
Round-Optimal Contributory Conference Key

Agreement

Colin Boyd and Juan Manuel González Nieto

Information Security Research Centre
Queensland University of Technology, Brisbane, Australia

{boyd,juanma}@isrc.qut.edu.au

Abstract. Becker and Wille derived a lower bound of only one round
for multi-party contributory key agreement protocols. Up until now no
protocol meeting this bound has been proven secure. We present a pro-
tocol meeting the bound and prove it is secure in Bellare and Rogaway’s
model. The protocol is much more efficient than other conference key
agreement protocols with provable security, but lacks forward secrecy.

1 Introduction

Communications efficiency is concerned with the number and length of messages
that need to be sent and received during a protocol. As well as minimising the
number of individual messages, it can be important to have as few rounds as
possible in the protocol. One round includes all the messages that can be sent
in parallel during the protocol. Protocols where the messages are independent of
each other require fewer rounds than those where messages include fields received
in previous protocol messages.

Most published key agreement protocols are based on Diffie-Hellman’s fa-
mous key exchange protocol. A number of generalisations of the Diffie-Hellman
protocol have been devised which allow many parties to agree jointly on a ses-
sion key. With the exception of a recent protocol proposed by Joux for three
parties in a special setting [19], all these generalisations require multiple rounds
of communications in order to complete.

In 1998, Becker and Wille [3] derived several bounds on multi-party key
agreement protocols. Amongst these was the bound on the number of rounds
which is only one, no matter what is the number of users involved. A protocol
that meets this bound would allow all messages to be sent simultaneously in one
time unit, as long as parallel messages are possible. No Diffie-Hellman generali-
sation is able to meet this bound and Becker and Wille leave as an open question
whether any contributory key agreement scheme can meet this bound.

The purpose of this paper is to describe a protocol which meets the bound of
Becker and Wille. In addition we present a new proof of the security of the pro-
tocol under the assumption that standard secure cryptographic primitives exist
for encryption and signature, and using ideal hash functions (random oracles).
Although Becker and Wille considered only unauthenticated key agreement pro-
tocols, which are insecure against active adversaries, we provide a proven secure

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 161–174, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

162 Colin Boyd and Juan Manuel González Nieto

authenticated key agreement which is secure in the usual understanding of key
establishment protocols. Despite this extra security we still meet the bound. The
protocol is simple and very efficient in comparison with previously published con-
ference key agreement protocols. Its only significant limitation is that it does not
provide forward secrecy. We regard the following as the main contributions.

– A new conference key agreement protocol is proven secure in the random
oracle model.

– The computational requirements for the protocol are smaller than those for
any existing provable secure conference key protocol.

– The first proven secure protocol that meets the bound of Becker and Wille
for a single round protocol.

1.1 Related Work

Conference Key Agreement Most conference key agreement protocols are based
on generalisations of Diffie and Hellman’s famous key exchange protocol [15].
Examples include a set of protocols by Ingemarsson, Tang and Wong [18], a pro-
tocol by Burmester and Desmedt [14] and three protocols of Steiner, Tsudik and
Waidner [23].

In their basic form none of these protocols provides authentication of the
users so they do not protect against active attacks. Ateniese et al. [1, 2] propose
two ways to extend one of the protocols of Steiner et al. to provide authenti-
cated group key agreement. However, Pereira and Quisquater [21] have described
a number of potential attacks, highlighting the need for ways to obtain greater
assurance in the security of such protocols.

The protocol of Joux [19] is the only example currently known of a group key
agreement protocol that can be run in a single round and still provide forward
secrecy; however the protocol can only work with three parties. Joux’s protocol
works in elliptic curve groups and exploits pairings of group points.

Provable Security for Protocols An important direction in cryptographic protocol
research was pioneered by Bellare and Rogaway in 1993 [7] when they published
the first mathematical proof that a simple entity authentication protocol was
secure. This work, which covered only the two-party case, was followed up with
a paper on server-based protocols [4] and various authors have extended the same
idea to include public-key based key transport [8], key agreement protocols [9],
password-based protocols [6, 10], and conference key protocols [13, 11, 12].

