
Correction of Functional Logic Programs�

Maria Alpuente1, Demis Ballis2, Francisco J. Correa3, and Moreno Falaschi2

1 DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. alpuente@dsic.upv.es.

2 Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
{demis,falaschi}@dimi.uniud.it.

3 DIS, U. EAFIT, Cra. 49 N. 7 Sur 50, 3300 Medelĺın, Colombia.
fcorrea@eafit.edu.co.

Abstract. We propose a new methodology for synthesizing correct func-
tional logic programs. We aim to create an integrated development envi-
ronment in which it is possible to debug a program and correct it auto-
matically. We start from a declarative diagnoser that we have developed
previously which allows us to identify wrong program rules w.r.t. an in-
tended specification. Then a bug-correction, program synthesis method-
ology tries to correct the erroneous components of the wrong code.
We propose a hybrid, top-down (unfolding–based) as well as bottom-up
(induction–based), approach for the automatic correction of functional
logic programs which is driven by a set of evidence examples which are
automatically produced as an outcome by the diagnoser. The resulting
program is proven to be correct and complete w.r.t. the considered ex-
ample sets. Finally, we also provide a prototypical implementation which
we use for an experimental evaluation of our system.

1 Introduction

The main motivation for this work is to provide a methodology for developing
advanced debugging and correction tools for functional logic languages. Func-
tional logic programming is now a mature paradigm and as such there exist
modern environments which assist in the design, development and debugging of
integrated programs. However, there is no theoretical foundation for integrating
debugging and synthesis into a single unified framework. We believe that such
an integration can be quite productive and hence develop useful techniques and
new results for the process of automatically synthesizing correct programs.

In a previous work [6], a generic diagnosis method w.r.t. computed answers
which generalizes the ideas of [11] to the diagnosis of functional logic programs
has been proposed. The method works for eager (call–by–value) as well as for
lazy (call–by–name) integrated languages. Given the intended specification I
of a program R, we can check the correctness of R w.r.t. I by a single step
� This work has been partially supported by CICYT under grant TIC2001-2705-C03-

01, by Acción Integrada Hispano-Italiana HI2000-0161 and by Generalitat Valenci-
ana under grant GV01-424.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 54–68, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Correction of Functional Logic Programs 55

of a (continuous) immediate consequence operator which we associate to our
programs. This specification I may be partial or complete, and can be expressed
in several ways: for instance, by (another) functional logic program [6,2], by
an assertion language [10] or by equation sets (in the case when it is finite).
Our methodology is based on abstract interpretation: we construct over and
under specifications I+ and I− to correctly over- (resp. under-) approximate the
intended semantics I. We then use these two sets respectively for the functions
in the premises and the consequences of the immediate consequence operator,
and by a simple static test we can determine whether some of the clauses are
wrong. The debugging system Buggy[3] is an experimental implementation of
the method which allows the user to specify the (concrete) semantics by means
of a functional logic program. In [2], we also presented a preliminary correction
algorithm based on the deductive synthesis methodology known as example-
guided unfolding [8]. This methodology uses unfolding in order to discriminate
positive from negative examples (resp. uncovered and incorrect equations) which
are essentially obtained as an outcome by the diagnoser.

However, this pure deductive learner cannot be applied when the original
wrong program is overspecialized (that is, it does not cover all the (positive)
examples chosen to describe the pursued behavior). In this paper, we develop a
new program corrector based on, and integrated with, the declarative debugger of
[6,2], which integrates top–down as well as bottom–up synthesis techniques. The
resulting method is conceptually cleaner than more elaborated, purely deductive
or inductive learning procedures, and combines the advantages of both styles.
Furthermore, our method is parametric w.r.t. the chosen bottom-up learner.
As an instance of such parameter, we consider for the bottom-up part of the
algorithm the functional logic inductive framework of [17,20]. Informally, our
correction procedure works as follows. Starting from an overly general program
(that is, a program which covers all positive examples as well as some negative
ones), the top–down algorithm unfolds the program until a set of rules which
only occur in the refutation of the negative examples is identified, and then
they are removed from the program. When the original wrong program does not
initially cover all positive examples, we first invoke the bottom–up procedure,
which “generalizes” the program as to fulfil the applicability conditions. After
introducing the new method we prove its correctness and completeness w.r.t.
the considered example sets. Finally we present a prototypical implementation
of our system and the relative benchmarks. The following example illustrates
our method.

Example 1. Let us consider the program:

R = {od(0)→ true, od(s(X))→ od(X), z(0)→ 1, z(s(X))→ z(X) }

which is wrong w.r.t. the following specification of the intended semantics (mis-
takes in R are marked in bold):

I = { ev(0)→ true, ev(s(s(X)))→ ev(X),
od(s(X))→ true⇐ ev(X) = true, z(X)→ 0 }.

56 M. Alpuente et al.

By running the diagnosis system Buggy, we are able to isolate the wrong rules
of R w.r.t. the given specification. By exploiting the debugger outcome as de-
scribed later, the following positive and negative example sets are automatically
produced (the user is allowed to fix the cardinality of the example sets by tuning
some system parameters):

E+ = {od(s3(0)) = true, od(s(0)) = true, z(s2(0)) = 0, z(s(0)) = 0, z(0) = 0 }
E− = {od(s2(0)) = true, od(0) = true, z(0) = 1, z(s(0)) = 1, z(s2(0)) = 1 }.

