
Modifications of ECDSA

John Malone-Lee and Nigel P. Smart

University of Bristol, Department of Computer Science,
Merchant Venturers Building,

Woodland Road,
Bristol, BS8 1UB, UK.

{malone, nigel}@cs.bris.ac.uk

Abstract. We describe two variants of ECDSA one of which is secure, in
the random oracle model, against existential forgery but suffers from the
notion of duplicate signatures. The second variant is also secure against
existential forgery but we argue that it is likely to possess only four
natural duplicate signatures. Our variants of ECDSA are analogous to
the variants of DSA as proposed by Brickell et al. However, we show that
the ECDSA variants have better exact security properties.

1 Introduction

In 1984, Goldwasser, Micali and Rivest [4], [5] introduced the notion of existential
forgery against adaptive chosen-message attack for public key signature schemes.
This notion has now become the de facto security definition for digital signature
algorithms, against which all new schemes are measured. The definition involves
a game in which the adversary is given a target user’s public key and is asked to
produce a valid signature, on any message, with respect to this public key. The
adversary is given access to an oracle which will produce signatures on messages
of the adversary’s choice, in which case the signature output by the adversary
at the end should clearly not have resulted from a query to its oracle.

Our work is motivated by the wish to create tighter security reductions for
modified forms of ECDSA. This builds on the earlier work of Brickell et al. [2]
who looked at the security of DSA and various minor modifications thereof. The
work of Brickell et al. itself builds upon the earlier work of Pointcheval and Stern
[7].

We shall describe a minor modification of ECDSA (which we call ECDSA-II),
similar to the DSA-II variant of Brickell et al., which is secure against existential
forgery in the random oracle model. Our main contribution is that the tightness
of our security reduction for ECDSA-II is better than that obtainable for DSA-
II. However, ECDSA-II (just as ECDSA) suffers from the notion of duplicate
signatures, as introduced in [8]. Duplicate signatures should not necessarily be
considered a security weakness but they point out possible problems with the
underlying design of the signature scheme.

The purpose of presenting ECDSA-II is to demonstrate the difference in the
security result with DSA-II and to show why our final modification is better from

K. Nyberg and H. Heys (Eds.): SAC 2002, LNCS 2595, pp. 1–12, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

2 John Malone-Lee and Nigel P. Smart

the point of view of existential forgery. Finally we present ECDSA-III, which we
shall show is secure against existential forgery in the random oracle model, with
a tighter result than one could obtain for ECDSA-II. In addition we shall argue
that ECDSA-III does not suffer from duplicate signatures. In fact by trying
to remove the possibility of duplicate signatures we obtain a tighter security
reduction. This demonstrates that removing anomalies in signature algorithms
may lead to better provable security results, even when the anomalies are not
security weaknesses.

The paper is structured as follows: we first define ECDSA and then we present
DSA-II and ECDSA-II. Both schemes can be proved secure in the random oracle
model against active adversaries. The proof technique requires The Improved
Forking Lemma [2], and relies in the case of DSA-II on a heuristic assumption as
to the distribution of the conversion function. No such heuristic is required for
ECDSA-II and the resulting security reduction is also tighter than that for DSA-
II. Subsequently we define ECDSA-III, which is another minor modification. We
show that this is also secure, with an even tighter security reduction. Finally in
the Appendix we give a uniform analogue of The Improved Forking Lemma that
we call The Uniform Multiple Forking Lemma.

2 Definition of ECDSA

To use ECDSA, as defined in the ANSI [1] and other standards, one first picks
an elliptic curve E over a finite field Fq whose order is equal to a prime n times
a small cofactor c, i.e.

#E(Fq) = c · n.

In addition, a base point P ∈ E(Fq) is chosen of order n. Note that, while users
are free to choose their own individual base points, it is argued in [6] that they
should be set by some central authority (alternatively one could generate the
base point verifiably at random).

Each user has a private key x ∈ {1, . . . , n− 1} and a public key

Z = xP.

ECDSA uses a hash function H : {0, 1}∗ → {1, . . . , n− 1}. The algorithm itself
is then given by:

Sign
1. k ← {1, . . . , n− 1}
2. Q← kP
3. r ← xcoord(Q) (mod n)
4. h← H(m)
5. s← (h + x · r)/k (mod n)
6. Output (r, s)

Verify
1. h← H(m)
2. a← h/s (mod n)
3. b← r/s (mod n)
4. Q← aP + bZ
5. t← xcoord(Q) (mod n)
6. Accept iff r = t

A duplicate signature, see [8], for ECDSA is a pair of messages (m1, m2) and a
signature (r, s) such that

H(m1) �= H(m2)
and such that the pair (r, s) is a valid signature on both messages.

