finite-state ab-
straction. Model checking can be inconclusive, however, in which case the ab-
straction must be refined. This paper presents a new procedure to perform this
refinement operation for abstractions of infinite-state systems, in particular of
hybrid systems. Following an approach originally developed for finite-state sys-
tems [1,2], the refinement procedure constructs a new abstraction that eliminates
a counterexample generated by the model checker. For hybrid systems, analysis
of the counterexample requires the computation of sets of reachable states in the
continuous state space. We show how such reachability computations with varying
degrees of complexity can be used to refine hybrid system abstractions efficiently.
A detailed example illustrates our counterexample-guided refinement procedure.
Experimental results for a prototype implementation of the procedure indicate its
advantages over existing methods.

1 Introduction

Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for
complex systems such as manufacturing processes, automobiles, and transportation net-
works, there is an urgent need for more powerful analysis tools, especially for safety
critical applications. Tools developed so far for automated analysis of hybrid systems are
restricted to low-dimensional continuous dynamics [3]. The reason for this limitation
is the difficulty of representing and computing sets of reachable states for continuous
dynamic systems. Recent publications have proposed two general approaches to deal
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with the complexity of hybrid system analysis, namely, modular analysis (e.g., [4,5])
and abstraction (e.g., [6,7,8]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [6]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [7,8]. Existing tools often do
not consider the property itself when building an abstract model. Rather, an abstract
representation is constructed for the entire hybrid system using a degree of detail which
seems to be appropriate. If the abstraction is not appropriate to analyze the property, the
whole abstraction process is started again, or the abstract model is globally refined [9].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially violate the
property, and (c) iteratively refines the abstract model until verification reveals whether or
not the property in question is satisfied. A framework that follows this general scheme of
abstraction, refinement, and analysis, is counterexample-guided abstraction refinement
(CEGAR) [1,10,2]: For a given system the initial abstraction leads to a conservative model
that is guaranteed to include all behaviors of the original system. Model checking is then
applied to the abstract model. If the property is violated, the model checker produces a
counterexample as an execution path for the abstract model for which the property is not
true. If the counterexample corresponds to a behavior of the original system, then the
property does not hold for the original system. Otherwise, the information provided by
the counterexample is then used to refine the abstract model, i.e., some detail is added to
the abstract model in order to obtain a more accurate, yet conservative, representation of
the original model. In particular, the refined model is constructed so that it is guaranteed
to exclude the spurious counterexample. The procedure of alternating between model
checking and refinement is continued until the property is confirmed or refuted.

This procedure has recently been applied successfully to finite discrete systems in
a variety of domains, particularly for the verification of digital circuits [1,10]. Earlier
work that is based on the use of counterexamples includes the localization reduction
in the context of concurrent systems [2], and recent work has applied the technique to
the verification of C-programs [11,12]. Another related abstraction refinement approach
for programs [13] is not based on counterexamples but uses backward and forward
reachability to decide how to refine an abstract model.

This paper makes two important contributions. First, we extend counterexample-
guided model refinement to infinite-state systems. Second, we show how our new ap-
proach can be applied to hybrid systems, which include both continuous and discrete
state variables and thus have an infinite-state space. We provide effective means of
coping with the difficulties of computing reachable sets for infinite state systems. In
particular, we employ reachable set computations with varying degrees of complexity to
refine hybrid system abstractions efficiently. This flexibility cannot easily be achieved
with other verification tools for hybrid systems. We note that using counterexamples to
guide generation of discrete abstractions is being pursued independently by Alur et al.
at University of Pennsylvania [14].

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe a new verification
approach that refines abstract models of infinite state systems based on counterexamples.
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We introduce hybrid systems in Section 4, and apply our new verification approach to
hybrid systems in Section 5. Section 6 presents conclusions.

2 Preliminaries

We introduce the notions of abstraction and counterexample-guided refinement in a gen-
eral setting for infinite state systems. The type of model we are working with throughout
the section is a transition system defined as follows:

Definition 1 Transition System. A transition system is a 3-tuple TS = (S, S0, E) with a
(possibly infinite) state set S, an initial set S0 ⊂ S, and a set of transitionsE ⊂ S×S. �

Given two transition systems A and C, A is said to be an abstract model of C if the
following relation can be established.

Definition 2 Abstraction. A transition system A = (Ŝ, Ŝ0, Ê) with a finite set of states
Ŝ is an abstract model of a transition system C = (S, S0, E), denoted A � C, if there
exists an abstraction function α : S → Ŝ such that:

– the initial set is Ŝ0 = {ŝ0| ∃s0 ∈ S0 : ŝ0 = α(s0)}
– and Ê ⊇ {(ŝ1, ŝ2)| ∃s1, s2 ∈ S : (s1, s2) ∈ E, ŝ1 = α(s1), ŝ2 = α(s2)}. �

Sometimes the term simulation is used in the literature to describe the abstraction
relation. In contrast to the definitions of abstraction in [1,10], Defn. 2 allows that A
includes spurious transitions, i.e., the set Ê may contain elements that do not corre-
spond to transitions in C. As a consequence the abstraction function in Defn. 2 does
not uniquely define A. Spurious transitions arise in the construction of abstractions of
hybrid systems because in most cases sets of reachable states for continuous systems
can not be represented and computed exactly.