We observe that unfolding the rule r ≡ od(s(X)) → od(X) w.r.t. R results in
replacing r by two new rules r1 ≡ od(s(0))→ true and r2 ≡ od(s2(X))→ od(X).
Now, by getting rid of rule od(0) → true, we obtain a new recursive definition
for function od covering the positive examples while no negative example can be
proven, which corrects the bug on function od.

However, note that this approach cannot be used for correcting function z:
unfolding the rules defining z does not contribute to demonstrate the positive
examples since the original program is overspecialized and unfolding can only
specialize it further. Nevertheless, by generalizing function z as in the bottom-up
inductive framework of [20], we get the new rule z(X)→ 0. Now, by eliminating
rule z(0)→ 1, which does not contribute to any positive example, we obtain the
final outcome

Rc = {od(s(0))→ true, od(s(s(X)))→ od(X), z(X)→ 0, z(s(X))→ z(X) }
which is correct w.r.t. the computed example sets.

The rest of the paper is organized as follows. Section 2 summarizes some
preliminary definitions and notations. Section 3 recalls the framework for the
declarative debugging of functional logic programs defined in [2]. In Section 4, we
present the basic, top-down automatic correction procedure. Section 5 integrates
this algorithm with a bottom-up inductive learner which allows us to apply
the correction methodology when the original program is overly specialized. In
Section 6, we present an experimental evaluation of the method on a set of
benchmarks. Section 7 discusses some related work and concludes. Proofs of all
technical results can be found in [1].

2 Preliminaries

Let us briefly recall some known results about rewrite systems [7,22] and func-
tional logic programming (see [19,21] for extensive surveys). For simplicity, defi-
nitions are given in the one-sorted case. The extension to many–sorted signatures
is straightforward, see [27]. Throughout this paper, V will denote a countably
infinite set of variables and Σ denotes a set of function symbols, or signature,
each of which has a fixed associated arity. τ(Σ ∪ V) and τ(Σ) denote the non-
ground word (or term) algebra and the word algebra built on Σ ∪ V and Σ,
respectively. τ(Σ) is usually called the Herbrand universe (HΣ) over Σ and it
will be denoted by H. B denotes the Herbrand base, namely the set of all ground

Correction of Functional Logic Programs 57

equations which can be built with the elements of H. A equation s = t is a
pair of terms s, t ∈ τ(Σ ∪ V). Terms are viewed as labelled trees in the usual
way. Term positions are represented by sequences of natural numbers, where Λ
denotes the empty sequence. O(t) denotes the set of positions of a term t, while
O(t) is the set of nonvariable positions of t. t|u is the subterm at the position
u of t. t[r]u is the term t with the subterm at the position u replaced with r.
These notions extend to sequences of equations in a natural way. By V ar(s) we
denote the set of variables occurring in the syntactic object s, while [s] denotes
the set of ground instances of s. Identity of syntactic objects is denoted by ≡. A
substitution is a mapping from the set of variables V to the set τ(Σ∪V). Given
a set of equations E, mgu(E) denotes the most general unifier of E [25].

A conditional term rewriting system (CTRS for short) is a pair (Σ,R), where
R is a finite set of reduction (or rewrite) rule schemes of the form (λ→ ρ⇐ C),
λ, ρ ∈ τ(Σ ∪ V), λ �∈ V and V ar(ρ) ⊆ V ar(λ). The condition C is a (possibly
empty) sequence e1, . . . , en, n ≥ 0, of equations. We will often write just R
instead of (Σ,R). If a rewrite rule has no condition, we write λ→ ρ. A goal⇐ g
is a rewrite rule with no head, and we simply denote it by g.

For CTRS R, r << R denotes that r is a new variant of a rule in R such
that r contains only fresh variables, i.e. contains no variable previously met
during computation (standardized apart). Given a CTRS 〈Σ,R〉, we assume
that the signature Σ is partitioned into two disjoint sets Σ = C � D, where
D = {f | (f(t̃) → r ⇐ C) ∈ R} and C = Σ \ D. Symbols in C are called
constructors and symbols in D are called defined functions. The elements of
τ(C ∪V) are constructor terms. A pattern is a term f(l1, . . . , ln) such that f ∈ D
and l1, . . . , ln are constructor terms. A term s is a normal form, if there is no
term t with s →R t, where →R denotes the (conditional) rewriting relation.
We omit the subscript R when no confusion can arise. In the remainder of this
paper, a (functional logic) program is a finite CTRS. The program R is said
to be canonical if the binary one-step rewriting relation →R defined by R is
noetherian and confluent [22]. A successful conditional rewriting sequence (also
called proof) for a goal g in R (extended with the rules for the equality) is a
sequence D : g ≡ g1 → g2 → . . .→ true.