Modifications of ECDSA 3

3 ECDSA - II

In [2] a modification of DSA is given, called DSA-II, which replaces the hash
function evaluation h = H(m) with h = H(m‖r) where

r =
(
gk (mod p)

)
(mod q).

The authors of [2] claim that the map

k→ (
gk (mod p)

)
(mod q)

is likely to be (log q)-collision free, in that it is impossible to find log q different
values of k ∈ {1, . . . , q − 1} which map to the same number under the above
map. Using this heuristic, and in the random oracle model, the authors of [2]
prove the result below.

Theorem 1. Suppose an adversary A against DSA-II exists which succeeds with
probability ε > 4/q after Q queries to the random oracle H, then one can solve
the discrete logarithm problem modulo p using fewer than

25Q(log q)(log(2 log q))/ε

replays of A with probability greater than 1/100.

The proof uses a generalisation of The Forking Lemma from [7], The Improved
Forking Lemma in [2], but it requires log q signatures on the same message with
different random oracles to be produced.
The Improved Forking Lemma applies to Trusted El Gamal Type Signature

Schemes, as defined in [2]. Here we define the analogous notion for schemes based
on elliptic curves rather than finite fields: Elliptic Curve Trusted El Gamal Type
Signature Schemes (ECTEGTSS).

Definition 1 (ECTEGTSS). A signature scheme is an ECTEGTSS if it has
the following properties:

– The underlying group is from an elliptic curve E over a finite field Fq whose
order is equal to a prime n times a small cofactor c, i.e. #E(Fq) = c · n. A
base point P ∈ E(Fq) of order n is given.

– It uses two functions G and H , with ranges G andH respectively. For security
analysis the function H is modelled as a random oracle and G requires some
practical properties such as (multi)-collision-resistance or (multi)-collision-
freeness.

– There are three functions:

F1(Zn, Zn,G,H)→ Zn, F2(Zn,G,H)→ Zn, F3 : (Zn,G,H)→ Zn

satisfying for all (k, x, r, h) ∈ (Zn, Zn,G,H),

F2(F1(k, x, r, h), r, h) + x · F3(F1(k, x, r, h), r, h) = k mod n.

4 John Malone-Lee and Nigel P. Smart

– Each user has private and public keys x, Z such that Z = xP .
– To sign a message m, the signer Alice picks k at random from Z

∗
n, computes

Q = kP and r = G(Q). She then gets h = H(m||r) and computes s =
F1(k, x, r, h). The signature on m is (s, r, h), although (s, r) is enough in
practice since h may be recovered from m and r.

– To verify the signature (s, r, h) on a message m the verifier Bob computes
eP = F2(s, r, h), eZ = F3(s, r, h) and finally W = eP P +eZZ. He then checks
that r = G(W) and h = H(m||r).

– The functions F2 and F3 must satisfy the following one-to-one condition: for
given r, eP and eZ , there exists a unique pair (h, s) such that

eP = F2(s, r, h) and eZ = F3(s, r, h).

Furthermore, this pair is easy to find.

�

It is easily verified that the proof of The Improved Forking Lemma in [2] applies
to ECTEGTSSs.

The analogue to ECDSA of DSA-II is the following signature algorithm,
which we call ECDSA-II.

Sign
1. k ← {1, . . . , n− 1}
2. Q← kP
3. r ← xcoord(Q) (mod n)
4. h← H(m‖r)
5. s← (h + x · r)/k (mod n)
6. Output (r, s)

Verify
1. h← H(m‖r)
2. a← h/s (mod n)
3. b← r/s (mod n)
4. Q← aP + bZ
5. t← xcoord(Q) (mod n)
6. Accept iff r = t

It is easily verified that ECDSA-II is an ECTEGTSS with:

F1(k, x, r, h) = (h + x · r)/k mod n = s

F2(s, r, h) = h/s mod n

F3(s, r, h) = r/s mod n

where Q = kP , r =xcoord(Q) mod n and h = H(m||r).
The scheme still exhibits duplicate signatures because the function

G : k → xcoord(kP) (mod n)

possesses trivial collisions, in that k and −k always map to the same point.
However, we also have that if

y = �q/n�+ 1

and if
G(k1) = G(k2) = . . . = G(ky)

Modifications of ECDSA 5

then there must exist i, j ∈ {1, . . . , y} with i �= j such that

ki = ±kj .