Abstract models will be used to analyze properties of a given transition system.
Throughout the paper, we will call the given system C the concrete system.

In order to construct a more detailed model from a given abstract model, we define
the following concept of model refinement.

Definition 3 Refinement of Abstract Models. Given a concrete system C = (S, S0, E)
and an abstract model A = (Ŝ, Ŝ0, Ê) such that C � A, with abstraction function
α : S → Ŝ, a model A′ = (Ŝ′, Ŝ′0, Ê

′) is called a refined abstract model of C with
respect to A if two abstraction functions α′ : S → Ŝ′ and α′′ : Ŝ′ → Ŝ exist, i.e.,
C � A′ � A. �
A property is verified for the concrete model C using an abstract model A. In this paper
we will consider the verification of safety properties, defined as follows.

Definition 4 Safety. Given a transition system TS = (S, S0, E), let the set B ⊂ S
specify a set of bad states such that S0 ∩B = ∅. We say that TS is safe with respect to
B, denoted by TS |= AG¬B iff there is no path in the transition system from an initial
state inS0 to a bad state inB. Otherwise we sayTS is unsafe, denoted byTS |�= AG¬B.�
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Definition 5 Counterexamples. A path σ = (s0, s1, . . . , sm) of TS = (S, S0, E) with
sm ∈ B is called a counterexample of TS with respect to the safety property TS |=
AG¬B. Given a concrete transition system C, an abstract transition system A, and a
counterexample σ in C, we say that σ̂ = (ŝ0, ŝ1, ŝ2, . . . , ŝm) is the corresponding
abstract counterexample of the abstract system A, if ŝi = α(si) holds for all i ∈
{0, . . . ,m}. Given a counterexample σ̂ of A, σ is called a corresponding concrete
counterexample if ŝi = α(si) and (si, si+1) ∈ E. If a counterexample σ̂ of A has no
corresponding concrete counterexample for C, σ̂ is called a spurious counterexample.�

Lemma 1. Given a concrete model C = (S, S0, E), and an abstract model A =
(Ŝ, Ŝ0, Ê) of C with an abstraction function α, let B ⊆ S, and B̂ = {b̂ | ∃ b ∈
B : b̂ = α(b)}. If A |= AG¬B̂, then C |= AG¬B. �

If A |= AG¬B̂ can be verified, it can immediately be concluded from Lemma 1
(i.e., without applying verification to the concrete system C) that C |= AG¬B. On
the other hand, the converse of Lemma 1 with respect to the AG-property does not
hold. If the verification of A reveals A |�= AG¬B̂, then we cannot conclude that C
is not safe with respect to B, since the counterexample for A may be spurious. We
call a method that checks whether or not a counterexample is spurious a validation
method. If the validation method discovers that the counterexample is spurious, then the
counterexample is used to refine A. We now introduce a scheme for counterexample-
guided refinement of abstractions to verify safety properties for a given concrete model.
The basic principle is to repeat the following sequence of steps until the property is
verified or refuted [1]. The starting point is a concrete modelC and an abstract modelA
(we propose in Sec. 5.1 one specific way to obtain an initial abstract model for hybrid
systems). For a set B ⊆ S of bad states for C, we assume for simplicity that α(s) ∈ B̂
implies s ∈ B. The first step is then to analyze A |= AG¬B̂ by model checking. If
this property holds it can immediately be concluded from Lemma 1 that C is safe,
too. Otherwise a counterexample is obtained, and it must be validated whether it has
a corresponding concrete counterexample in C. If there is a corresponding concrete
counterexample, then the safety property does not hold for C. In the other case, i.e. the
counterexample is spurious, the counterexample is used to refine the model A. That is,
a new and more detailed modelA′ with C � A′ � A is determined, which excludes the
spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refuted forC. The
pseudo-code in Fig. 1 summarizes this procedure:

The crucial steps in the Cegar procedure are validation, refinement, and model
checking. With respect to model checking, standard algorithms for AG-properties can
be used [15].