The standard operational semantics of functional logic programs is based
on narrowing [15,29], a combination of unification for parameter passing and re-
duction as evaluation mechanism which subsumes rewriting and SLD-resolution.
Essentially, narrowing consists of the instantiation of goal variables, followed by
a reduction step on the instantiated goal. Narrowing is complete in the sense of
functional programming (computation of normal forms) as well as logic program-
ming (computation of answers). Due to the huge search space of unrestricted
narrowing, steadily improved strategies have been proposed. A narrowing strat-
egy (or position constraint) ϕ is any well-defined criterion that obtains a smaller
search space by permitting narrowing to reduce only some chosen positions. We
denote by �ϕ the narrowing relation with strategy ϕ (see [19] for a survey on
narrowing strategies.) IRϕ denotes the class of CTRSs which satisfy the condi-
tions for the completeness of the strategy ϕ. For instance, needed narrowing is

58 M. Alpuente et al.

known to be an optimal narrowing strategy for inductively sequential programs,
a class of TRS’s following the constructor discipline with discriminating left-
hand side, that is, typical functional programs. For the completeness of “lazy
strategies” such as needed narrowing, the strict equality ≈ is considered, which
is only defined on finite and completely determined data structures, and gives to
equality the weak meaning of identity of finite objects (e.g., see [26]). Hence, we
also assume that equations in g and C have the form s = t (where = denotes the
standard equality) whenever we consider “eager strategies” such as innermost
conditional narrowing (ϕ = inn), whereas the equations have the form s ≈ t
when we consider needed narrowing (ϕ = needed).

2.1 Denotation of a Functional Logic Program

In order to formulate a semantics modeling computed answers, the usual Her-
brand base has to be extended to the set of all (possibly) non-ground equations
modulo variance [14]. HV denotes the V -Herbrand universe which allows vari-
ables in its elements, and is defined as τ(Σ ∪ V)/∼=, where ∼= is the equivalence
relation induced by preorder ≤ of “relative generality” between terms. For the
sake of simplicity, the elements of HV have the same representation as the ele-
ments of τ(Σ ∪ V) and are also called terms. BV denotes the V -Herbrand base,
namely, the set of all equations s = t modulo variance, where s, t ∈ HV . Note
that the standard Herbrand base B is equal to [BV].

In non-strict languages, if the compositional character of meaning has to
be preserved in presence of infinite data structures and partial functions, then
non-normalizable terms, which may occur as subterms within normalizable ex-
pressions, also have to be assigned a denotation. Following [18,26], we introduce
a fresh constant symbol ⊥ into Σ to represent the value of expressions which
would otherwise be undefined.

In the following we recall two useful semantics for functional logic programs
(we refer to [6] for details).

Operational Semantics. The operational success set semantics Ocaϕ (R) of a
program R w.r.t. narrowing strategy ϕ is defined by considering the answers
computed for “most general calls”:
Ocaϕ (R) = �ϕR ∪ {(f(x1, . . . , xn) = xn+1)θ | (f(x1, . . . , xn) =ϕ xn+1) θ ∗

�ϕ

� s.t. f/n ∈ D, xn+1 and xi are distinct variables, for i = 1, . . . , n }, where
�ϕR denotes the set of identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn), c/n
constructor symbol in R.

Fixpoint Semantics. The (bottom-up) fixpoint semantics Fcaϕ (R), modeling
computed answers w.r.t. a narrowing strategy ϕ, is defined as the least fixpoint
Fcaϕ (R) = TϕR ↑ω of a parametric immediate consequence operator TϕR : 2BV →
2BV which generalizes the ground immediate consequences operator in [21] in
order to model computed answers.

Correction of Functional Logic Programs 59

The relationship between the operational and fixpoint semantics is estab-
lished by the following theorem.
Theorem 1. [2] Ocaϕ (R) = Fϕ(R) \ inprogress(Fϕ(R)),
where, for equation set S, inprogress(S) = {λ = ρ ∈ S | ⊥ occurs in ρ or ρ
contains a defined function symbol of Σ}.

For the sake of clarity, let us summarize the relation among the two different
program denotations Fϕ(R) and Ocaϕ (R) introduced above. The compositional,
fixpoint semantics Fϕ(R) which models successful as well as partial (nontermi-
nating as well as intermediate computations, i.e. those equations f(t̄) = s where
s “has not reached its value”) is obtained by computing the least fixpoint of the
immediate consequences operator TϕR. On the other hand, the operational suc-
cess set semantics Ocaϕ (R) only catches successful derivations, that is, it models
the computed answers observable.

3 Diagnosis of Declarative Programs

First we recall some basic definitions on the declarative diagnosis [11].
Definition 1. Let Ica be the specification of the intended success set semantics
for R. An incorrectness symptom is an equation e such that e ∈ Ocaϕ (R) and
e �∈ Ica. An incompleteness symptom is an equation e such that e ∈ Ica and
e �∈ Ocaϕ (R).

In case of errors, in order to determine the faulty rules, we make use of the
following definitions. We need to consider a fixpoint intended semantics IF , that
models both successful and “in progress” computations. The relation between
IF and the intended operational meaning is given by Ica = IF \inprogress(IF).
Definition 2. Let IF be the specification of the intended fixpoint semantics for
R. If there exists an equation e ∈ Tϕ{r}(IF) and e �∈ IF , then the rule r ∈ R
is incorrect on e. We also say that e is incorrect. Reciprocally, the equation e is
uncovered if e ∈ IF and e �∈ TϕR(IF).