The general approach is to produce a mathematical model that defines a pro-
tocol in which a powerful adversary plays a central role. The adversary essentially
controls all the principals and can initiate protocol runs between any principals
at any time. Insider attacks are modelled by allowing the adversary to corrupt
any principals, and the adversary can also obtain previously used keys. Cryp-
tographic algorithms are modelled in an idealised manner. Security of protocols
is defined in terms of matching conversations (for authentication) and indis-
tinguishability (for confidentiality of keys). The proofs follow the style of most

Round-Optimal Contributory Conference Key Agreement 163

proofs in modern cryptography by reducing the security of the protocol to the
security of some underlying primitive.

Up until now the only conference key protocols which carry a reduction proof
are those of Bresson et al. [13, 11, 12]. Based on the generalised Diffie-Hellman
protocols of Steiner et al. [23], these protocols are (relatively) computationally
expensive. In addition they require a number of rounds equal to the number of
principals in the conference. The advantage they have over the protocol examined
in this paper is the provision of forward secrecy.

1.2 Protocols of Tzeng and Tzeng

Two new round-efficient conference key agreement protocols were presented by
Tzeng and Tzeng [24]. Although they claim that their protocols can be completed
in one round and are proven secure, we would like to point out the following
limitations of their protocols.

– Their protocols require a session identifier to be known by all participating
principals. Unless this session identifier is agreed beforehand their protocols
cannot be completed in one round.

– Although they claim that their protocol provides authentication and does not
leak information, they provide no reduction proof for a powerful adversary.

Like our protocol, the protocols of Tzeng and Tzeng do not provide forward
secrecy. A feature of their protocols is a proof of knowledge that each party
has been sent the same inputs. The purpose of these proofs is to provide fault
detection and exclude principals who deviate from the protocol. However, such
a proof is only useful on the strong assumption that the broadcast channel which
they use provides integrity of all messages; otherwise a malicious insider can send
different proofs to different principals.

The first protocol of Tzeng and Tzeng uses a conventional type of signature
to provide authentication of signatures. However, their second protocol attempts
to provide authentication implicitly by including the private key of the sender in
the proof. Unfortunately this proof is not sound and consequently the protocol
can be broken. The details are presented in Appendix A.

1.3 Outline of Paper

Sections 2 and 3 present the communications model and definitions of security
which we use. These follow quite closely the definitions of Bellare and Rog-
away [4] with modifications required for the special situation of conference keys.
Section 4 presents our new protocol and explains the differences from other re-
lated protocols. Section 5 presents the proof of security.

164 Colin Boyd and Juan Manuel González Nieto

2 Communications Model

We follow closely the model established by Bellare and Rogaway [7, 4] incorpo-
rating later updates [6]. In particular we use the later form of partnering which
seems more suitable for the multi-party environment.

The adversary A is a probabilistic machine that controls all the communica-
tions that take place and does this by interacting with a set of oracles, each of
which represents an instance of a principal in a specific protocol run. Each prin-
cipal has an identifier U from a finite set {U1, . . . , Un}. Oracle Πs

U represents the
actions of principal U in the protocol run indexed by integer s. The number of
principals n is polynomial in the security parameter k. Each user has a long-lived
key, obtained at the start of the protocol using a key distribution algorithm GL.
Interactions with the adversary are called oracle queries and the list of allowed
queries is summarised in Table 1. We now describe each one informally.

Send(U, s,m) This query allows the adversary to make the principal U run the
protocol normally. The oracle Πs

U will return to the adversary the same
next message that an honest principal U would if sent message m according
to the conversation so far. (This includes the possibility that m not be of
the expected format in which case Πs

U may simply halt.) If Πs
U accepts the

session key or halts this is included in the response. The adversary can use
this query to initiate a new protocol instance by sending a flag message
m = Initiator or m = Responder indicating the role that the principal plays.