The important step in validating a counterexample is the computation of successors
of states. We define an operator succ that determines the successor states from a given
set S̃ ⊆ S by succ(S̃) = {s ∈ S|∃s̃ ∈ S̃ : (s̃, s) ∈ E}. This set may not be exactly
computable for a given concrete model C, i.e. only over-approximations succ(S̃) ⊃
succ(S̃) may be available. We first assume that succ(S̃) is computable.
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ALGORITHM: Counterexample-Guided Abstraction Refinement: Cegar
INPUT: Concrete model C and a set of bad states B
OUTPUT: B is (or is not) reachable

Generate initial abstract model A (bad states are called B̂)
Generate counterexample σ̂ by model checking A wrt. B̂
WHILE σ̂ exists DO

Validation of σ̂
IF σ̂ validated THEN terminate with "B reachable"
ELSE

Generate refined model A′ using counterexample σ̂
A := A′

Generate next σ̂ by model checking A wrt. B̂
ENDIF

ENDDO
Terminate with "B not reachable"

Fig. 1. Cegar: Scheme for verifying/falsifying C |= AG¬B based on counterexample-guided
abstraction refinement

A counterexample σ̂ = (ŝ0, . . . , ŝm) of A is then validated as follows: Let Sk =
α−1(ŝk), k ∈ {0, . . . ,m} denote the set of concrete states corresponding to an element
of σ̂. The reachable parts of these sets are recursively defined bySreach0 := S0,Sreachk :=
succ(Sreachk−1 ) ∩ Sk, k ∈ {1, . . . ,m}. The counterexample is spurious iff Sreachk = ∅
applies for at least one k, and we say the counterexample is refuted. Otherwise, the
counterexample is validated, and B is reachable.

If the counterexample is refuted with Sreachk = ∅, the model A is refined to a
new finite abstract model A′ = (Ŝ′, Ŝ′0, Ê

′) (cf. Defn. 3). The refined model should
take into account that there are no concrete transitions from states in Sreachk−1 to states

in Sk. We therefore require that the set Ê′ of A′ does not contain transitions in the
set {(α′(s1), α′(s2)) |∃ s1 ∈ Sreachk−1 , s2 ∈ Sk}. Thus, succeeding refined models will
exclude previously explored counterexamples. A method for the refinement of abstract
models for infinite-state systems will be presented in the next section.

3 Refinement of Abstract Models for Infinite State Systems

This section presents a specific method for refining an abstract model A for an infinite
state system. The main idea is to directly use the information obtained from the validation
procedure to refine some abstract states: Assume that the abstract model includes a
transition between ŝ1 and ŝ2, while the validation of the counterexample has revealed
that only a subset of concrete states in S2 := α−1(ŝ2) is reachable from concrete states
in S1 := α−1(ŝ1). In this case we refine A by splitting ŝ2 into two new states. The
first one, denoted by ŝreach2 , represents the reachable subset of S2, given by Sreach2 :=
succ(S1) ∩ S2. The second one, denoted by ŝcomp2 , represents the complement of the
reachable part, given by Scomp2 := S2 \Sreach2 . In addition, the abstraction function that
maps concrete states to abstract ones has to be refined, too.
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Definition 6 Refinement by State Splitting. Given a concrete modelC = (S, S0, E) and
an abstract modelA = (Ŝ, Ŝ0, Ê) with an abstraction functionα : S → Ŝ. Let (ŝ1, ŝ2) ∈
Ê be a transition of a counterexample σ̂. Then, we define ρsplit as a refinement function
that maps A, α, and (ŝ1, ŝ2) ∈ Ê onto the refined abstract model A′ = (Ŝ′, Ŝ′0, Ê

′)
and the refined abstraction function α′ : S → Ŝ′, i.e., (A′, α′) = ρsplit(A,α, (ŝ1, ŝ2)),
defined as follows:

– Ŝ′ = (Ŝ \ ŝ2) ∪ {ŝreached2 , ŝcomp2 }

– α′(s) =






α(s) if s �∈ S2
ŝreach2 if s ∈ Sreach2
ŝcomp2 if s ∈ Scomp2

– Ŝ′0 = {ŝ′ ∈ Ŝ′|α′′(ŝ′) ∈ Ŝ0}
– Ê′ = {(ŝ′1, ŝ′2) ∈ Ŝ′ × Ŝ′|∃ŝ1, ŝ2 ∈ Ŝ : (ŝ1, ŝ2) ∈ Ê ∧ ŝ1 = α′′(ŝ′1) ∧ ŝ2 =
α′′(ŝ′2)} \ (ŝ1, ŝ

comp
2 )

where α′′ : Ŝ′ → Ŝ maps ŝ′ onto itself if ŝ′ �∈ {ŝreached2 , ŝcomp2 }, and on ŝ2
otherwise. �

Lemma 2. Let A = (Ŝ, Ŝ0, Ê) be an abstract model of C = (S, S0, E) with the
abstraction function α : S → Ŝ. For a given transition (ŝ1, ŝ2) ∈ Ê, assume that
Sreach2 �= ∅ holds. Then, (A′, α′) := ρsplit(A,α, (ŝ1, ŝ2)) satisfies A � A′ � C. �

The idea of splitting an abstract state has also been considered by Jeannet et al. [13].
However, their method does not address hybrid systems, and it uses forward and back-
ward reachability on the abstract model rather than counterexamples to decide which
state to split. One advantage (among others) of a counterexample-based approach is that
it terminates quickly when a discovered counterexample is not spurious and thus proving
that the safety property does not hold for the concrete system.