Since program denotations generally consist of an infinite number of equa-
tions, the above conditions for correctness and completeness of a program w.r.t.
to a given specification cannot be effectively computed. In [2], an abstract di-
agnosis methodology based on the abstract interpretation theory [12] was pro-
posed. Abstract diagnosis is a correct approximation of the diagnosis technique
presented so far where the semantic domains and operators are replaced by
abstract ones. First, we build a suitable abstract immediate consequences op-
erator (T �ϕR), which uses an abstraction of the program rules where all infinite
computations have been removed and is also parametric w.r.t. the narrowing
strategy. The approximation is done by using a loop-checker which replaces the
calls which are (risky to be) responsible for the infinite derivations by a fresh
irreducible symbol 	. The fixpoint of T �ϕR correctly approximates the fixpoint
semantics of R and can be computed finitely. The abstract diagnosis process is
performed w.r.t. two abstract (finite) semantics I− and I+ which under- and
over-approximate the intended semantics I.

60 M. Alpuente et al.

4 Correction Method

In this section, we present an inductive learning methodology which is able to
repair a functional logic program containing buggy rules. The correction problem
can be stated as follows. Let R be a program, I the intended specification,
R′ ⊆ R a set of incorrect rules w.r.t. I, and E = E+∪E− two disjoint (ground)
example sets which model the pursued (not pursued) computational behaviour.
We denote by R � E the fact that the (ground) equation set E can be reduced
to true by using the rules of R. Then, we want to determine a set of rules
X such that Rc = (R \ R′) ∪ X , Rc � E+ and Rc �� E−. Program Rc will
be called correct program (w.r.t. E+ and E−). We will call R− = R \ R′ the
diminished program. We note that R � E can be checked, even in the case
that R is not terminating, by using the “normalization via µ–normalization”
method of [23] to compute, by levels, the ‘maximal contexts’ of the lhs’s of
the examples, and then comparing them with the ground constructor term in
the corresponding rhs. By this technique, normal forms can be obtained by
successively computing µ-normal forms and shifting computations to maximal
non-replacing subterms when a µ-normal form has been obtained. The conditions
for the completeness of this technique (csr–conditions) essentially amount to the
termination of “context–sensitive rewriting” (csr) [24], which is much easier than
the termination of rewriting. A csr practical tool for proving termination of csr
is available at http://www.dsic.upv.es/users/elp/slucas/muterm.

The automatic search for a new rule in an induction process can be performed
either bottom-up (i.e. from an overly specific rule to a more general) or top-down
(i.e. from an overly general rule to a more specific). There are some reasons to
prefer the top-down or backward reasoning process to the bottom–up or forward
reasoning process [13]. On the one hand, it eliminates the need for navigating
through all possible logical consequences of the program. On the other hand, it
integrates inductive reasoning with the deductive process, so that the derived
program is guaranteed to be correct. Unfortunately, it is known that the deduc-
tive process alone (i.e. unfolding) does not generally suffice for coming up with
the corrected program, and inductive generalization techniques are necessary
[13,28]. In [20,17], a bottom-up framework for synthesizing correct functional
logic programs (w.r.t. the ground success set, Herbrand semantics) is presented
which induces program rules from sets of equations which are respectively in-
correct and correct w.r.t. the pursued program. Their methodology, however, is
not particularly tailored for theory revision, and we need to adapt it since the
uncontrolled application of the method would produce much speculation in our
framework, which we want to avoid. Therefore, we follow a hybrid, top-down as
well as bottom-up approach, which is able to infer program corrections that are
hard, if not at all impossible, to obtain with a simple deductive learner.

4.1 Automatic Generation of Positive and Negative Example Sets

Let us present a simple method for automatically generating the example sets
which exploits the debugger outcome so that the user does not need to provide

Correction of Functional Logic Programs 61

error symptoms, evidences or other kind of information which would require a
good knowledge of the program semantics that she probably lacks.

Consider the diminished program R−. Due to the absence of faulty rules in
R−, R− is already partially correct; however R− might be incomplete, as there
can be equations which are covered in I, but not in R−.

By applying the diagnosis method presented in Section 3, we are able to
find out the sets of uncovered and incorrect equations w.r.t. an abstraction of
the intended semantics, respectively E1 and E2. Considering equations in E1
seems a sensible way for yielding positive examples (missing proofs which should
be achieved by R). On the other hand, set E2 contains equations modeling
erroneous behaviours, thus we can take them as negative examples.

Since E1 and E2 might contain non-ground equations, we find it useful to
instantiate (a subset of) them in order to get ground positive/negative example
sets E+ and E−. This allows us to perform some standard optimizations based
on term rewriting which are very satisfactory in practice. On the other hand,
since program R and specification I might use different auxiliary functions, we
only consider ground examples of the form l = d where l is a pattern and d
is a constructor term. In this way, the inductive process becomes independent
from the extra functions contained in I, since we start synthesizing directly from
data structures d. In order to achieve this, we normalize the term in the rhs of
(the instantiated) examples. Finally, we disregard those examples which, after
normalization, do not have a constructor term at the rhs.

4.2 Specialization Operators

Roughly speaking, unfolding a program R w.r.t. a rule r delivers to a new spe-
cialized version of R in which the rule r is replaced by new rules obtained from
r by performing a narrowing step on the rhs or the conditional part of r.

Definition 3 (unfolding). Let R be a CTRS and r ≡ (λ→ ρ⇐ C) << R be a
rule. Let {g θi

�ϕ (C ′i, ρ
′
i = y)}ni=1 be the set of all one-step narrowing derivations

with strategy ϕ that perform an effective narrowing step for the goal g ≡ (C, ρ =
y) in R. Then, UnfϕR(r) = {(λθi → ρ′i ⇐ C ′i)|i = 1 . . . n} (that is, the derived
goal (C ′i, ρ

′
i = y) is different from g.

