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Abstract. In experiments with a resolution-based verification method
for cryptographic protocols, we could enforce its termination by tagging,
a syntactic transformation of messages that leaves attack-free executions
invariant. In this paper, we generalize the experimental evidence: we
prove that the verification method always terminates for tagged proto-
cols.

1 Introduction

The verification of cryptographic protocols is an active research area, see [1–
22]. It is important since the design of protocols is error-prone, and testing
cannot reveal potential attacks against the protocols. In this paper, we study
a verification technique based on Horn clauses and resolution akin to [4,5,24].
We consider a protocol that is executed in the presence of an attacker that
can listen to the network, compute, and send messages. The protocol and the
attacker are translated into a set of Horn clauses such that: if the fact att(M)
is not derivable from the clauses, then the protocol preserves the secrecy of the
message M in every possible execution. The correctness verified is stronger than
the one required since the executions possible in the Horn clause model include
the ones where a send or receive instruction can be applied more than once in
the same session. In practice, the difference between the correctness criteria does
not show (no false alarm arised in our experiments).

The verification technique consists of the translation into Horn clauses, fol-
lowed by the checking of the derivability of facts att(M) by a resolution-based
algorithm. It has the following characteristics.

– It can verify protocols with an unbounded number of sessions.
– It can easily handle a variety of cryptographic primitives, including shared-

key and public-key cryptography (encryption and signatures), hash func-
tions, message authentication codes (mac), and even a simple model of Diffie-
Hellman key agreements. It can also be used to verify authenticity [5].

– It is efficient (many examples of protocols of the literature are verified in less
than 0.1 s; see [5]).
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The resolution-based verification algorithm has one drawback: it does not ter-
minate in general. In fact, in our experiments, we detected infinite loops during
its application to the Needham-Schroeder shared-key protocol [4] and several
versions of the Woo-Lam shared-key one-way authentication protocol [5]. It is
always possible to modify the algorithm to make it work on those cases and any
finite number of other cases, but that will not affect its inherent non-termination
property (inherent by the undecidability of the problem that it tries to solve).
In this paper, we investigate an alternative: tagging the protocol.

Tagging consists in adding a unique constant to each message. For instance,
to encrypt the message m under the key k, we add the tag c0 to m, so that
the encryption becomes sencrypt((c0, m), k). The tagged protocol retains the
intended behaviour of the original protocol; i.e., the attack-free executions are
the same. Under attacks, it is possibly more secure. Therefore, tagging is a feature
of a good protocol design, as explained e.g. in [2]: the receiver of a message uses
the tag to identify it unambiguously; thus tagging prevents type flaws that occur
when a message is taken for another message. (This is formally proved in [16] for
a tagging scheme very similar to ours.) Tagging is also motivated by practical
issues: the decoding of incoming messages becomes easier. For all these reasons,
tags are already present in protocols such as SSH.

In our experiments (including the protocols mentioned above), we obtained
termination after tagging the protocol. In this paper, we give the theory behind
the experiments: the resolution-based verification algorithm always terminates
on tagged protocols. More precisely, on protocols where tags are added to each
use of a cryptographic primitive, which may be among: public-key cryptography
where keys are atomic, shared-key cryptography (unrestricted), hash functions,
and message authentication codes (mac’s).

This means that we show termination for a class of protocols that includes
many relevant examples.

2 Horn Clauses Representing a Protocol

This section and the next one recapitulate the necessary background on the
translation and the algorithm, using material from [4].

Cryptographic protocols can be translated into Horn clauses, either by hand,
as explained in [4,24], or automatically, for instance, from a representation of
the protocol in an extension of the pi calculus, as in [1].

The terms in the Horn clauses stand for messages. The translation uses one
predicate att. The fact att(M) means that the attacker may have the term M .
The fundamental property of this representation is that if att(M) is not derivable
from the clauses, then the protocol preserves the secrecy of M .

The clauses are of two kinds: the clauses in RPrimitives that depend only
on the signature of the cryptographic primitives (they represent computation
abilities of the attacker) and the clauses in RProt that one extracts from the
protocol itself.
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Tuples:
Constructor: tuple (M1, . . . , Mn)
Destructors: projections ithn((M1, . . . , Mn)) → Mi

Shared-key encryption:
Constructor: encryption of M under the key N , sencrypt(M, N)
Destructor: decryption sdecrypt(sencrypt(M, N), N) → M
Public-key encryption:
Constructors: encryption of M under the public key N , pencrypt(M, N)

public key generation from a secret key N , pk(N)
Destructor: decryption pdecrypt(pencrypt(M, pk(N)), N) → M
Signatures:
Constructor: signature of M with the secret key N , sign(M, N)
Destructors: signature verification checksignature(sign(M, N), pk(N)) → M

message without signature getmessage(sign(M, N)) → M
Non-message-revealing signatures:
Constructors: signature of M with the secret key N , nmrsign(M, N)

constant true
Destructor: signature verification nmrchecksign(nmrsign(M, N), pk(N), M) → true
One-way hash functions:
Constructor: hash function hash(M).
Message authentication codes, keyed hash functions:
Constructor: mac of M with key N , mac(M, N)

Fig. 1. Constructors and destructors

Attacker Clauses (“RPrimitives”) The protocols use cryptographic primitives of
two kinds: constructors and destructors (see Figure 1). A constructor f is used
to build up a new term f(M1, . . . , Mn). For example, the term sencrypt(M, N)
is the encoding of the term M with the key N (by shared-key encryption).
A destructor g applied to terms M1, . . . , Mn yields a term M built up from
subterms of M1, . . . , Mn. It is defined by a finite set def(g) of equations written as
reduction rules g(M1, . . . , Mn) → M where the terms M1, ..., Mn, M contain only
constructors and variables. For example, the rule sdecrypt(sencrypt(M, N), N) →
M models the decoding of the term sencrypt(M, N) with the same key used for
the encoding.