Reveal(U, s) This query models the adversary’s ability to find session keys. If
a session key Ks has previously been accepted by Πs

U then it is returned to
the adversary. An oracle can only accept a key once (of course a principal can
accept many keys modelled in different oracles). An oracle is called opened
if it has been the object of a Reveal query.

Corrupt(U,K) This query models insider attacks by the adversary. The query
returns the oracle’s internal state and sets the long-term key of U to be
the value K chosen by the adversary. The adversary can then control the
behaviour of U with Send queries. A principal is called corrupted if it has
been the object of a Corrupt query.

Test(U, s) Once the oracle Πs
U has accepted a session key Ks the adversary

can attempt to distinguish it from a random key as the basis of determining
security of the protocol. A random bit b is chosen; if b = 0 thenKs is returned
while if b = 1 a random string is returned from the same distribution as
session keys. This query is only asked once by the adversary.

Table 1. Queries available to the adversary

Send(U, s,m) Send message m to oracle Πs
U

Reveal(U, s) Reveal session key (if any) accepted by Πs
U

Corrupt(U,K) Reveal state of U and set long-term key of U to K
Test(U, s) Ask for test key to distinguish session key accepted by oracle Πs

U

Round-Optimal Contributory Conference Key Agreement 165

3 Security

Definitions of security in the Bellare-Rogaway model depend on the notion of the
partner oracles to any oracle being tested. The way of defining partner oracles has
varied in different papers using the technique. In the more recent research part-
ners have been defined by having the same session identifier (SID) which consists
of a concatenation of the messages exchanged between the two. Partners must
both have accepted the same session key and recognise each other as partners.
Bresson et al. [13] defined a set of session IDs for an oracle so that oracles in
the same session should share session IDs pairwise. However, since all messages
in our protocol are broadcast we can expect all oracles in the same session to
derive the same session ID. Therefore we define SID(Πs

U) as the concatenation
of all (broadcast) messages that oracle Πs

U has sent and received.

Definition 1. A set of oracles are partnered if:

– they have accepted with the same session ID,
– they agree on the set of principals, and
– they agree on the initiator of the protocol.

Note that an oracle only ‘knows’ which principals it is communicating with but
not which instance of the principals is involved.

Definition 2. An oracle Πs
U is fresh at the end of its execution if:

– Πs
U has accepted with set of partners Π∗;

– Πs
U and all oracles in Π∗ are unopened;

– All principals of oracles in Π∗ (including U) are uncorrupted.

The security of the protocol is defined by the following game played between
the adversary and an infinite collection of oracles Πs

U for U ∈ {U1, . . . , Un}
and s ∈ N. Firstly, long-lived keys are assigned to each user by running the
key distribution algorithm GL on input of the security parameter. Then, the
adversary A(1k) is run. A will interact with the oracles through the queries
defined above. At some stage during the execution a Test query is performed
by the adversary to a fresh oracle. The adversary may continue to make other
queries and eventually outputs a bit b′ and terminates. Success of the adversary
A in this game is measured in terms of its advantage in distinguishing the session
key of the Test query from a random key, i.e. its advantage in outputting b′ = b.
This advantage must be measured in terms of the security parameter k. If we
define Good-Guess to be the event that A guesses correctly whether b = 0 or
b = 1 then

AdvantageA(k) = 2 · Pr[Good-Guess]− 1.
To define validity of a conference key agreement protocol, we use the con-

cept of a benign adversary as an adversary that faithfully relays flows between
participants [7].

166 Colin Boyd and Juan Manuel González Nieto

Definition 3. A protocol P is a secure conference key agreement scheme if the
following two properties are satisfied:

– Validity: in the presence of a benign adversary partner oracles accept the
same key.

– Indistinguishability: for every probabilistic polynomial time adversary
A, AdvantageA(k) is negligible.