Definition 4 (Unfolding operator). Let R be a CTRS, r ≡ λ → ρ ⇐ C be
a rule in R. The Rule Unfolding operator Uϕr (R) on R w.r.t. r is defined by
Uϕr (R) = R \ {r} ∪ UnfϕR(r).

As it has been proven in [4,5], for ϕ = inn, needed, unfolding using strategy
ϕ preserves the semantics (even for the observable of computed answers) in IRϕ
programs. When needed narrowing is considered, completeness is only guaran-
teed under the condition that expressions in the rule are not unfolded beyond
their head normal form [5]. On the other hand, the absence of narrowable po-
sitions in the rule to be unfolded yields no specialization of r. We just get the
removal of r from R. Therefore, we use the following notion of “unfoldable rule”.

62 M. Alpuente et al.

Definition 5. Let R be a CTRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if Uϕr (R) �= R \ {r}. If ϕ = needed, we also require that r is not unfolded
beyond its head normal form.

For the sake of simplicity, in the following we omit ϕ whenever this does not
compromise readability. The unfolding succession S(R) ≡ R0,R1, . . . of program
R is defined as follows: R0 = R, Ri+1 = Ur(Ri) where r ∈ Ri is unfoldable.

4.3 Top-Down Correction Algorithm

Following [9], the algorithm below works in two phases: the unfolding phase and
the deletion phase. Roughly speaking, we first perform unfolding upon (arbitrar-
ily selected) unfoldable rules, until we get a specialized version of the program R
where no negative example can be proven by applying only rules used in proofs
of positive examples. The following definition is auxiliary.

Definition 6. Given D : g ≡ g1
r1→ g2

r2→ . . .
rn→ gn, the sequence 〈r1, r2, . . . , rn〉

is called the rewriting rule sequence of D. The set OR(D) = {r1, r2, . . . , rn} is
called the set of occurring rules of D.

Given an equation e, let DϕR(e) denote the successful rewrite sequence which
proves e in program R (if it exists) by using a normalizing rewriting strategy
for the class IRϕ. The key idea of the algorithm is thus applying unfolding until
we get a specialized program Ri satisfying that, for each e− ∈ E− there exists a
rule r ∈ OR(DϕRi(e−)) such that, for each example e+ ∈ E+, r �∈ OR(DϕRi(e+)).
Now, since the rules which only contribute to the proof of negative examples are
useless, in the subsequent phase we just remove these rules from the specialized
program Ri. By discriminable rule of Ri we mean an unfoldable rule of Ri
which occurs in the proof of, at least, one positive and one negative example.

Algorithm TD-Corrector(R, I)
(E+, E−)=GenerateExampleSets(R, I)
if R �� E+ then halt
{Unfolding phase}
let i = 0; R0 = R
while ∃ e− ∈ E− s.t. ∀r(r ∈ OR(DRi(e−))⇒ ∃e+ ∈ E+ s.t. r ∈ OR(DRi(e+))) do

select a discriminable rule r ∈ OR(DRi(e−)) of Ri
let Ri+1 = Ur(Ri); i = i+ 1

end while
{Deletion phase}
for each e− ∈ E− do

let Ri+1 = Ri \ {r}, where r ∈ OR(DRi(e−)) ∧ ∀e+ ∈ E+ r �∈ OR(DRi(e+))
let i = i+ 1

end for
let Rc = Ri

Correction of Functional Logic Programs 63

Example 2. Consider again the program R and specification I of example 1,
with the example sets for learning function od. Since the rewriting proof for
the negative example od(s2(0)) = true ∈ E− uses the rule od(s(X)) → od(X)
(either with ϕ = inn or ϕ = needed), which is also used in the proofs of positive
examples, we enter the main loop. By unfolding od(s(X)) → od(X) we get
R1 = {od(0) → true, od(s(0)) → true, od(s2(X)) → od(X) }. Now we enter
the deletion phase which purifies R1 by removing the rule od(0) → true that
only occurs in the proof of a negative example, thus producing the expected
correction shown in Section 1.

Example 2 allows us to clarify the differences between the preliminary correction
algorithm in [2] and the one in this paper. The algorithm in [2] was based on
unfolding the rules which incorrectly cover the negative examples. In our exam-
ple, this could result in trying to unfold the rule od(0)→ true, which is fruitless,
whereas the new correction procedure does consider any discriminable rule for
unfolding, which is generally needed in order to achieve the desired correction.

We prove the correctness of the top-down correction algorithm in two steps:
first we show that, provided that R covers E+, the unfolding phase produces
a specialized version R′ of R (still covering E+) such that, for each negative
example, there is a rule occurring in the corresponding proof which is not used
in the proof of any of the positive examples. Next, we demonstrate that the
deletion phase yields a corrected version of R covering E+ and not covering E−.

The following proposition states our first result: by a suitable finite number of
applications of the unfolding operator to a program in IRϕ, we get a specialized
version such that, in any successful rewriting derivation of a negative example,
there occurs a rule that is not applied in any successful rewriting derivation
for the positive examples under the same strategy. A condition is necessary for
proving this result: no negative/positive couple of the considered examples can
have the same rewriting rule sequence, as shown in the following counterexample.