As a next step, we consider the case where the set of successors of S1 and the set S2
are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Refinement by Eliminating aTransition.The functionρpurge is a refinement
that maps an abstract model A = (Ŝ, Ŝ0, Ê), an abstraction function α : S → Ŝ and a
transition (ŝ1, ŝ2) ∈ Ê onto A′ = (Ŝ, Ŝ0, Ê

′) with Ê′ = Ê \ (ŝ1, ŝ2). �

Lemma 3. Let A = (Ŝ, Ŝ0, Ê) be an abstract model of C = (S, S0, E) with the
abstraction function α : S → Ŝ. For a given transition (ŝ1, ŝ2) ∈ Ê, assume that
Sreach2 = ∅ holds. Then, A′ := ρpurge(A,α, (ŝ1, ŝ2)) satisfies A � A′ � C. �

Based on these results, we now present a more specific formulation of the Cegar
algorithm in Fig. 2, called Infinite-State-Cegar, which uses the functions ρsplit and
ρpurge for refinement.

Correctness of the algorithm is implied by the following two lemmas1. Note that
termination of the algorithm cannot be guaranteed as the number of states in the concrete
model may be infinite, and a finite abstract model to verify (or disprove) the given
property may not exist.

1 The proofs of all lemmas in the paper can be found in [16].
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ALGORITHM: Infinite-State-Cegar
INPUT: Concrete model C and a set of bad states B
OUTPUT: B is (or is not) reachable

Generate initial abstract model A and abstraction function α
B̂ := α(B)
Generate counterexample σ̂ = (ŝ0, . . . , ŝm) by model checking of A wrt. B̂
Sreach0 := α−1(ŝ0)
WHILE σ̂ exists DO

// validation of counterexample
k := 0
WHILE Sreachk �= ∅ AND k < m DO

k := k + 1
Sreachk := succ(Sreachk−1 ) ∩ α−1(ŝk)

ENDDO
// if counterexample is validated, then terminate, else refine
IF Sreachk �= ∅ THEN terminate with "B reachable"
ELSE

FOR l = 1, . . . , k − 1
// split abstract state ŝl into two: one that corresponds
// to Sreachl and one that corresponds to α−1(ŝl) \ Sreachl

IF Sreachl �= α−1(ŝl)
THEN (A,α) := ρsplit(A,α, ŝl−1, ŝl)
ENDIF

ENDFOR
// remove spurious transition between ŝk−1 and ŝk
A := ρpurge(A,α, ŝk−1, ŝk)
Generate σ̂ by model checking of A wrt. B̂

ENDIF
ENDDO
Terminate with "B not reachable"

Fig. 2. Infinite-State-Cegar.

Lemma 4. If the algorithm terminates with "B reachable", then C |�= AG¬B. �

Lemma 5. If the algorithm terminates with "B not reachable", then C |= AG¬B. �

The proposed procedure of validating counterexamples and refining abstract models
is based on the computation of successor states. Alternatively, one could formulate
a similar algorithm that uses sets of predecessors, or even a combination of both as
presented in [1] and [10].

The Infinite-State-Cegar algorithm in Fig. 2 is based on the assumption that sets
of successor states are exactly computable. Lemma 5 holds, however, also if successor
states are not exactly computable, and instead only over-approximations of the set of
successor states can be computed. If only under-approximations of successor sets can
be computed, Lemma 5 will not hold, but Lemma 4 will.
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4 Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents hybrid automata, which are used to model
hybrid systems. We illustrate these definitions with an example that models a simple car
controller, which is also used in later sections to illustrate our new verification approach.

4.1 Definition of Hybrid Automata

Definition 8 Syntax of the Hybrid AutomatonHA.A hybrid automaton is a tupleHA =
(Z, z0, X, inv,X0, T, g, j, f) where

– Z is a finite set of locations with an initial location z0 ∈ Z.
– X ⊆ R

n is the continuous state space.
– inv : Z → 2X assigns to each location z ∈ Z an invariant of the form inv(z) ⊆ X .
– X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states of HA

is thus given by the set of states {z0} ×X0.
– T ⊆ Z × Z is the set of discrete transitions between locations.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to t = (z1, z2) ∈ T .
– j : T ×X → 2X assigns to each pair (z1, z2) ∈ T and x ∈ g((z1, z2)) a jump set
j((z1, z2), x) ⊆ X .