In the literature [20] it is often stated that a requirement of any key estab-
lishment protocol is key authentication, which means that each principal should
have assurance that no other party has possession of the session key. A superficial
examination of the above definition (or any of the several related ones in papers
using the Bellare-Rogaway model) indicates that key authentication is ignored
since the definition only refers to the adversary gaining information about the
session key and not the identity of principals holding the key. In reality key au-
thentication is implicitly included through the notion of partnering. If an oracle
should accept a session key that is shared with an unknown principal then that
principal is not the partner of the accepting oracle and can therefore be opened
by the adversary and so the adversary does indeed gain an advantage.

Security of a protocol is proved by finding a reduction to some well known
computational problem whose intractability is assumed. For the new protocol
that we present in this paper, this reduction is to the security of the underlying
public key encryption and signature schemes. Thus, we require notions of secure
encryption and signature which are by now quite standard.

3.1 Secure Encryption Schemes

Let k denote the security parameter. A public-key encryption scheme PE =
(K, E ,D) consists of three algorithms.
– The key generation algorithm K is a probabilistic algorithm which, on in-
put 1k, outputs a pair (e, d) of matching public and private keys, respectively.

– The encryption algorithm E is a probabilistic algorithm which takes a public
key e and a message m drawn from a message space M associated to e and
returns a ciphertext c. This is denoted as c R← Ee(m).

– The decryption algorithm D is a deterministic algorithm which takes a pri-
vate key d and a ciphertext c and returns the corresponding plaintext m.
This is denoted as m ← Dd(m). We require that Dd(Ee(m)) = m for every
(e, d)← K(1k).

For security we use the standard definition of semantic security due to Gold-
wasser and Micali [16]. For any probabilistic polynomial time adversary A, the
security is defined in terms of the following game.

1. Choose a key pair (e, d)← K(1k).
2. Given e, the adversary outputs two messages of equal length m0,m1 ∈M of
her choice.

Round-Optimal Contributory Conference Key Agreement 167

3. Compute cb
R← Ee(mb) where b

R← {0, 1}. The bit b is kept secret from the
adversary.

4. The adversary is then given cb and has to output a guess b′ for b.

We define the advantage of the adversary playing the above game as
AdvantageA(k) = 2 · Pr[b′ = b] − 1. The encryption scheme PE is secure if
the adversary’s advantage is negligible.

3.2 Secure Signature Scheme

Let k be the security parameter. A digital signature scheme Σ = (K,S,V) con-
sists of the following three algorithms.

– The key generation algorithm K is a probabilistic algorithm that takes as
input 1k and outputs a pair of matching keys (e, d). The string e is the
(public) verification key, and d the corresponding (private) signing key.

– The signing algorithm S takes as input a signing key d and a plaintext
message m and outputs a signature σ.

– The verification algorithm V takes as input a verification key e, a message m
and a signature σ, and outputs 1 if the signature is valid, and 0 otherwise.

For a signature scheme to be secure we require that it be computationally
impossible for any adversary to forge a signature on any message (existential
forgery) even under adaptive chosen-message attacks [17].

4 The Protocol

We now define the protocol that we shall prove secure. All parameter choices
depend on a security parameter k. The protocol that we analyse involves the set
of n users, U = {U1, U2, . . . , Un}. The protocol has associated a secure public key
encryption scheme PE = (K, E ,D), where K is the key generation algorithm, and
E ,D are the encryption and decryption algorithms, respectively. The protocol
also uses a secure signature scheme Σ = (K,S,V), with K the key generation
algorithm, S the signing algorithm and V the verification algorithm. The key
distribution algorithm GL assigns to each user Ui an encryption/decryption key
pair (ei, di) ← K(1k) and a signing/verification key pair (ei, di) ← K(1k). The
key distribution algorithm GL also provides each user with an authentic copy of
the public keys of all other users.