Since we have
c · n = #E(Fq) ≥ q + 1− 2

√
q

and for most elliptic curves used in “real life” we have c ≤ 4, we deduce

y = �q/n�+ 1 ≤ 4q

q + 1− 2
√

q
+ 1 ≤ 6.

This leads us to the following result:

Theorem 2. Suppose an adversary A against ECDSA-II exists which succeeds
with probability ε > 4/q after Q queries to the random oracle H, then one can
solve the discrete logarithm problem in E(Fq) using fewer than

150Q log 12/ε

replays of A with probability greater than 1/100.

Proof. As in Theorem 1 we apply The Improved Forking Lemma from [2] to
obtain 6 valid signatures on the same message m, each with a different random
oracle. Denote these signatures

(ri, hi, si)

where

ri = xcoord(kiP) (mod n),
hi = Hi(m‖ri),
si = (hi + x · ri)/ki (mod n).

We have for all these signatures that r = ri = rj , and so there exists two indices
i and j, with i �= j, such that

ki = ±kj .

Then using the equality

(hi + x · r)/si = ±(hj + x · r)/sj (mod n)

we obtain two possibilities for the discrete logarithm x of the public key. The
correct value of the discrete logarithm may then be determined using one point
multiplication.

Notice how this only requires 6 different signatures as opposed to the log q
different signatures in the result for DSA-II. In addition notice that it is the
absence of collision resistance in G which makes the above security reduction
tighter.

The above result holds for passive adversaries, a similar result for active
adversaries can be deduced by providing the obvious signing simulator.

6 John Malone-Lee and Nigel P. Smart

4 ECDSA - III

We now present a version of ECDSA which we call ECDSA-III. We shall show
that it does not exhibit general duplicate signatures. In addition the security
reduction against existential forgeries is tighter for ECDSA-III than for ECDSA-
II. The alteration is to replace

r ← xcoord(kP) (mod n)

by
r ← X + Y

where Q = (X, Y) = kP . Notice how r is now treated as an element of Fq and
not F

∗
n and how the value of r depends on both the x and y coordinates of the

point kP .
The precise details of ECDSA-III we give below, which one should notice is

only marginally less efficient in terms of bandwidth and CPU time than standard
ECDSA.

Sign
1. k ← {1, . . . , n− 1}
2. Q = (X, Y)← kP
3. r ← X + Y
4. h← H(m‖r)
5. s← (h + x · r)/k (mod n)
6. Output (r, s)

Verify
1. h← H(m‖r)
2. a← h/s (mod n)
3. b← r/s (mod n)
4. Q = (X, Y)← aP + bZ
5. Accept iff r = X + Y

It is easily verified that ECDSA-III is an ECTEGTSS with:

F1(k, x, r, h) = (h + x · r)/k mod n = s

F2(s, r, h) = h/s mod n

F3(s, r, h) = r/s mod n

where Q = kP = (X + Y), r = X + Y and h = H(m||r).
Notice that the equation X + Y = t will intersect the curve in at most three

points. This leads us to the following improved security reduction:

Theorem 3. Suppose an adversary A against ECDSA-III exists which succeeds
with probability ε > 4/q after Q queries to the random oracle H, then one can
solve the discrete logarithm problem in E(Fq) using fewer than

100Q log 8/ε

replays of A with probability greater than 1/100.

Proof. Again we apply The Improved Forking Lemma from [2] to obtain four
signatures with the same value of r. Two of these signatures correspond to
points, Q1 = k1P and Q2 = k2P , with k1 = ±k2. We may now recover the
discrete logarithm of the public key Z in the obvious way.

Modifications of ECDSA 7

As usual one can simulate the signing oracles so as to obtain a similar result for
active adversaries.

The way in which The Improved Forking Lemma uses the adversary A to
produce multiple signatures on the same message depends on A’s probability of
success ε, and the number of oracle queries it makes Q. This makes the resulting
reduction non-uniform. We give the following uniform reduction for ECDSA-III.