Example 3. Consider the program R = {f(X) → g(X), g(X) → 0} with exam-
ple sets E+ = {f(a) = 0}, E− = {f(b) = 0}. Then f(a) = 0 and f(b) = 0
are proven by using the same rewriting rule sequence (using any of the con-
sidered rewriting strategies). By applying the top–down algorithm, we unfold
rule f(X) → g(X), which produces the outcome R1 = {f(X) → 0, g(X) → 0}
which cannot be purified (by using the rule deletion operator) as removing rule
f(X)→ 0 in order to get rid of E− would cause losing E+.

Proposition 1. Let ϕ be a normalizing rewriting strategy for IRϕ and R be a
program in IRϕ. Let E+ (resp. E−) be a set of positive (resp. negative) examples.
If there are no e+ ∈ E+ and e− ∈ E− which can be proven in R by using the
same rules sequence, then, for each unfolding succession S(R), there exists k
such that ∀e− ∈ E−∃r ∈ OR(DRk(e−)) s.t. r is not discriminable

We note that Proposition 1 holds for every unfolding succession of the original
program; this implies that the rule to be unfolded at each unfolding step can be
arbitrarily selected, provided that it is discriminable. Moreover, the termination

64 M. Alpuente et al.

of the unfolding phase is granted by the finite number k of applications of the
unfolding operator that we need to obtain specialization Rk.

After the unfolding phase, the refutation of every negative example contains
a rule from Rk not occurring in the proof of any positive example, thus we can
safely remove this rule without jeopardizing completeness. The deletion phase
purifies Rk and yields correctness w.r.t. both positive and negative examples.

Theorem 2 (Correctness). Let R ∈ IRϕ which satisfies the csr conditions,
E+ and E− be two sets of examples such that R � E+. If the rewriting rule
sequences for e+ ∈ E+ and e− ∈ E− are different, then the TD-Corrector
algorithm yields a correct specialization of R w.r.t. E+ and E−.

As in other approaches for example-guided program correction, the above
result does not generally imply that a correction for the wrong program R w.r.t.
the intended semantics is obtained as the outcome of the top-down correction
algorithm (that is, a program R with the same semantics of I, up to the extra
auxiliary function symbols which might appear in I), under the conditions re-
quired for the correctness of the algorithm, but it might happen that the output
program is only correct w.r.t. E+ and E−. Therefore, derived programs would
be newly diagnosed for correctness at the end.

5 Improving the Algorithm

In the following, we propose a bottom-up correction methodology which we
smoothly combine with the deductive one in order to correct programs which do
not fulfil the applicability condition (over–generality). Therefore, the method-
ology just consists of applying a bottom-up pre–processing to “generalize” the
initial wrong program, before proceeding to the top-down correction.

5.1 Bottom-up Generation of Overly General (Wrong) Programs

We propose a methodology which is based on extending the original program
with new rules, so that the entire set E+ succeeds w.r.t. the generalized program,
and hence the top-down corrector can be effectively applied.

Our generalization method is based on a simplified version of the bottom-
up technique for the inductive learning of functional logic programs developed
by Ferri, Hernández and Ramı́rez [17] which is able to produce an intensional
description (expressed by a functional logic program) of a set of ground examples.
The algorithm is also able to introduce functions, defined as a background theory,
in the inferred intensional description (see [17,20] for details). In the following we
recall the definitions of restricted generalization and inverse narrowing which are
the heart of the bottom-up procedure of [17,20]. The former allows to generalize
program rules, the latter is needed to introduce defined symbols in the right
hand sides of the synthesized rules.

Definition 7 (Generalization operator). The rule r′ ≡ (s′ → t′ ⇐ C ′) is a
restricted generalization of r ≡ (s→ t⇐ C) if there exists a substitution θ such

Correction of Functional Logic Programs 65

that (i) θ(r′) ≡ r; (ii) V ar(t′) ⊆ V ar(s′). The generalization operator RG(r) is
defined as follows: RG(r) = {r′|r′ is a restricted generalization of r}.
Definition 8 (Inverse narrowing operator). The rule r ≡ s → t ⇐ C

reversely narrows into r′ ≡ s→ t′ ⇐ C ′ (in symbols r
u,r′′,θ←↩ r′) iff there exist a

position u ∈ O(t) and a rule r′′ ≡ λ → ρ ⇐ C ′′ such that (i) θ = mgu(t|u, ρ);
(ii) t′ = (t[λ]u)θ; (iii) C ′ = (C ′′, C)θ.
The inverse narrowing operator INV(r, r′′) is given by:

INV(r, r′′) = {r′ | r u,r
′′,θ←↩ r′ and extra-variables in the rhs of r′

are instantiated to variables in the rhs of r}.
The extra instantiation of variables in the rhs of the derived rules is necessary,

since inverse narrowing considers the rules oriented reversely and hence extra-
variables might be introduced in the synthesized rules, which is not allowed.

The following definitions are helpful for discerning the overspecialized pro-
gram rules. DefR(f) is the set of rules in R needed to define a function f .
This might be computed by constructing a functional dependency graph of the
program R and by statically analyzing it. Given a set E of positive examples,
Resf (E) denotes the restriction of E to the set of f -rooted examples (that is,
examples of the form f(t̃) = d). We say that a function definition DefR(f) is over-
specialized w.r.t. the set of positive examples E+, if there exists e ∈ Resf (E +)
which is not covered by DefR(f). An incorrect rule belonging to an overspecial-
ized function definition is called overspecialized rule.