Each user, Ui, chooses a nonce (a random value, Ni, of size k bits). One user,
say U1, will be distinguished and will send its value N1 to each other user in an
authenticated and confidential way. We call this distinguished user the initiator
of the protocol and the other users the responders. In an implementation there
is no need for the messages of U1 to be sent before the other messages, so it is
perfectly possible for all messages to be sent together in one round.

The responders only have to broadcast their nonces so that all users in U
receive all the Ni values. U1 will encrypt N1 for each other user Ui using Ui’s

168 Colin Boyd and Juan Manuel González Nieto

1. U1 → ∗ : U ,Sd1(U , Ee2(N1), Ee3(N1), . . . , Een(N1))
2. U1 → ∗ : Eei(N1) for i ≤ 2 ≤ n
3. Ui → ∗ : Ui, Ni

KU = h(N1||N2||N3 . . . ||Nn)

Fig. 1. Protocol execution with a benign adversary

public encryption key ei. U1 will then sign the encrypted values of N1 together
with the names of all users in the conference. Since this message is the same for
every user it only needs to be formed and sent once in a broadcast to all users.
The value of N1 is sent to user Ui encrypted with that user’s public key, ei.
Thus, the protocol has three stages, all of which broadcast a message; in some
communications scenarios each broadcast constitutes n− 1 messages.

Figure 1 shows the message flows in a protocol run without any disruption
from the adversary. In the communications model this corresponds to the sit-
uation in which the adversary is benign, i.e. simply passes messages between
principals. The asterisk is used to denote broadcast messages. The conference
key should then be defined as follows, where h is a one-way function which will
be modelled as a random oracle in the proof.

KU = h(N1||N2||N3 . . . ||Nn) (1)

Let us consider the computational requirements for each user. U1 has to
perform n − 1 public key encryptions and generate one signature. The other
n − 1 users have only to check one signature and decrypt one message, so for
them the computational requirements are the same as for the two user case.
The computational burden of U1 can be reduced substantially by careful choice
of public key cryptosystem. The computations required are substantially less
than in the proven secure generalised Diffie-Hellman protocols of Bresson et
al. [13, 11, 12], which require Ui to perform i + 1 exponentiations in addition
to generating and verifying a signature.

In common with most conference key protocols, we provide no confirmation to
principals that others principals have obtained the session key. It is not possible
to be sure whether some participants have been ‘excluded’ by an adversary
who cuts off their incoming communications. Providing such assurances seems
difficult and expensive to achieve.

5 Security Proof

The proof follows that of Bellare and Rogaway [4]; differences include the number
of entities involved and the different partnering function used. The validity of the
protocol is straightforward to verify. Thus, it remains to prove that the protocol
satisfies the indistinguishability requirement. The general idea of the security
proof is to assume that the adversary can gain a non-negligible advantage in
distinguishing test keys, and use this to break the assumption about the security

Round-Optimal Contributory Conference Key Agreement 169

of the underlying encryption scheme or the signature scheme. Since the adversary
relies on its oracles to run we simulate the oracles so that we can supply the
answers to all the queries the adversary might ask.

In our protocol we assume that the principals involved in each conference are
the same. We do not assume that the same principal acts as the initiator. The
case where the set of principals is chosen dynamically is easily handled too. The
effect on the security proof is to make the reduction less tight.

Following Bellare and Rogaway [4] we need to extend the definition of a se-
cure encryption scheme to allow the adversary to obtain encryptions of the same
plaintext under multiple different independent encryption keys. Such an adver-
sary is termed a multiple eavesdropper. We can bound the advantage of a multiple
eavesdropper by considering it as a special case of the multi-user setting anal-
ysed by Bellare et al. [5]. In their notation we have the case of qe = 1, meaning
that the eavesdropper can only obtain one encryption for each public key. Let r
be the number of encryptions of the same plaintext message seen by a multiple
eavesdropper. Specialising their main theorem gives the following.