– f : Z → (X → R
n) assigns to each location z ∈ Z a continuous vector field

f(z). We use the notation fz for f(z). The evolution of the continuous behavior in
location z is governed by the differential equation χ̇(t) = fz(χ(t)). We assume that
the differential equation has a unique solution for each initial value χ(0) ∈ X0. �

The semantics ofHA is defined as a trace transition system.A state (z, x) corresponds to
a continuous state xwithin location z. Two states, (z1, x1) and (z2, x2), are connected by
a transition if and only if state (z2, x2) can be reached from state (z1, x1) by a continuous
evolution within location z1 followed by a discrete transition to location z2.

Definition 9 Semantics of the Hybrid Automaton HA. The semantics of a Hybrid au-
tomaton HA is a transition system TTS = (S, S0, E) with:

– the set of all hybrid states (z, x) of HA,

S =
⋃

z∈Z

⋃

x∈inv(z)

(z, x) (1)

– the set of initial hybrid states S0 = {z0} ×X0,
– transitions (s1, s2) ∈ E with s1 = (z1, x1), s2 = (z2, x2), iff there exists (z1, z2) ∈
T and a trajectory χ : [0, τ ]→ X for some τ ∈ R

>0 such that:
• x1 = χ(0), χ(τ) ∈ g((z1, z2)),
• x2 ∈ j((z1, z2), χ(τ)),
• χ̇(t) = fz1(χ(t)) for t ∈ [0, τ ],
• χ(t) ∈ inv(z1) for t ∈ [0, τ ],
• x2 ∈ inv(z2).



200 E. Clarke et al.

A path σ = {s0, s1, s2, . . . } of TTS is called a trace of HA, and we refer to TTS as
the trace transition system of HA. �

Definition 10 Safety of a Hybrid Automaton. For a hybrid automaton HA with a se-
mantics as in Defn. 9, let zb ∈ Z \ {z0} denote an unsafe location.HA is said to be safe
with respect to zb, denoted by TTS |= AG¬zb iff for all traces σ applies: �s ∈ σ with
s = (zb, x) for some x ∈ X . We write TTS |�= AG¬zb otherwise. �

The extension of the analysis task to multiple initial locations and/or multiple unsafe
locations is straightforward but is omitted here for simplicity.

4.2 Example

As a motivating example, we use a simple controller that steers a car along a straight
road. The car is assumed to drive at a constant speed r = 2, and its motion is modeled
by the distance x (x = 0 corresponds to the middle of the road) from the middle of
the road and the heading angle γ (γ = 0 corresponds to moving straight ahead). Fig. 3
shows a scenario in which the car drives initially on the road. The controller is able to
detect whether the car is on the left or right border (i.e. x ≤ −1, x ≥ 1) – whenever
the car enters the left border, the controller forces it to turn right until the car is back on
the road again. Then a left turn is initiated, and continued until the car is again going
straight ahead in the direction of the road, i.e. when the heading is aligned with the road
(γ = 0). A similar strategy is employed when the car enters the right border.

RO
AD

CANAL

γ

i)

CANAL

RO
AD

−ω

ii)

RO
AD

CANAL

ω

iii)

Fig. 3. i) Initially, the car drives on the road with heading angle γ. ii) If the controller detects that
the car left the road, it corrects the heading by turning right to avoid the canal. iii) Once the car is
back on the road, a left turn is initiated until the car moves straight again.

Fig. 4 shows a hybrid automaton model of the controlled behavior for the car. Besides
the position x and the heading angle γ, the description includes an internal timer c, that
the controller uses to time the steering manoeuvres. The differential equations for these
three continuous variables depend on the location: we have ẋ = −r · sin(γ) in all
locations except of in canal. The derivative of γ varies when a border is reached. On the
border the motion of the car describes an arc with the angular velocity γ̇ = −ω = −π/4
(or ω = π/4 respectively), i. e., the arc is part of a circle with radius r/ω. The timer
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c measures the time period which the car spends on a borders. In the correction modes
the timer decreases with double rate, i.e., the correction takes half the time as the car
was on the border before. Since the sign of γ̇ is reversed when the car moves back on
the road, the angle has the value zero when the correction mode is left (c = 0), i.e., the
car moves then along the road. During this correction it might, however, happen that the
other border is reached, which means that the controller then switches to the strategy of
the corresponding location.