Theorem 4. Suppose an adversary A against ECDSA-III exists which succeeds
in time T and with probability ε > 14Q/q after Q queries to the random oracle H,
then one can solve the discrete logarithm problem in E(Fq) using a probabilistic
algorithm in expected time

T ′ ≤ 1984506 ·Q · T/ε.

Proof. We apply The Uniform Multiple Forking Lemma from the appendix with
y = 4 and 2k = q and reason as in the proof of Theorem 3.

Note that for schemes where we may usefully apply The Uniform Multiple Fork-
ing Lemma, the efficiency of the resulting security reduction depends very much
on the parameter y, the number of signatures required on the same message. The
smaller the value of y, the better the reduction. We require log q signatures for
DSA-II, 6 signatures for ECDSA-II, and only 4 for ECDSA-III. Therefore, as in
the non-uniform case, the uniform reduction given in Theorem 4 for ECDSA-III
is the tightest among the reductions using this method for the three schemes
considered in this paper.

We now turn to discussing whether ECDSA-III is resistant to duplicate sig-
natures. We cannot give a security proof but give an informal argument.

We wish to show that it is hard to find two elliptic curve points Q1 = (x1, y1)
and Q2 = (x2, y2) such that one knows the respective discrete logarithms Qi =
kiP and such that

x1 + y1 = x2 + y2.

Intuitively this can only happen when the line

L(t) : X + Y = t

for some constant t is geometrically related to the group law linking Q1 and Q2.
If L(t) is a tangent at Q1 and we know the discrete logarithm k1 then we know
that L(t) intersects the curve in one other point, say Q2 = k2P , of the required
form and that k2 = (−2k1) (mod n). Hence we need to avoid points where L(t)
is a tangent. But for all possible values of t the line L(t) is only a tangent for at
most four points on any given elliptic curve.

In ECDSA all values of r could be members of a trivial duplicate signature,
for ECDSA-III we see that only four possible values of r can be members of a
trivial duplicate signature.

8 John Malone-Lee and Nigel P. Smart

Now assume that we have a value of t such that L(t) is not a tangent to
the curve. Suppose it intersects the curve at Q1 and that we know the discrete
logarithm of Q1 with respect to P . About fifty percent of the time there will
be no other Fq-point on the curve which lies on the line L(t), in which case Q1

cannot be part of a duplicate signature. For the other fifty percent of the time we
obtain two other elliptic curve points Q2 and Q3. To use these points to obtain a
duplicate signature it would appear we need to extract their discrete logarithm
with respect to P . Although we cannot prove that this is the only way to obtain
duplicate signatures it seems likely to be the case.

5 Conclusion

We have shown that a modified form of ECDSA has a tighter security reduction
than a similarly modified form of DSA. In addition we have presented a second
modified form of ECDSA which not only has an even tighter security reduction,
it also does not suffer from the phenomenon of duplicate signatures.

6 Acknowledgements

Many thanks to David Pointcheval for helpful correspondence during this work.

References

1. ANSI X9.62. Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), 1999.

2. E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung. Design validations for dis-
crete logarithm based signature schemes. Public Key Cryptography 2000, Springer-
Verlag LNCS 1751, 276–292, 2000.

3. D. Brown. Generic groups, collision resistance and ECDSA. Preprint, 2001.
4. S. Goldwasser, S. Micali and R. Rivest. A “paradoxical” solution to the signature

problem. Proc. 25th Symposium on Foundations of Computer Science, 441–448,
1984.

5. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen ciphertext attacks. SIAM J. Computing, 17, 28–308, 1988.

6. A. Menezes and N.P. Smart. Security of signature schemes in a multi-user setting.
Preprint 2001.

7. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13, 361–396, 2000.

8. D. Pointcheval, J. Stern, J. Malone-Lee and N.P. Smart. Flaws in Security Proofs.
To appear Advances in Cryptology - CRYPTO 2002.

Appendix

In this Appendix we prove a generalisation of the forking Lemma of [7]. Our
result applies to generic signature schemes, as defined below.

Modifications of ECDSA 9

Definition 2. [7] A generic signature scheme is a signature scheme (G, V, S)
such that on input of the message m, the signing algorithm S produces a sig-
nature (m, σ1, h, σ2), where σ1 randomly takes its values in a large set, h is the
hash value of m||σ1, and σ2 depends on σ1, m, and h. Here and henceforth ||
denotes concatenation.