Lemma 1 ([5]). Suppose that an adversary has advantage at most ε(k) for
encryption scheme PE = (K, E ,D). Then a multiple eavesdropper has advantage
not more than r · ε(k).

We follow Bresson et al. [13] in dividing the proof into two cases. Firstly
we consider the case in which the adversary A gains her advantage by forging
a signature with respect to some user’s signing key. In this case we construct
a simple signature forging algorithm F against Σ that uses A. In the second
case, A gains her advantage without forging a signature. Then, we can construct
an algorithm X that uses A against the security of the encryption algorithm.

5.1 Signature Forger

Assume that A gains an advantage by forging a signature for some principal.
We use A to construct a forger F for the signature scheme Σ. When F runs, it
receives a public key e generated by K(1k) and access to a signing oracle for the
corresponding signing key. The objective of F is to output a valid signature for
a message which was not previously asked of the signing oracle.

In order to obtain the forgery F runs A with the following setting. Firstly,
F chooses at random a principal U from U . U is F ’s guess at which principal A
will choose for the forgery. The adversary assigns e as the public key of U . For all
other principals, F generates the signing keys using the signature key generation
algorithm K. F also generates the encryption keys for all the principals using K.
This allows F to answer all the oracle queries from A as follows.

Send(U, s,m) Assume m = Initiator. According to the protocol specification,
a random nonce is generated and encrypted under the keys of the responders.
Since all encryption keys are known, all the ciphertexts can be formed. If
U �= U then the signing key is available too, otherwise the signature is

170 Colin Boyd and Juan Manuel González Nieto

obtained by querying the signing oracle. The ciphertexts and signature are
returned to the adversary. If m �= Initiator then this query can be answered
normally as per protocol specification.

Reveal(U, s) Since all the session keys are known from the Send(U, s,m) queries,
the query can be trivially answered with the correct session key (if available).

Corrupt(U,K) As long as U �= U all the private information is available and the
query can be answered. In the case U = U then the query cannot be properly
answered, and fails.

Test(U, s) Since all the accepted session keys are known from running the send
queries, the query can be trivially answered by identifying the correct session
key.

If during the execution of A, A makes a query that includes a forged signa-
ture, then F returns the forgery and halts. Otherwise, F halts when A does and
outputs fail. Notice that when a Corrupt query fails, this means that the guess of
U as the user whose signature was to be forged by A was wrong. (Recall that we
are assuming that A gets her advantage by forging a signature.) Suppose that A
succeeds by forging a signature with probability at least νs(k). The probability
that this is a forgery for e is at least 1/n. Therefore the signature forger succeeds
with probability

SuccΣ(k) ≥ νs(k)/n.

In other words, the success probability of an adversary attacking the protocol
in this case is at most n times the probability of signature forgery. Since n
is polynomial in the security parameter, k, if νs(k) is non-negligible, then so
is SuccΣ(k).

5.2 Encryption Attacker

Now assume that A gains an advantage without forging a signature. This time
we use A to form an algorithm X which has an advantage against the underlying
encryption scheme PE = (K, E ,D) in the multi-user setting.

The input to X consists of the following.

– Public keys e2, . . . en generated by K(1k).
– Two randomly chosen values σ0 and σ1 of equal bit length k.
– Encryptions α2 = Ee2(σθ), . . . , αn = Een(σθ), where θ is randomly chosen in
{0, 1}.
The goal of X is to gain an advantage in guessing whether θ = 0 or θ = 1.
Algorithm X runs as follows. Firstly, X chooses at random a principal from

U . Without loss of generality we assume this principal to be U1. X then pro-
ceeds to distribute long-lived keys to all principals. X assigns signature keys
(ei, di) ← K(1k) to each user Ui for i ∈ [1, n]. In order to distribute encryption
keys, X assigns (e1, d1)← K(1k) to U1 and the public encryption keys e2, . . . , en

to principals U2, . . . , Un, respectively. X also chooses a random session identi-
fier, t ∈ [1, S], where S is the maximum number of sessions that the adversary