The three continuous variables are initialized to−1 ≤ x ≤ 1 (the car is on the road),
−π/4 ≤ γ ≤ π/4, and c = 0. It has to be verified for this set of initial states whether the
given control strategy guarantees that the unsafe location in canal (zb) is never reached.
The following sections present how this task can be solved by abstraction-based and
counterexample-guided verification.

left border

ẋ = −r sin(γ)

γ̇ = −ω
ċ = 1

−2 ≤ x ≤ 1

right border

ẋ = −r sin(γ)

γ̇ = ω

ċ = 1

x = −1

c := 0

x = −2
ẋ = 0

in canal

γ̇ = 0

ċ = 0

x = 1

c := 0

go ahead

γ̇ = 0

ẋ = −r sin(γ)

ċ = 0

−1 ≤ x ≤ 1

x = −1 x = 1

−1 ≤ x ≤ 1

γ ∈ [−π/4, π/4]

c = 0

x ≥ 1

correct left

ẋ = −r sin(γ)

γ̇ = ω

ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

ẋ = −r sin(γ)

γ̇ = 0

ċ = 0

correct right

straight ahead ẋ = −r sin(γ)

γ̇ = −ω
ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

x = −1
x = 1

c := 0 c := 0

c = 0 c = 0

Fig. 4. Hybrid automaton that models the car steering example. Location in canal has to be
avoided. For each location, the continuous dynamics of the three variables x, γ and c is described
by differential equations, and invariants are specified as inequalities. Guards and jumps are assigned
to the transitions, e.g., a transition from location go ahead to left boarder is possible if the value
of x is 1, and then the value of c is set to zero.

5 Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to the particular class of infinite
state systems of hybrid systems.

We present specific solutions for the two crucial steps, the validation of counterex-
amples and the refinement of abstract models. The key to the validation step is the
computation of successor states for a given set of states in the trace transition system.
Starting from the initial set, the validation procedure computes the successors along the
counterexample until either the unsafe location zsp is reached or a transition is deter-
mined to be spurious. The computation of sets of successors states is usually the most
expensive step in hybrid system verification. Moreover, successor sets can be computed
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and represented exactly only for certain sub-classes of hybrid systems [17,18]. How-
ever, several approaches to over-approximate successor sets have been published, as
e. g., approximations by orthogonal polyhedra [19], general polyhedra [20], projections
to lower dimensional polyhedra [21], or ellipsoids [22]. Most of these approaches aim
at providing an efficient way to obtain conservative but tight approximations.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated
by the trade-off between the accuracy and the computational complexity of different
methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a
counterexample, there is no need to use a computationally more expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton
can be obtained, and then focus on the validation of counterexamples and the refinement
based on the use of different methods for computing successor states.

5.1 Abstraction of Hybrid Systems

For the first step of Infinite-State-Cegar, the construction of an initial abstraction,
we introduce one abstract state for each location of HA. This means that two hybrid
states (zi, xi) and (zj , xj) of TTS are mapped to the same abstract state if and only if
zi = zj . This rule applies for all but the initial location, which we split into two abstract
states to separate the initial hybrid states in that location from the non-initial hybrid
states: we introduce one abstract state ŝ0 to represent all initial hybrid states of TTS,
and another one (ŝ′0) to represent the remaining hybrid states in location z0.

Definition 11 Initial Abstraction of Hybrid Systems. Given a hybrid automaton HA
with Z = {z0, z1, . . . , znz}, let S denote the set of hybrid states as defined in (1). For
i ∈ {0, 1, . . . , nz}, we define the abstraction function α : S → Ŝ by:

α(zi, x) =






ŝ0 if i = 0 ∧ x ∈ X0
ŝ′0 if i = 0 ∧ x /∈ X0
ŝi otherwise

(2)

and the initial abstract model A = (Ŝ, Ŝ0, Ê) is defined by (i ∈ {0, 1, . . . , n}, j ∈
{0, 1, . . . , nz}):

– Ŝ = {ŝ′0, ŝ0, ŝ1, . . . , ŝn}
– Ŝ0 = {ŝ0}
– Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ′0)|(zi, z0) ∈ T} �

The initial abstract model represents the discrete structure of the hybrid system without
regarding the continuous dynamics and guards. It has to be shown that A is indeed an
abstract model of the underlying trace transition system, i.e., that it fulfills Defn. 2:

Lemma 6. ForHAwith trace transition systemTTS = (S, S0, E), letA = (Ŝ, Ŝ0, Ê)
denote the initial abstract model for TTS. Then, A � TTS. �
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Example (cont.) Fig. 5 depicts the initial abstract
model of the hybrid system in Fig. 4. It is a copy
of the discrete part of the hybrid system, except
that the initial location is divided into two parts:
ŝ0 represents the states in location go ahead with
x ∈ [−1, 1], γ ∈ [−π/4, π/4] and c = 0, and ŝ′0
all other states in go ahead. The abstract states ŝ1
to ŝ6 represent the hybrid states of the other lo-
cations (left border, right border, correct left,
correct right, straight ahead and in canal, re-
spectively). �

^
0s

^
1ŝ

^
3s

ŝ
^

4s

ŝ
^

0s’
s 2

5

6

Fig 5. Initial abstract model of the
hybrid system depicted in Fig. 4

5.2 Over-Approximation of the Sets of Successors

Computing sets of successor states is required in the validation and refinement steps.
The goal is to use different over-approximations with different precisions and different
computational needs. We first define an over-approximation operator of the successor
relation for a tuple of sets of states. The operator conservatively approximates which
states in the second set (target set) are successors of states in the first set (source set).