The attacker can form new messages by applying constructors and destruc-
tors to already obtained messages. This is modeled, for instance, by the following
clauses for shared-key encryption.

att(x) ∧ att(y) → att(sencrypt(x, y)) (sencrypt)
att(sencrypt(x, y)) ∧ att(y) → att(x) (sdecrypt)

The first clause expresses that if the attacker has the message x and the shared
key y, then he can form the message sencrypt(x, y). The second clause means
that if the attacker has the message sencrypt(x, y) and the key y, then he can
obtain the message x (by applying the destructor sdecrypt and then using the
equality between sdecrypt(sencrypt(x, y), y) and x according to the reduction rule
for sdecrypt).
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We furthermore distinguish between data and cryptographic constructors
and destructors and thus, in total, between four kinds of primitives. The set
DataConstr of data constructors contains those f that come with a destruc-
tor gi defined by gi(f(x1, . . . , xn)) → xi for each i = 1, . . . , n; i.e. gi is used
for selecting the argument of f in the i-th position. It is generally sufficient
to have only tuples as data constructors (with projections as destructors). All
other constructors are said to be cryptographic constructors; they form the set
CryptoConstr . We collect all clauses like the two example clauses above, for each
of the four cases, in the set RPrimitives of clauses or rules defined below.

Definition 1 (Program for Primitives, RPrimitives). The program for prim-
itives, RPrimitives, is the union of the four sets of Horn clauses corresponding to
each of the four cases of cryptographic primitives:

– RCryptoConstr is the set of clauses att(x1)∧ . . .∧att(xn) → att(f(x1, . . . , xn))
where f is a cryptographic constructor.

– RDataConstr is the set of clauses att(x1) ∧ . . . ∧ att(xn) → att(f(x1, . . . , xn))
where f is a data constructor.

– RCryptoDestr is the set of clauses att(M1) ∧ . . . ∧ att(Mn) → att(M) where g
is a cryptographic destructor with the reduction rule g(M1, . . . , Mn) → M .

– RDataDestr is the set of clauses att(f(x1, . . . , xn)) → att(xi) where f is a
data constructor and i = 1, . . . , n.

Protocol Clauses (“RProt”) We note RProt the set of protocol clauses. These
include clauses that directly correspond to send and receive instructions of the
protocol and clauses translating the initial knowledge of the attacker.

In a protocol clause of the form

att(M1) ∧ . . . ∧ att(Mn) → att(M)

the term M in the conclusion represents the sent message. The hypotheses cor-
respond to messages received by the same host before sending M . Indeed, the
clause means that if the attacker has M1, ..., Mn, he can send these messages
to a participant who is then going to reply with M , and the attacker can then
intercept this message.

If the initial knowledge of the attacker consists of the set of terms SInit

(containing e.g. public keys, host names, and a name N that represents all names
that the attacker creates), then it is represented by the facts att(M) where M
is a term in SInit.

We explain protocol clauses on the example of the Yahalom protocol [8]:

Message 1. A → B : (A, Na)
Message 2. B → S : (B, {A, Na, Nb}Kbs

)
Message 3. S → A : ({B, Kab, Na, Nb}Kas , {A, Kab}Kbs

)
Message 4. A → B : ({A, Kab}Kbs

, {Nb}Kab
)

In this protocol, two participants A and B wish to establish a session key Kab,
with the help of a trusted server S. Initially, A has a shared key Kas to com-
municate with S, and B has a shared key Kbs to communicate with S. In the



140 Bruno Blanchet and Andreas Podelski

first message, A sends to B his name A and a nonce (fresh value) Na. Then B
creates a nonce Nb and sends to the server his own name B and the encryption
{A, Na, Nb}Kbs

of A, Na, Nb under the shared key Kbs. The server then creates
the new (fresh) session key Kab, and sends two encrypted messages to A. The
first one {B, Kab, Na, Nb}Kas gives the key Kab to A, together with B’s name and
the nonces (so that A knows that the key is intended to communicate with B).
The second message cannot be decrypted by A, so A forwards it to B (message
4). B then obtains the session key Kab. The second part of message 4, {Nb}Kab

,
is used to check that A and B really use the same key Kab: B is going to check
that he can decrypt the message with the newly received key. We encode only
one principal playing each role, since others can be included in the attacker.