Round-Optimal Contributory Conference Key Agreement 171

A is allowed to instantiate. S is polynomial in the security parameter k. The
identifier t is used to decide when the initiator will give the input ciphertexts to
A. Algorithm X answers all the oracle queries from A as follows.
Send(U, s,m) If the query is to start a new protocol run, we have the following

two cases.
1. Suppose that (U, s) is to be the initiator of the protocol. If s = t and U =

U1, then α2, . . . , αn are used as the encrypted values for the other n− 1
principals and signed using U1’s signing key. The ciphertexts α2, . . . , αn

and signature are returned to the adversary.
Otherwise, a nonce is chosen randomly of k bits, and is then encrypted
under the public encryption keys of the rest of the principals. Since all
encryption keys are known, all the ciphertexts can be formed. Similarly,
since all signing keys are available to X the signature of U on these
encryptions can also be computed. The ciphertexts and signature are
returned to A.
Algorithm X should record that (U, s) is the initiator and the nonce and
ciphertext values chosen.

2. Now suppose that (U, s) is the responder. Then a nonce is chosen ran-
domly of k bits. The nonce is returned to the adversary. Algorithm X
should record that (U, s) is the responder and the nonce value chosen.

If the query is not to start a new protocol run, then we get the following two
cases.
1. If (U, s) is the initiator, then Πs

U accepts a new conference key pro-
vided m is of the expected form (a set of n − 1 nonces of the correct
length); otherwise, it fails. The outcome of whether it accepts or fails is
returned to A. Algorithm X records the nonces received by (U, s).

2. If (U, s) is a responder then m must consist of a signature, n − 1 ci-
phertexts and n − 2 nonces of correct size. If the format is correct and
the signature is verified correctly then Πs

U accepts and this information
is returned to A. Otherwise it outputs ′fail′. Algorithm X records the
signature, ciphertexts and nonces received by (U, s).

Reveal(U, s) Since session keys are modelled as the output of a random oracle,
we only need to keep track of which keys have been revealed before. If a key
has not been revealed then a random string is returned. If it has been re-
vealed then the same value as used before is returned. Let us assume Πs

U

has accepted (otherwise the query fails).
If (U, s) is a responder then it must have received and accepted signed ci-
phertexts. Since the adversary cannot forge signatures, the ciphertexts must
have been formed in a Send query and are known to X . (They were either
formed by X or they are the αi values.) If (U, s) is an initiator then X knows
which nonces were received by (U, s) and also which ciphertexts were output
by (U, s to intitiate the protocol run. Therefore, in either case, X knows if
the key have been revealed before and can respond correctly.

Corrupt(U,K) As long as U = U1 then all the private information is available
and the query can be answered. Otherwise the query cannot be answered
and A will fail.

172 Colin Boyd and Juan Manuel González Nieto

Test(U, s) If s �= t or the initiator of the conference for session s is not U1 then
the algorithm fails. Otherwise, X outputs a random string.

At some stage, A completes and returns a value b. We need to show how the
prediction of the session key allows prediction of the plaintext chosen as input
for X . To do this we make use of the random oracle to model the hash function.
Therefore we assume that whenever A makes a query of the hash function the
value is returned randomly except if the same query was previously asked. The
oracle keeps a list of all previously asked queries, and if the same query is asked
again then the response is the same as the first time. Because of the random
output of the oracle, A can gain no advantage in guessing any key for which
the oracle is not queried. Therefore X examines all queries made by A of the
form h(N1, N2, . . . , Nn). If there exists a query with N1 = σ0 then X returns
θ = 0. Otherwise it returns θ = 1. Let νe(k) be the success probability of A.
Since the probability that during X execution the test query does not fail is 1

nS ,X ’s success probability is

SuccnPE(k) ≥ νe(k)
nS

.