The generalization algorithm in its initial phase discovers all function def-
initions which are overspecialized, by computing the subset of f -examples not
provable in R (and hence not provable by the corresponding function definition).
Then, overspecialized rules are deleted fromR. Now, applying generalization and
inverse narrowing operators, starting from the positive examples, we try to re-
construct the missing part of the code, that is, we synthesize a functional logic
program A such that R ∪ A \ {r ∈ R | r is overspecialized} allows us to derive
the entire E+. At the end, we get an overly general hypothesis to which the top-
down corrector can be applied for repairing (incorrectness) bugs on the derived
overly general faulty rules.

The bottom-up synthesis algorithm firstly generates a set PH (Program Hy-
pothesis set) which consists of unary programs associated with the restricted
generalizations of E+, that is, PH = {{r} | r ∈ RG(s→ t), s = t ∈ E+}. Then it
enters a loop in which, by means of INV and RG operators, new programs in PH
are produced. The algorithm leaves the loop when an “optimal” solution, which
covers E+ entirely, has been found in PH , or a maximal number of iterations is
reached. In the latter case no solution might be found.

Due to the huge search space which this method involves, some heuristics
must be implemented to guide the search. Following [20], Minimum Description
Length1 (MDL) and Covering Factor2 criteria could be taken into consideration,
1 length(e) = 1+nv/2+nf , where nv and nf are the number of variables and functors

in the rhs of e.
2 CovF(E) = card({e ∈ E | R � e})/card(E).

66 M. Alpuente et al.

so that inverse narrowing steps are only performed among the best programs
and equations w.r.t. these criteria. Moreover, by means of MDL and Covering
Factor, only the most concise programs are selected during the induction process.
The notion of Optimality w.r.t. programs and equations could be defined as a
linear combination of these two criteria. For a full discussion see [20]. A detailed
description of the algorithm can be retrieved in [1]. Let us consider an example,
in which we only pinpoint the relevant outcomes for the sake of clarity.

Example 4. Consider the following (wrong) program and the specification

R = { playdice(X)→ double(winface(X)), dd(0)→ 0,dd(s(X))→ dd(X)),
winface(s(X))→ s(winface(X)),winface(0)→ 0 }

I = { playdice(X)→ dd(winface(X)), dd(X)→ sum(X,X),
sum(X, 0)→ X, sum(X, s(Y))→ s(sum(X,Y)),
winface(s(0))→ s(0), winface(s(s(0)))→ s(s(0)) }.

Program rules marked in boldface are signalled as incorrect by the diagnosis
system. The example generation procedure described in Section 4.1 produces:

E+ = { playdice(s2(0)) = s4(0), playdice(s(0)) = s2(0), dd(s4(0)) = s8(0),
dd(s3(0)) = s6(0), dd(s2(0)) = s4(0), dd(s(0)) = s2(0)
dd(0) = 0, winface(s2(0)) = s2(0), winface(s(0)) = s(0) }.

The analysis for dd and winface determines that dd is overspecialized. The
generalization algorithm removes the rule dd(s(X)) → dd(X). Note that rule
dd(s(0))→ s2(0) inversely narrows to rule rdd ≡ dd(s(0))→ s2(dd(0)) by using
rule dd(0)→ 0. The following restricted generalizations of rule rdd are computed:
dd(s(0)) → s2(dd(0)), dd(s(X)) → s2(dd(0)), dd(s(X)) → s2(dd(X)).
Now, when the third rule is added to the background knowledge, all the ex-
amples in E+ are covered. Thus, the following overly general definition, which
feeds the top-down corrector in order to repair the remaining errors, is delivered

R = { playdice(X)→ dd(winface(X)), dd(0)→ 0, dd(s(X))→ s(s(dd(X)))),
winface(s(X))→ s(winface(X)),winface(0)→ 0 }.

6 Automated Correction System

A prototypical implementation of our methodology and a full experimental eval-
uation are available at http://www.dsic.upv.es/users/elp/soft.html. We
have improved the preliminary debugging system Buggy by adding the new
features. The current implementation, called Nobug, is now able to compute
sets of positive and negative examples by using the methodology described in
Section 4.1. Besides, we have developed a full implementation of the top-down
correction method based on example-guided unfolding for the leftmost-innermost
narrowing strategy. We are currently implementing the lazy version of the algo-
rithm. The bottom-up synthesis method has not been integrated into the Nobug

Correction of Functional Logic Programs 67

system yet. Hence, in order to compute our benchmarks also for initially over-
specialized programs, we used the inductive functional logic system FLIP[16].

We have performed some tests by means of our top-down corrector and the
bottom-up learner FLIP, in order to repair overly general as well as overspecial-
ized functional logic programs. We have taken into account programs on several
domains: naturals, lists and finite domains. In order to systematize the genera-
tion of the benchmarks, we have slightly modified correct programs in order to
obtain wrong program mutations. We were able to successfully repair incorrect
mutations, achieving, in many cases, a correction both w.r.t. the example sets
and the intended program semantics.