Message 1 is represented by the clause

att((host(Kas), Na)) (Msg1)

meaning that the attacker gets host(Kas) and Na when intercepting message 1.
In this clause, the host name A is represented by host(Kas). Indeed, the server
has a table of pairs (host name, shared key to communicate between that host
and the server), and this table can be conveniently represented by a constructor
host. This constructor takes as parameter the secret key and returns the host
name. So host names are written host(k). The server can also match a term
host(k) to find back the secret key. The attacker cannot do this operation (he
does not have the key table), so there is no destructor clause for host. There is
a constructor clause, since the attacker can build new hosts with new host keys:

att(k) → att(host(k)) (host)

Message 2 is represented by the clause:

att((a, na)) → att((host(Kbs), sencrypt((a, na, Nb(a, na)), Kbs))) (Msg2)

The hypothesis means that a message (a, na) (corresponding to message 1) must
be received before sending message 2. It corresponds to the situation in which
the attacker sends (a, na) to B, B takes that for message 1, and replies with
message 2, which is intercepted by the attacker. (a and na are variables since B
accepts any term instead of host(Kas) and Na.) The nonce Nb is represented by
the function Nb(a, na). Indeed, since a new name is created at each execution,
names created after receiving different messages are different. This is modeled by
considering names as functions of the messages previously received. This model-
ing is slightly weaker than creating a new name at each run of the protocol, but
it is correct: if a secrecy property is proved in this model, then it is true [1]. The
introduced function symbols will be called “name function symbols”. (In mes-
sage 1, the fresh name Na is a constant because there are no previous messages
on which it would depend.)

Message 3 is represented by the clause:

att((host(kbs), sencrypt((host(kas), na, nb), kbs)))
→ att((sencrypt((host(kbs), Kab(kas, kbs, na, nb), na, nb), kas),

sencrypt((host(kas), Kab(kas, kbs, na, nb)), kbs)))
(Msg3)
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using the same principles. At last, message 4 is represented by

att((sencrypt((b, k, Na, nb), Kas), mb)) → att((mb, sencrypt(nb, k))) (Msg4)

The message sencrypt((host(Kas), k), Kbs) cannot be decrypted and checked by
A, so it is a variable mb.

The goal of the protocol is to establish a secret shared key Kab between
A and B. If the key was a constant, say Kab, then the non-derivability of the
fact att(Kab) from the Horn clauses presented so far would prove its secrecy.
However, Kab, as received by A, is a variable k. We therefore use the following
fact. The key Kab received by A is secret if and only if some constant secretA
remains secret when A sends it encrypted under the key Kab. Thus, we add a
clause that corresponds to the translation of an extra message of the protocol,
Message 5. A → B : {secretA}Kab

.

att((sencrypt((host(Kbs), k, Na, nb), Kas), mb))
→ att(sencrypt(secretA, k))

(Msg5)

Now, the secrecy of the key Kab received by A can be proved from the non-
derivability of the fact att(secretA) from the set of clauses RPrimitives ∪RProt.

For the Yahalom protocol, the translation yields the union of the following
sets of Horn clauses. RCryptoConstr contains (sencrypt) and (host), RCryptoDestr

contains (sdecrypt), RDataConstr contains the tuple construction and RDataDestr

the tuple projections (both not listed), and RProt contains (Msg1), (Msg2),
(Msg3), (Msg4) and (Msg5) and three clauses translating the initial knowledge,
att(N), att(host(Kas)), and att(host(Kbs)).

3 The Resolution-Based Verification Algorithm

To determine whether a fact is derivable from the clauses, we use a resolution-
based algorithm explained below. (We use the meta-variables R, H, C, F for rule,
hypothesis, conclusion, fact, respectively.)

The algorithm infers new clauses by resolution as follows: From two clauses
R = H → C and R′ = F ∧ H ′ → C′ (where F is any hypothesis of R′), it infers
R ◦F R′ = σH ∧ σH ′ → σC′, where C and F are unifiable and σ is the most
general unifier of C and F . The clause R ◦F R′ is the combination of R and R′,
where R proves the hypothesis F of R′. The resolution is guided by a selection
function sel . Namely, sel(R) returns a subset of the hypotheses of R, and the
resolution step above is performed only when sel(R) = ∅ and F ∈ sel(R′).

We can use several selection functions. In this paper, we use:

sel(H → C) =

{
∅ if all elements of H are of the form att(x), x variable
{F} where F �= att(x), F ∈ H , otherwise
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The algorithm uses the following optimizations:

– Decomposition of data constructors: decomp takes a clause and returns a
set of clauses, built as follows. For each data constructor f , decomp re-
places recursively all facts att(f(M1, . . . , Mn)) with att(M1)∧ . . .∧ att(Mn).
When such a fact is in the conclusion of a clause, n clauses are created,
with the same hypotheses and the conclusions att(M1), . . . , att(Mn) respec-
tively. With decomposition, the standard clauses for data constructors and
projections can be removed. The soundness of this operation follows from
the equivalence between att(f(M1, . . . , Mn)) and att(M1) ∧ . . . ∧ att(Mn) in
the presence of the clauses att(x1) ∧ . . . ∧ att(xn) → att(f(x1, . . . , xn)) and
att(f(x1, . . . , xn)) → att(xi) in RDataConstr and RDataDestr.

– Elimination of duplicate hypotheses: elimdup takes a clause and returns the
same clause after keeping only one copy of duplicate hypotheses.