Theorem 5 (The Uniform Multiple Forking Lemma). Let (G, S, V) be a
generic digital signature scheme with security parameter k. Let A be a proba-
bilistic polynomial time Turing machine whose input consists of public data and
which can make Q > 0 queries to a random oracle O. Assume that, within time
bound T , the attacker A produces a valid signature (m, σ1, h, σ2) with probability
ε ≥ xQ/2k. Then, for y such that x − 1 > 4(y − 1), there is a machine M that
by using A can produce y valid signatures,

(m, σ1, h, σ2) and (m, σ1, h
i, σi

2)

for i = 1, . . . , y − 1, with h, hi all distinct. The expected running time of M is
upper bounded by

21 · x

x− 1
· σ(x, y) · (1 + γ(y))3

γ(y)(γ(y)− 1)2
· QT

ε
,

where

σ(x, y) =
y−1∑
k=1

x

x− 1− 4k
and γ(y) = 1−

(1
4

)(3
4

)(3
5

)y−1

.

Our proof uses the following lemma from [7]:

Lemma 1 (The Splitting Lemma). Let A ⊂ X × Y be such that Pr[A] ≥ ε.
Define

B = {(x, y) ∈ X × Y : Pry′∈Y[(x, y′) ∈ A] ≥ ε/2}.
We have the following:

1. ∀(x, y) ∈ B, Pry′∈Y[(x, y′) ∈ A] ≥ ε/2.
2. Pr[B|A] ≥ 1/2.

We now return to the proof of the main theorem.

Proof (Of Theorem 5). The attacker A is a probabilistic polynomial time Turing
machine with random tape ω that mounts a no-message attack on (G, S, V).
During the attack A makes a polynomial number of queries to the random oracle
O. Let us denote these queries Q1, . . . ,QQ, and the corresponding responses
ρ1, . . . , ρQ. We will assume that A stores the query and answer pairs in a table
and so the queries are all distinct. Clearly a random choice of O corresponds to
random choices for ρ1, . . . , ρQ.

For a random choice of (ω,O), A outputs a valid signature (m, σ1, h, σ2) with
probability ε. Since O is random, the probability for h to be equal to O(m||σ1) is

10 John Malone-Lee and Nigel P. Smart

less than 1/2k unless A made the query m||σ1 during its attack. We let Ind(ω,O)
be the index of the query m||σ1 and we let Ind(ω,O) =∞ if this query is never
made. We define the sets

S = {(ω,O) : AO(ω) succeeds and Ind(ω,O) �=∞} and
Si = {(ω,O) : AO(ω) succeeds and Ind(ω,O) = i} for i ∈ {1, . . . , Q}.

For index i let O|i denote the restriction of O to queries of index strictly less
than i, and let O|i denote the restriction of O to queries of index greater or
equal to i.

We define the parameter

α(y) =
1

2γ(y)
+

1
2
. (1)

The machine M is now described in figure 1.

Fig. 1. Machine M

algorithm M
1. j = 1
2. run A until, on input of a pair (ω,O) ∈ S, it outputs a forgery

call such a forgery ‘‘successful’’

denote the number of calls made to A to obtain a successful

forgery by Nj , and denote Ind(ω,O) by β
3. for k = 1, . . . , y − 1 :

i. run A until it produces a new successful forgery, or at most

20Njα(y)jδk times, where δk = x/(x − 1 − 4k)

for each run use the same ω as above and choose Oj,k randomly

subject to Oj,k|β = O|β
ii. if A has not produced a new successful forgery goto 4

else increment k
4. if A has produced y successful forged signatures return these

else increment j and goto 2

The sets in {Si : i ∈ {1, . . . , Q}} form a partition of S. With our definitions
we have

ν = Pr[S] ≥ ε− 1/2k ≥ ε− ε/xQ ≥ ε(x− 1)/x. (2)

Also

Pr[Nj ≥ 1/5ν] = (1− ν)�1/5ν�−1 > 3/4. (3)

Let I be the set of the most likely indices,

I = {i : Pr[Si|S] ≥ 1/2Q}.

Modifications of ECDSA 11

Define the sets

Ωi =
{
(ω,O) : PrO|i′

[(
ω,O|i,O|i′

) ∈ Si

] ≥ ν/4Q
}
.