7 Conclusions

In this paper we have proposed a new methodology for synthesizing (partially)
correct functional logic programs which complements the diagnosis method we
developed previously in [6,2]. Our methodology is based on the combination,
in a single framework, of a diagnoser [6,2] which identifies those parts of the
code containing errors, together with a program learner which, once the bug has
been located in the program, tries to repair it starting from evidence examples
(uncovered as well as incorrect equations) which are essentially obtained as an
outcome of the diagnoser. We follow a hybrid, deductive (top-down) as well as
inductive (bottom-up) approach, which is able to infer program corrections that
are hard to obtain with a simple (pure deductive or inductive) program learner.
We plan to generalize the framework to other paradigms as future work.

Finally, we want to emphasize that this framework supersedes the preliminary
approach of [2]. In [2], recursive definitions were sometimes impossible to repair,
and no automated correction is provided for overspecialized programs either,
whereas the new methodology in this paper overcomes both drawbacks.

References

1. M. Alpuente, D. Ballis, F. J. Correa, and M. Falaschi. Correction of Functional
Logic Programs. Technical report, DSIC-II/23/02, UPV, 2002. Available at URL:
http://www.dsic.upv.es/users/elp/papers.html.

2. M. Alpuente, F. J. Correa, and M. Falaschi. Debugging Scheme of Functional
Logic Programs. In Proc. of WFLP’01, vol. 64 of ENTCS, 2002.

3. M. Alpuente, F. J. Correa, M. Falaschi, and S. Marson. The Debugging System
buggy. Technical report, UPV, 2001. Available at URL:
http://www.dsic.upv.es/users/elp/soft.html.

4. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with
conditional narrowing. In Proc. ALP’97, pp. 1–15. Springer LNCS 1298, 1997.

5. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation System for
Lazy Functional Logic Programs. In Proc. of FLOPS’99, pp. 147–162. Springer
LNCS 1722, 1999.

6. M. Alpuente, F. Correa, and M. Falaschi. Declarative Debugging of Funtional
Logic Programs. In Proc. of WRS’01, vol. 57 of ENTCS, 2001.

68 M. Alpuente et al.

7. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

8. H. Bostrom and P. Idestam-Alquist. Induction of Logic Programs by Example–
guided Unfolding. Journal of Logic Programming, 40:159–183, 1999.

9. Henrik Bostrom. Specialization of recursive predicates. In European Conference
on Machine Learning, pp. 92–106, 1995.

10. M. Comini, R. Gori, and G. Levi. Assertion based Inductive Verification Methods
for Logic Programs. In Proc. of MFCSIT’00, vol. 40 of ENTCS, 2001.

11. M. Comini, G. Levi, and G. Vitiello. Declarative Diagnosis Revisited. In Proc. of
ILP’95, pp. 275–287. The MIT Press, 1995.

12. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pp. 238–252, 1977.

13. N. Dershowitz and U. Reddy. Deductive and Inductive Synthesis of Equational
Programs. Journal of Symbolic Computation, 15:467–494, 1993.

14. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of
the Operational Behavior of Logic Languages. TCS, 69(3):289–318, 1989.

15. M. Fay. First Order Unification in an Equational Theory. In Proc of 4th Int’l Conf.
on Automated Deduction, pp. 161–167, 1979.

16. C. Ferri, J. Hernández, and M.J. Ramı́rez. The FLIP System Homepage. 2000.
Available at http://www.dsic.upv.es/users/elp/soft.ht ml.

17. C. Ferri, J. Hernández, and M.J. Ramı́rez. Incremental Learning of Functional
Logic Programs. In Proc. FLOPS’01, pp. 233–247. LNCS 2024, 2001.

18. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic plus
Functional Language. JCSS, 42:363–377, 1991.

19. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

20. J. Hernández and M.J. Ramı́rez. Inverse Narrowing for the Induction of Functional
Logic Programs. In Proc. of APPIA–GULP–PRODE ’98, pp. 379–393, 1998.

21. S. Hölldobler. Foundations of Equational Logic Programming. LNAI 353, 1989.
22. J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science,

vol. I, pp. 1–112. Oxford University Press, 1992.
23. S. Lucas. Context-Sensitive Rewriting Strategies. Information and Computation,

178(1):294–343, 2002.
24. S. Lucas. Termination of Canonical Context-Sensitive Rewriting. In Proc. RTA’02,

pp. 296–310. Springer LNCS 2378, 2002.
25. M.J. Maher. Equivalences of Logic Programs. In Foundations of Deductive

Databases and Logic Programming, pp. 627–658. Morgan Kaufmann, 1988.
26. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Func-

tions and Predicates: The language Babel. JLP, 12(3):191–224, 1992.
27. P. Padawitz. Computing in Horn Clause Theories, vol. 16 of EATCS Monographs

on Theoretical Computer Science. Springer-Verlag, Berlin, 1988.
28. A. Pettorossi and M. Proietti. Transformation of Logic Programs. In Handbook of

Logic in Artificial Intelligence, vol. 5, pp. 697–787. Oxford University Press, 1998.
29. U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In

Proc. of Second IEEE Int’l Symp. on Logic Programming, pp. 138–151, 1985.

	Introduction
	Preliminaries
	Denotation of a Functional Logic Program

	Diagnosis of Declarative Programs
	Correction Method
	Automatic Generation of Positive and Negative Example Sets
	Specialization Operators
	Top-down Correction Algorithm

	Improving the Algorithm
	Bottom-up Generation of Overly General (Wrong) Programs

	Automated Correction System
	Conclusions