Definition 12 Over-approximation of successor states. Let HA be a hybrid automaton
with the trace transition system TTS = (S, S0, E), and let A and α be defined as in
Defn. 11. For a transition (ŝ1, ŝ2) ∈ Ê of A, we call S1 := α−1(ŝ1) the set of hybrid
source states and S2 := α−1(ŝ2) the set of potential hybrid successor states. Then,
succ : (2S × 2S) → 2S is an over-approximation of the hybrid successor states in S2
iff the following holds:

– succ(S1, S2) ⊆ S2,
– for all s1 ∈ S1 and s2 ∈ S2 \ succ(S1, S2), (s1, s2) /∈ E. �

A possible explicit realization of the operator succ combines the following steps: (a)
By approximating the continuous evolution for all states in S1, the reachable subset of
the guard set g(t) is determined, where t = (z1, z2) ∈ T is the transition of HA that
corresponds to the transition (ŝ1, ŝ2) ∈ Ê ofA. Usually, this step is the most costly of the
whole verification procedure; (b) the jump function j(t, x) is applied to all hybrid states
(z1, x) which are in the reachable subset of g(t); (c) the image of j(t, x) is intersected
with the set S2 of potential hybrid successor states.

Example (cont.) Our prototype implementation employs two different methods,
succcoarse and succtight, to over-approximate the set of successor states. For exam-
ple, for the discrete transition from correct right to left border, we choose S1 as subset
of the plane x = 1 for location correct right, and S2 as all states of location left border

that satisfy the invariant −2 ≤ x ≤ −1. The transition is not spurious, if there exists a
trajectory that starts in S1, and ends in S2 without leaving the invariant of correct right

(−1 ≤ x ≤ 1 ∧ c ≥ 0).
The first method succcoarse poses the existence question for a trajectory between S1

andS2 as an optimization problem. The distance between a trajectory andS2 is defined as
the minimum distance between all points on the trajectory andS2. If the global minimum
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over all trajectories that start in S1 is strictly greater than zero, then no successor state of
S1 exists in S2. In this case succcoarse returns an empty set. If the minimum distance is
zero, at least one corresponding concrete path exists, and succcoarse returns the complete
setS2 as an over-approximation of the set of successor states. In the considered example,
the distance of the optimal trajectory to S2 is greater than zero, and there is hence no
trajectory fromS1 toS2

2. The second method succtight computes polyhedra that enclose
all trajectories that originate in S1 [20]. The set of successor states succtight(S1, S2) is
then obtained by intersecting the polyhedra with S2. In the considered example, there
are no successors of S1 in S2. �

5.3 Validation and Refinement

Infinite-State-Cegar makes a clear distinction between the validation of a counterex-
ample, and the refinement of the abstract model. For hybrid systems, we propose a
slightly different approach, in which the steps of validation and refinement are inter-
leaved. We assume to have a set of over-approximation techniques succ1, . . . , succp
that can (but do not need to) establish a hierarchy of coarse to tight approximations.

The algorithm for the combined validation and refinement steps of a counterexample
is as follows. Let σ = (ŝ0, . . . , ŝm) be a counterexample of the abstract model A. The
algorithm consists of two nested loops. The outer loop corresponds to checking each
transition of the counterexample. The inner loop applies each of the over-approximation
techniques to the current transition of the counterexample, and, depending on the result,
executes one of the two refinement operations: If an over-approximation technique succl,
l ∈ {1, . . . , p}, reveals that the current transition is spurious, i.e. Sreachk = ∅, then the
transition is removed from the abstract model by ρpurge. When a transition is removed,
the set of behaviors ofA does not include the current counterexample anymore, and thus
the combined validation and refinement step is completed.

If on the other hand, succl returns a non-empty set Skreach and this set is a true subset
of the states corresponding to ŝk, the function ρsplit divides ŝk into two states ŝreachk and
ŝcompk (cf. Defn. 6). In this case however σ = (ŝ0, . . . , . . . , ŝk−1, ŝ

reach
k , ŝk+1 . . . , ŝm)

remains a counterexample of the refined model. Thus, the algorithm continues with
the next transition (k + 1) until either Sreachk = ∅ or until the last transition of the
counterexample is validated. There is some freedom in combining the steps of validation
and refinement. One alternative is to apply the coarsest method for validation first to all
transitions in the abstract counterexample, or to apply state splitting (ρsplit) only based
on the result of the most accurate approximation method succp.

The proposed algorithm has two possible outcomes: either it is proved that a
forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it can
not be guaranteed that this abstract counterexample corresponds to a concrete one.
In this case, under-approximations of sets of successor states can possibly be used
to prove that a counterexample exists: Assume that the procedure terminates with a
counterexample σ = (ŝ0, ŝ1, . . . , ŝk, . . . , sm), no transition of which could be re-
futed. Similar to Defn. 12, we can define an under-approximation of successor states

2 Illustrating figures can be found in [16]
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1ŝ

^
3s
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ŝ
^

0s’

^
1s’

s 2

5

6

(ix)

Fig. 6. Counterexample guided abstraction illustrated for the car steering problem.