– Elimination of hypotheses att(x): elimattx eliminates hypotheses att(x) when
x does not appear elsewhere in the clause. Indeed, these hypotheses are
always true, since the attacker has at least one term.

– Elimination of tautologies: elimtaut eliminates all tautologies (that is, clauses
whose conclusion is already in the hypotheses) from a set of clauses.

– simplify groups all these simplifications. We extend elimdup and elimattx
naturally to sets of clauses, and define simplify = elimtaut ◦ elimattx ◦
elimdup ◦ decomp.

– condense(R) applies simplify to each clause in R and then eliminates sub-
sumed clauses. We say that H1 → C1 subsumes H2 → C2 if and only if there
exists a substitution σ such that σC1 = C2 and σH1 ⊆ H2. If R contains
clauses R and R′, such that R subsumes R′, R′ is eliminated. (In that case,
R can do all derivations that R′ can do.)

We now define the algorithm saturate(R0). Starting from condense(R0), the
algorithm adds clauses inferred by resolution with the selection function sel
and condenses the set of clauses at each iteration step until a fixpoint is reached.
When a fixpoint is reached, saturate(R0) consists of the clauses R in the fixpoint
such that sel(R) = ∅. By adapting the proof of [4] to this algorithm, it is easy
to show that, for any R0 and any closed fact F , F is derivable from RAll =
R0 ∪ RDataConstr ∪ RDataDestr if and only if it is derivable from saturate(R0) ∪
RDataConstr.

Once the clauses of saturate(R0) have been computed, we use a standard
backward depth-first search to see if a fact can be derived from saturate(R0) ∪
RDataConstr. Taking R0 = RCryptoConstr ∪ RCryptoDestr ∪ RProt, if att(M) can-
not be derived from saturate(R0) ∪ RDataConstr then the protocol preserves the
secrecy of M .

The optimizations enable us to weaken the conditions that guarantee termi-
nation. For instance, the decomposition of data constructors makes it possible
to obtain termination without tagging each data constructor application, while
other constructors such as encryption must be tagged. In the Yahalom protocol,
for example, without decomposition of data constructors, the algorithm would
resolve the clause (Msg2) with itself, immediately yielding an infinite loop.
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Another consequence of the optimizations is that not all terms in a clause can
be variables. Indeed, when x ∈ {x1, . . . , xn}, the clause att(x1)∧ . . .∧ att(xn) →
att(x) is eliminated since it is a tautology. When x /∈ {x1, . . . , xn}, all hypotheses
are eliminated, so the clause becomes att(x) and all other clauses are eliminated
since they are subsumed by att(x), so the algorithm stops immediately: all facts
can be derived. Thus, when sel(R) = ∅, the conclusion of R is not of the form
att(x). Therefore, the above selection function prevents resolution steps in which
att(x) is unified with another fact (actually, with any other fact, which can lead
to non-termination).

4 Sufficient Conditions for Termination

We are now collecting the formal properties of sets of Horn clauses (logic pro-
grams, or programs for short) that together entail termination. The properties
for protocol programs hold for the translation of every protocol. The properties
for plain protocol programs hold for the translation of protocols with a restriction
on their cryptographic primitives and on their keys (this restriction is satisfied
by many interesting protocols, including Yahalom for example). The properties
for tagged protocol programs hold for the translation of those protocols after
they have been tagged. The derivability problem for plain protocol programs is
undecidable (as can be easily seen by a reduction to two-counter machines). The
restriction to tagged programs makes the problem decidable, as will follow.

Given a clause R of the form att(M1)∧ . . .∧att(Mn) → att(M0), we say that
the terms M0, M1, . . . , Mn are the terms of R, and we denote the set of terms
of R by terms(R).

Definition 2 (Protocol program). A protocol program is a set of clauses
RAll = RPrimitives ∪ RProt (where RPrimitives is a program for primitives) that
comes with a finite set of closed terms S0 such that:

C1. For all clauses R in RProt, there exists a substitution σ such that
terms(σR) ⊆ S0.

C2. Every two subterms of terms in S0 of the form a(. . .) with the same name
function symbol a are identical.

C3. The second argument of pencrypt in S0 is of the form pk(M) for some M .

The terminology “argument of f in S0” refers to a term M such that
f(. . . , M, . . .) is a subterm of a term in S0. To see why these conditions are
satisfied by a translation of a protocol, let us consider the intended messages
of the protocol. These are the exchanged messages when the attacker does not
intervene and when there is no unexpected interaction between sessions of the
protocol. We denote by M1, . . . , Mk the closed terms corresponding to these mes-
sages. Each participant does not necessarily have a full view of the messages he
receives; instead, he accepts all messages that are instances of patterns represent-
ing the information he can check. The terms M1, . . . , Mk are particular instances
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of these patterns. So the protocol is represented by clauses R such that there ex-
ists σ such that terms(σR) ⊆ {M1, . . . , Mk}. Defining S0 = {M1, . . . , Mk}∪SInit,
we obtain C1.