For i ∈ I we have

Pr[Si] = Pr[Si ∩ S] = Pr[Si|S] · Pr[S] ≥ ν/2Q,

and so by the Splitting Lemma Pr[Ωi|Si] ≥ 1/2.
Since all the subsets Si are disjoint,

Prω,O[(∃i ∈ I) (ω,O) ∈ Ωi ∩ Si|S]

= Pr
 ⋃

i∈I

(Ωi ∩ Si)|S
]

=
∑
i∈I

Pr[Ωi ∩ Si|S]

=
∑
i∈I

Pr[Ωi|Si] · Pr[Si|S] ≥
 ∑

i∈I

Pr[Si|S]
)

/2 ≥ 1/4. (4)

Define l = �logα(y) Q�. For any j ≥ l and any 1 ≤ k ≤ y, whenever Nj ≥ 1/5ν
we have

20Njα(y)jδk ≥ 20 · 1
5ν
· α(y)�logα(y) Q� · x

x− 1− 4k

>
4xQ

ε(x− 1− 4k)
. (5)

At step 3 of M when (ω,O) ∈ Ωβ ∩ Sβ we have

PrOj,k|β [(ω,Oj,k) ∈ Sβ and ρj,k
β �= ρβ, ρj,k

β �= ρj,1
β , . . . , ρj,k

β �= ρj,k−1
β]

≥ PrOj,k|β [(ω,Oj,k) ∈ Sβ]− PrOj,k|β [ρj,k
β = ρβ]−

k−1∑
i=1

PrOj,k|β [ρj,k
β = ρj,i

β]

≥ ν/4Q− k/2k ≥ ε(x− 1)/4xQ− εk/xQ = ε(x− 1− 4k)/4xQ (6)

From (5) and (6) we know that, for j ≥ l and Nj ≥ 1/5ν, the probability of
getting y − 1 successful forks after at most

∑y−1
k=1 4xQ/ε(x− 1 − 4k) runs of A

at step 3 is greater or equal to

y−1∏
k=1

(
1−

(
1− ε(x− 1− 4k)

4xQ

)4xQ/ε(x−1−4k))

≥ (1 − e−1)y−1 >
(3

5

)y−1

. (7)

Recall from (4) that at step 2 of M when A produces a forgery using (ω,O) ∈ S
with Ind(ω,O) = β then, with probability at least 1/4, (ω,O) ∈ Ωβ ∩ Sβ .

12 John Malone-Lee and Nigel P. Smart

Combining this fact with (3) and (7) we have that for any t ≥ l the probability
for J to be greater or equal to t is less than

(
1−

(1
4

)(3
4

)(3
5

)y−1
)t−l

= γ(y)t−l. (8)

Let J denote the final value of j during an execution of M and let N be the
total number of calls made to A. We want to compute an upper bound on the
expectation on N . We have

E[N |J = t] ≤
t∑

j=1

(
E[Nj] + 20E[Nj]α(y)j

y−1∑
k=1

δk

)

=
t∑

j=1

(
E[Nj] + 20E[Nj]α(y)jσ(x, y)

)
,

and,

E[Nj] =
∞∑

i=1

i · Pr[Nj = i] =
∞∑

i=1

i(1− ν)i−1ν =
1
ν

,

so,

E[N |J = t] ≤ 1
ν

t∑
j=1

(
1 + 20α(y)jσ(x, y)

)

< 21 · σ(x, y)
ν

t∑
j=1

α(y)j < 21 · σ(x, y)
ν

· α(y)t+1

α(y)− 1
. (9)

Now, (1), (2), (8) and (9) give us

E[N] =
∞∑

t=0

E[N |J = t] · Pr[J = t]

≤
∑
t<l

E[N |J = t] +
∑
t≥l

E[N |J = t] · Pr[J ≥ t]

< 21 · σ(x, y)
ν

·
(

l−1∑
t=0

α(y)t+1

α(y)− 1
+

∑
t≥l

(α(y)t+1

α(y)− 1
· γ(y)t−l

))

< 21 · σ(x, y)
ν

· α(y)l+1

α(y)− 1
·
(1

α(y)− 1
+

1
1− α(y)γ(y)

)

≤ 21 · x

x− 1
· σ(x, y) · α(y)2

α(y)− 1
·
(1

α(y)− 1
+

1
1− α(y)γ(y)

)
· Q

ε

= 21 · x

x− 1
· σ(x, y) · (1 + γ(y))3

γ(y)(γ(y)− 1)2
· Q

ε
.

The result follows.

	Introduction
	Definition of ECDSA
	ECDSA - II
	ECDSA - III
	Conclusion
	Acknowledgements