Sreachk = succ(Sreachk−1 , α−1(ŝk)) which returns a set Sreachk ⊆ α−1(ŝk) for which it is
ensured that it only contains true successors of Sreachk−1 . If this operator is applied along
the counterexample (from k = 1 to k = m) and Sreachm �= ∅ applies, there exists at least
one path for the hybrid system which violates the safety property.

Example (cont) The requirement that the hybrid model in Fig. 4 should never enter
the location in canal translates into the reachability question for state ŝ6 of the abstract
model in Fig. 5. The first counterexample for the initial abstract model isσ1 = (ŝ0, ŝ1, ŝ6)
(see Fig. 6(i)). The validation procedure considers first the transition (ŝ0, ŝ1) which
corresponds to the transition between go ahead and left border in the hybrid automaton.
As a first step, succcoarse(S0, α

−1(ŝ1)) is computed with the result that the minimum
distance over all initial states is zero. This is obvious from the fact that those states of the
initial set for which x = −1 enable the transition guard immediately. Thus, succcoarse
returns the entire invariant of location left border as set S2. The next step is to compute
Sreach2 = succtight(S0, α

−1(ŝ1)). The algorithm then splits ŝ1 such that ŝ1 represents
the set Sreach2 , and the new abstract state ŝ′1 represents S2 \Sreach2 (Fig. 6 (ii)). Since the
counterexample has not been eliminated yet, the transition (ŝ1, ŝ6) is considered next.
succcoarse finds that the minimal distance between the trajectories that start in Sreach2 ,
and the guard x = −2 is greater than zero. Thus, no trajectory reaches the guard, and
the corresponding transition is removed (Fig. 6 (iii)).

The procedure continues with the next counterexample σ2 = (ŝ0, ŝ2, ŝ4, ŝ
′
1, ŝ6), as

depicted in Fig. 6 (iv). As for the first counterexample, the abstract state ŝ2 is split into
the states that are reachable from the initial set S0, and the remainder (Fig. 6 (v)). Then,
the procedure moves one transition ahead and splits state ŝ4 as a result of applying
succtight. The reachable part is represented by ŝ4 in Fig. 6 (vi). Method succcoarse then
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finds that one cannot reach any state that is represented by ŝ′1 from this set, and the
transition (ŝ4, ŝ

′
1) can be deleted from A (Fig. 6 (vii)).

The final counterexample is σ3 = (ŝ0, ŝ1, ŝ3, ŝ
′
2, ŝ
′
4, ŝ
′
1, ŝ6). The state ŝ1 was already

split for the first counterexample. Similarly to the procedure for the counterexample σ2,
state ŝ3 is split as depicted in Fig. 6 (viii). It can be shown that transition (ŝ3, ŝ

′
2) is

spurious, which eliminates the last counterexample (Fig. 6 (ix)). Consequently, the state
ŝ6 is not reachable, and thus the same applies for the location in canal. �

5.4 Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We compare Infinite-State-Cegar with a method
based on breadth-first application of the successor operator succtight. Breadth-first ap-
plication is the most prevalent method used for model checking hybrid systems. This
approach needs 175 second cputime on a Pentium 4, 1.4GHz, to compute that loca-
tion in canal is not reachable. Infinite-State-Cegar together with only one of the
two over-approximation methods, succtight, takes 120 seconds. As in the case of the
breadth-first methods, 99% of the cputime is spent on computing succtight. If Infinite-
State-Cegar employs both approximation methods, then the time is cut in about half.
The verification takes 68 seconds, of which 64 seconds are used to compute succtight,
and 3 seconds to solve the optimization problems of succcoarse.

6 Conclusions

This paper presents a new method for using counterexamples to refine abstractions
of hybrid systems. The principal alternative to verifying safety properties of hybrid
systems by counterexample-guided verification is to compute the reachable states using
a breadth-first application of the successor operator succ. It is apparent that the Infinite-
State-Cegar procedure can be faster than breadth-first reachability when the safety
property does not hold for the concrete system, since in this case it is possible that the
model checker will quickly find a true counterexample. On the other hand, if the safety
property holds, refuting one counterexample may implicitly refute others. However, the
Infinite-State-Cegar procedure may continue until all possible counterexamples have
been explored (and indeed, may not terminate), which is in some cases equivalent to
the breadth-first reachability computation. Nevertheless, Infinite-State-Cegar allows
to use multiple methods for computing approximations to the successor states. Further
evaluation of the Infinite-State-Cegar procedure and a comparison to breadth-first
reachability and other alternatives is currently underway.
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