For instance, the intended messages for the Yahalom protocol are

M1 = (host(Kas), Na)
M2 = (host(Kbs), sencrypt((host(Kas), Na, MNb

), Kbs))
M3 = (sencrypt((host(Kbs), MK , Na, MNb

), Kas), sencrypt((host(Kas), MK), Kbs))
M4 = (sencrypt((host(Kas), MK), Kbs), sencrypt(MNb

, MK))
M5 = sencrypt(secretA, MK)

with MNb
= Nb(host(Kas), Na) and MK = Kab(Kas, Kbs, Na, MNb

). It is easy to
check that the clauses (Msg1)–(Msg5) satisfy the condition C1.

Condition C2 models that each name function symbol is created at a unique
occurrence in the protocol. Condition C3 means that, in its intended behaviour,
the protocol uses public-key encryption only with public keys.

Definition 3 (Plain protocol program). A plain protocol program is a pro-
tocol program RAll with associated set of closed terms S0, such that:

C4. The only constructors and destructors are those of Figure 1, plus host.
C5. The arguments of pk and host in S0 are atomic constants.

Condition C5 essentially means that the protocol only uses pairs of atomic keys
for public key cryptography, and atomic keys for long-term secret keys.

Tagging a protocol is a simple syntactic annotation of messages. We add a
tag to each application of a primitive sencrypt, pencrypt, sign, nmrsign, hash, mac,
such that two applications of the same primitive with the same tag have the
same parameters. For example, after tagging the Yahalom protocol becomes:

Message 1. A → B : (A, Na)
Message 2. B → S : (B, {c1, A, Na, Nb}Kbs

)
Message 3. S → A : ({c2, B, Kab, Na, Nb}Kas , {c3, A, Kab}Kbs

)
Message 4. A → B : ({c3, A, Kab}Kbs

, {c4, Nb}Kab
)

If the original protocol translates to a plain protocol program, its tagged version
translates to a tagged protocol program, as defined below.

Definition 4 (Tagged protocol program). A tagged protocol program is a
plain protocol program RAll with associated set of closed terms S0 such that:

C6. If f ∈ {sencrypt, pencrypt, sign, nmrsign, hash, mac} occurs in a term in
S0 or in terms(R) for R ∈ RProt, then its first argument is the tuple
(c, M1, . . . , Mn) for some constant c and terms M1, . . . , Mn.

C7. Every two subterms of terms in S0 of the form f((c, . . .), . . .) with the same
primitive f ∈ {sencrypt, pencrypt, sign, nmrsign, hash, mac} and the same tag
c are identical.
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The condition that constant tags appear in terms(R) (Condition C6) means
that honest protocol participants always check the tags of received messages
(something that the informal description of a tagged protocol leaves implicit)
and send tagged terms. The condition also expresses that the initial knowledge
of the attacker consists of tagged terms.

5 Termination Proof

Instead of giving the termination proof in one big step, we first consider a special
case (Section 5.1), and then describe the modification of the first proof that yields
the proof for the general case (Section 5.2).

The special case is defined in terms of the sets Paramspk and Paramshost of
arguments of pk resp. host in S0, namely by the condition that these sets each
have at most one element.

This restriction is meaningful in terms of models of protocols: it corresponds
to merging several keys. In the example of the Yahalom protocol, this means
that, in the clauses, the keys Kas and Kbs should be replaced with a single
key, k0 (so the host names A = host(Kas) and B = host(Kbs) are replaced
with a single name host(k0)). When studying secrecy, merging all keys of honest
hosts in this way helps to model cases in which one host plays several roles in
the protocol. The secrecy for the clauses with merged keys implies secrecy for
the protocol without merged keys. However, this merging is not acceptable for
authenticity [5]. This is why we also consider the general case in Section 5.2.

5.1 The Special Case of One Key

We now define weakly tagged programs by the conditions that we use in the
first termination proof. In the special case, these conditions are strictly more
general than tagged protocol programs. This plays a role to deduce termination
for protocols that are not explicitly tagged (see Remark 1).

A term is said to be non-data when it is not of the form f(. . .) with f in
DataConstr . The set sub(S) contains the subterms of terms in the set S.

The set tagGen contains the non-variable non-data subterms of terms
of clauses in RProt and of terms M1, . . . , Mn in clauses of the form
att(f(M1, . . . , Mn))∧att(x1)∧ . . .∧att(xm) → att(x) in condense(RCryptoDestr)
(this is the form required in W1 below). This set summarizes the terms that
appear in the clauses and that should be tagged.

Definition 5 (Weakly tagged programs). A program RAll of the form
RAll = RPrimitives ∪ RProt (where RPrimitives is a program for primitives) is
weakly tagged if there exists a finite set of closed terms S0 such that:

W1. All clauses in the set R′
CryptoDestr = condense(RCryptoDestr) are of the form

att(f(M1, . . . , Mn)) ∧ att(x1) ∧ . . . ∧ att(xm) → att(x)

where f ∈ CryptoConstr , x is one of M1, . . . , Mn, and f(M1, . . . , Mn) is
more general than every term of the form f(. . .) in sub(S0).
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W2. For all clauses R in RProt, there exists a substitution σ such that
terms(σR) ⊆ S0.

W3. If two terms M1 and M2 in tagGen unify, N1 is an instance of M1 in
sub(S0), and N2 is an instance of M2 in sub(S0), then N1 = N2.

Condition W3 is the key of the termination proof. We are going to show
the following invariant: all terms in the generated clauses are instances of terms
in tagGen and have instances in sub(S0). This condition makes it possible to
prove that, when unifying two terms satisfying the invariant, the result of the
unification also satisfies the invariant; this is because the instances in sub(S0) of
those two terms are in fact equal. Condition W1 guarantees that this continues
to hold if only one of the two terms satisfies the invariant and the other stems
from a clause in R′

CryptoDestr.

Proposition 1. A tagged protocol program where Paramshost and Paramspk

each have at most one element, is weakly tagged.

Proof. For condition W1, the clauses for sdecrypt, pdecrypt, and getmessage are:

att(sencrypt(x, y)) ∧ att(y) → att(x) (sdecrypt)
att(pencrypt(x, pk(y))) ∧ att(y) → att(x) (pdecrypt)
att(sign(x, y)) → att(x) (getmessage)

and they satisfy condition W1 provided that all public-key encryptions in S0 are
of the form pencrypt(M1, pk(M2)) (that is C3). The clauses for checksignature
and nmrchecksign are

att(sign(x, y)) ∧ att(pk(y)) → att(x) (checksignature)
att(nmrsign(x, y)) ∧ att(pk(y)) ∧ att(x) → att(true) (nmrchecksign)

These two clauses are subsumed respectively by the clauses for getmessage (given
above) and true (which is simply att(true) since true is a zero-ary constructor),
so they are eliminated by condense, i.e., they are not in R′

CryptoDestr. (This is
important, because they do not satisfy condition W1.)

Condition W2 is identical to condition C1. We now prove condition W3. Let

S1 = {f((ci, x1, . . . , xn), x′
2, . . . , x

′
n′) |

f ∈ {sencrypt, pencrypt, sign, nmrsign, hash, mac}}
∪ {a(x1, . . . , xn) | a name function symbol}
∪ {pk(x), host(x)} ∪ {c | c atomic constant}

By condition C4, the only term in tagGen that comes from clauses of R′
CryptoDestr

is pk(x). Using condition C6, all terms in tagGen are instances of terms in S1

(noticing that tagGen does not contain variables). Using conditions C2, C5, C7,
and the fact that Paramspk and Paramshost have at most one element, each term
in S1 has at most one instance in sub(S0).
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If M1 and M2 in tagGen unify, they are both instances of the same element
M ′ in S1 (since different elements of S1 do not unify with each other). Let N1

and N2 be any instances of M1 and M2 (respectively) in sub(S0). Then N1 and
N2 are instances of M ′ ∈ S1 in sub(S0) so N1 = N2. Thus we obtain W3. �

Remark 1. The Yahalom protocol is in fact weakly tagged without explicitly
adding constant tags (after merging the keys Kas and Kbs). Indeed, since differ-
ent encryptions in the protocol have a different arity, we can take sencrypt((x1,
. . . , xn), x′) in S1 in the proof above, and use the same reasoning as above to
prove the condition W3. This shows both that type flaws cannot happen in the
original protocol, and that the algorithm also terminates on the original proto-
col. We can say that the protocol is “implicitly tagged”: the arity replaces the
tag. This situation happens in some other examples, and can partly explain why
the algorithm often terminates even for protocols without explicit tags.

A term is top-tagged when it is an instance of a term in tagGen. Intuitively,
referring to the case of explicit constant tags, top-tagged terms are terms whose
top function symbol is tagged. A term is fully tagged when all its non-variable
non-data subterms are top-tagged.

We next show the invariant that all terms in the generated clauses are non-
data, fully tagged, and have instances in sub(S0). Using this invariant, we show
that the size of an instance in sub(S0) of a clause obtained by resolution from R
and R′ is smaller than the size of an instance of R or R′ in sub(S0). This implies
the termination of the algorithm.

Let us define the size of a term M , size(M), as usual, and the size of a clause
by size(att(M1)∧. . .∧att(Mn) → att(M)) = size(M1)+. . .+size(Mn)+size(M).
The hypotheses of clauses form a multiset, so when we compute size(σR) and
the substitution σ maps several hypotheses to the same fact, this fact is counted
several times in size. Intuitively, the size of clauses can increase during resolu-
tion, because the unification can instantiate terms. However, the size of their
corresponding closed instance in sub(S0) decreases.

Proposition 2. Assuming a weakly tagged program (Definition 5) and R0 =
RCryptoConstr∪RCryptoDestr∪RProt, the computation of saturate(R0) terminates.

Proof. We show by induction that all rules R generated from R0 either are in
RCryptoConstr ∪R′

CryptoDestr, or are such that the terms of R are non-data, fully
tagged, and mapped to sub(S0) by a substitution σ, i.e., terms(σR) ⊆ sub(S0).

First, we can easily show that all rules in condense(R0) satisfy this property.
If we combine by resolution two rules in RCryptoConstr ∪ R′

CryptoDestr, we in
fact combine one rule of RCryptoConstr with one rule of RCryptoDestr. The resulting
rule is a tautology by condition W1, so it is eliminated immediately.

Otherwise, we combine by resolution a rule R such that the terms of R
are non-data and fully tagged, and there exists a substitution σ such that
terms(σR) ⊆ sub(S0), with a rule R′ such that one of 1., 2., or 3. holds.
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1. The terms of R′ are non-data and fully tagged, there exists a substitution σ′

such that terms(σ′R′) ⊆ sub(S0), and sel(R′) = ∅ (in which case sel(R) �= ∅).
2. R′ ∈ RCryptoConstr.
3. R′ ∈ R′

CryptoDestr.

Let R′′ be the rule obtained by resolution of R and R′. We show that the terms of
R′′ are fully tagged, and there exists a substitution σ′′ such that terms(σ′′R′′) ⊆
sub(S0) and size(σ′′R′′) < size(σR).

Let M0, . . . , Mn be the terms of R, att(M0) being the atom of R on which we
resolve. In all cases, the terms of R′ are M ′, x1, . . . , xn′ , the variables x1, . . . , xn′

occur in M ′ and are pairwise distinct variables, and att(M ′) is the atom of R′

on which we resolve. (In case 1, because sel(R′) = ∅ and by the optimizations
elimattx and elimdup; in case 2, by definition of constructor rules; in case 3,
by W1.) The terms M0 and M ′ unify, let σu be their most general unifier.
Then the terms of R′′ are σux1, . . . , σuxn′ , σuM1, . . . , σuMn. By the choice of
the selection function, the terms M0 and M ′ are not variables.

We know that σM0, . . . , σMn are in sub(S0). We show that there exists σ′

such that σM0 = σ′M ′.

– In case 1, there exists σ′ such that σ′M ′ ∈ sub(S0). The terms M0 and M ′

are non-data fully tagged, so all their non-variable non-data subterms are
top-tagged. In particular, since they are not variables, M0 and M ′ themselves
are top-tagged, i.e., M0 is an instance of some N0 ∈ tagGen and M ′ is an
instance of some N ′

0 ∈ tagGen. Since M0 and M ′ unify, so do N0 and N ′
0,

σ′M ′ is an instance of N ′
0 in sub(S0), σM0 is an instance of N0 in sub(S0),

so by condition W3, σ′M ′ = σM0.
– In case 2, M ′ is of the form f(x1, . . . , xn′). Since M0 is not a variable and

unifies with M ′, M0 has root symbol f , so σM0 is an instance of M ′.
– In case 3, by condition W1, M ′ is more general than every term in sub(S0)

with the same root symbol, hence the instance σM0 of the term M0 that is
unifiable with M ′ and thus has the same root symbol.

The substitution equal to σ on the variables of R and to σ′ on the variables
of R′ is then a unifier of M0 and M ′. Since σu is the most general unifier, there
exists σ′′ such that σ′′σu is equal to σ on the variables of R, and to σ′ on the
variables of R′. Thus the terms of σ′′R′′ are σ′x1, . . . , σ

′xn′ , σM1, . . . , σMn. The
terms σ′x1, . . . , σ

′xn′ are subterms of σ′M ′ = σM0 which is in sub(S0), so they
are also in sub(S0). So all terms of σ′′R′′ are in sub(S0).

Moreover, size(σ′′R′′) < size(σ′R′). Indeed, x1, . . . , xn′ occur in M ′ and are
different variables. So σ′x1, . . . , σ

′xn′ are disjoint subterms of σ′M ′, and M ′ does
not consist of only a variable, so size(σ′x1) + . . . + size(σ′xn′) < size(σ′M ′) =
size(σM0), and size(σ′′R′′) < size(σM0) + . . . + size(σMn) = size(σR).

We show that the terms of R′′ are fully tagged.

– In case 1, since σu is the most general unifier of fully tagged terms, we can
show that, for all x, σux is fully tagged, so for all fully tagged terms M , we
can show that σuM is fully tagged, so the terms of R′′ are fully tagged.
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– In case 2, for x among x1, . . . , xn′ , σux is a subterm of M0, so is fully tagged.
The terms σuM1, . . . , σuMn are equal to M1, . . . , Mn, also fully tagged.

– In case 3, M ′ = f(M ′
1, . . . , M

′
m) and M0 = f(M ′′

1 , . . . , M ′′
m), so σu is also the

most general unifier of the pairs (M ′
1, M

′′
1 ), . . . , (M ′

m, M ′′
m) of fully tagged

terms. So we conclude as in case 1.

Finally, the terms of R′′ are fully tagged, terms(σ′′R′′) ⊆ sub(S0), and
size(σ′′R′′) < size(σR).

Then it is easy to show that all rules Rs ∈ simplify(R′′) obtained after
simplification of R′′ have non-data fully tagged terms and satisfy terms(σ′′Rs) ⊆
sub(S0), and size(σ′′Rs) < size(σR). Indeed, all rules in decomp(R′′) satisfy this
property. (The decomposition of data constructors transforms fully tagged terms
into non-data fully tagged terms.) This property is preserved by elimdup and
elimattx .

Therefore, for all generated rules R, there exists σ such that size(σR) is
smaller than the maximum initial value of size(σR) for a rule of the protocol.
There is a finite number of such rules (since size(R) ≤ size(σR)). So the algo-
rithm terminates. �

The termination of the backward depth-first search for closed facts is easy
to show, for example by a proof similar to that of [4]. Essentially, the size of
the goal decreases, because the size of the hypotheses of each clause is smaller
than the size of the conclusion. (Recall that all terms of hypotheses of clauses
of saturate(R0) ∪RDataConstr are variables that occur in the conclusion.) So we
obtain:

Theorem 1. The resolution-based verification algorithm terminates for weakly
tagged programs and closed facts.

As a corollary, by Proposition 1, we obtain the same result for tagged protocol
programs, when Paramshost and Paramspk have at most one element.

5.2 Handling Several Keys

The extension to several arguments of pk or of host requires an additional step.
We define a homomorphism h from terms to terms that replaces all elements
of Paramspk and of Paramshost with a special constant k0. We extend h to
facts, clauses, and sets of clauses naturally. For the protocol program h(RProt),
Paramspk and Paramshost each have at most one element. So by Proposition 1,
when RProt is a tagged protocol program, h(RProt) is a weakly tagged program.

Let RProt be any program such that h(RProt) is a weakly tagged program.
We consider a “less optimized algorithm” in which elimination of duplicate hy-
potheses and of tautologies are performed only for facts of the form att(x) and
elimination of subsumed clauses is performed only for the condensing of rules
of RCryptoDestr. We observe that Theorem 1 holds also for the less optimized
algorithm, with the same proof, so this algorithm terminates on h(RProt). All
resolution steps possible for the less optimized algorithm applied to RProt are
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possible for the less optimized algorithm applied to h(RProt) as well (more terms
are unifiable, and the remaining optimizations of the less optimized algorithm
commute with the application of h). Then the less optimized algorithm termi-
nates on RProt. We can show that then the original, fully optimized algorithm
also terminates.

In particular, the algorithm terminates for all tagged protocol programs and
for implicitly tagged protocols, such as the Yahalom protocol without tags by
Remark 1.

Theorem 2. The resolution-based verification algorithm terminates for tagged
protocol programs and closed facts.

We recall that a tagged protocol program may be obtained by translating a
protocol after tagging, and that the algorithm checks the non-derivability of the
closed fact att(M), which shows the secrecy of the message M .

Although, for tagged protocols, the worst-case complexity of the algorithm
is exponential (we did not detail this result by lack of space), it is quite efficient
in practice. It remains to be seen whether there exists a smaller class containing
most interesting examples, and for which the algorithm is polynomial.

6 Related Work

The verification problem of cryptographic protocols is undecidable [13], so one
either restricts the problem, or approximates it.

Decision procedures have been published for restricted cases. In the case
of a bounded number of sessions, for protocols using public-key cryptogra-
phy with atomic keys and shared-key cryptography, protocol insecurity is NP-
complete [23], and decisions procedures appear in [11,19,23]. When messages are
bounded and no nonces are created, secrecy is DEXPTIME-complete [13]. Strong
syntactic restrictions on protocols also yield decidability: [10] for an extension
of ping-pong protocols, [3] with a bound on the number of parallel sessions, and
restricted matching on incoming messages (in particular, this matching should
be linear and independent of previous messages). Model-checking also provides
a decision technique for a bounded number of sessions [18] (with additional con-
ditions). It has been extended, with approximations, to an unbounded number
of sessions using data independence techniques [6,7,22], for sequential runs, or
when the agents are “factorisable”. (Essentially, a single run of the agent has to
be split into several runs, such that each run contains only one fresh value.)

On the other hand, some analyses terminate for all protocols, but at the
cost of approximations. For instance, control-flow analysis [20] runs in cubic
time, but does not preserve relations between components of messages, hence
introduces an important approximation. Interestingly, the proof that control flow
analysis runs in cubic time also relies on the study of a particular class of Horn
clauses. Techniques using tree automata [15] and rank functions [17] also provide
a terminating but approximate analysis. Moreover, the computation algorithm
of rank functions assumes atomic keys.
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It has been shown in [16] that tagging prevents type flaw attacks. It may
be possible to infer from [16] that the depth of closed terms can be bounded in
the search for an attack. This yields the decidability by exhaustive search, but
does not imply the termination of our algorithm (in particular, because clauses
can have an unbounded number of hypotheses, so there is an infinite number of
clauses with a bounded term depth).

As for the approach based on Horn clauses, Weidenbach [24] already gave
conditions under which his algorithm terminates. These conditions may give
some idea of why the algorithm terminates on protocols. They do not seem to
apply to many examples of cryptographic protocols.

Other techniques such as theorem proving [21] in general require human
intervention, even if some cases can be proved automatically [9,12]. In general,
typing [1,14] requires human intervention in the form of type annotations, that
can be automatically checked. The idea of tagging already appears in [14] in a
different context (tagged union types).

7 Conclusion

We have given the theory behind an experimental observation: tagging a protocol
enforces the termination of the resolution-based verification technique used. Our
work has an obvious consequence to protocol design, namely when one agrees
that a design choice in view of a-posteriori verification is desirable.

Our termination result for weakly tagged protocols explains only in part
another experimental observation, namely the termination for protocols without
explicit tags. Although many of those are weakly tagged, some of them are not
(for instance, the Needham-Schroeder public key protocol). The existence of a
termination condition that applies also to those cases is open.
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