Thus, on the assumption thatA does not perform a signature forgery, we have
shown that a non-negligible (in k) advantage in attacking the indistinguishability
property of the conference key agreement scheme can be turned into a non-
negligible advantage to attack the encryption scheme in the multiple-user setting,
and by virtue of Lemma 1 into a non-negligible advantage to attack it in the
single-user setting.

6 Conclusion

We have described the first known conference key agreement protocol that can
be completed in one round and provided a proof of its security. It remains an
open question whether it is possible to design a multi-party contributory key
agreement scheme which completes in one round of communication and also
provides forward security.

References

[1] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. Authenticated group key
agreement and friends. In 5th Conference on Computer and Communications
Security, pages 17–26. ACM Press, 1998. 162

[2] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. New multi-party authen-
tication services and key agreement protocols. IEEE Journal on Selected Areas
in Communications, 18(4):628–639, April 2000. 162

[3] Klaus Becker and Uta Wille. Communication complexity of group key distribu-
tion. In 5th Conference on Computer and Communications Security, pages 1–6.
ACM Press, 1998. 161

Round-Optimal Contributory Conference Key Agreement 173

[4] M. Bellare and P. Rogaway. Provably secure session key distribution – the
three party case. In Proceedings of the 27th ACM Symposium on the Theory of
Computing, 1995. 162, 163, 164, 168, 169

[5] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption
in a multi-user setting: Security proofs and improvements. In B. Preneel, edi-
tor, Advances in Cryptology – Eurocrypt 2000, volume 1807 of LNCS. Springer-
Verlag, 2000. Full version at http://www-cse.ucsd.edu/users/mihir/papers/
key-distribution.html. 169

[6] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Advances in Cryptology - Eurocrypt
2000, pages 139–155. Springer-Verlag, 2000. 162, 164

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Advances in Cryptology – CRYPTO’93, pages 232–249. Springer-Verlag, 1993.
Full version at www-cse.ucsd.edu/users/mihir . 162, 164, 165

[8] S. Blake-Wilson and A. Menezes. Security proofs for entity authentication and
authenticated key transport protocols employing asymmetric techniques. In Se-
curity Protocols Workshop. Springer-Verlag, 1997. 162

[9] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key
agreement protocols. In Selected Areas in Cryptography, pages 339–361. Springer-
Verlag, 1999. 162

[10] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Advanced in Cryptology -
Eurocrypt 2000. Springer-Verlag, 2000. 162

[11] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably au-
thenticated group Diffie-Hellman key exchange – the dynamic case. In Advances
in Cryptology - Asiacrypt 2001, pages 290–309. Springer-Verlag, 2001. 162, 163,
168

[12] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group
Diffie-Hellman key exchange under standard assumptions. In Advances in Cryp-
tology - Eurocrypt 2002. Springer-Verlag, 2002. 162, 163, 168

[13] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. Provably authenticated group Diffie-Hellman key exchange. In
CCS’01, pages 255–264. ACM Press, November 2001. 162, 163, 165, 168, 169

[14] Mike Burmester and Yvo Desmedt. A secure and efficient conference key dis-
tribution system. In Advances in Cryptology – Eurocrypt’94, pages 275–286.
Springer-Verlag, 1995. 162

[15] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transaction
on Information Theory, 22:644–654, 1976. 162

[16] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter Security, 28:270–299, 1984. 166

[17] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2), 1988.
167

[18] Ingemar Ingemarsson, Donald T. Tang, and C.K.Wong. A conference key dis-
tribution system. IEEE Transactions on Information Theory, IT-28(5):714–720,
September 1982. 162

[19] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma,
editor, Algorithmic Number Theory, 4th International Symposium, ANTS-IV,
volume 1838 of LNCS, pages 385–393. Springer-Verlag, 2000. 161, 162

[20] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1996. 166

www-cse.ucsd.edu/users/mihir

174 Colin Boyd and Juan Manuel González Nieto

[21] Olivier Pereira and Jean-Jacques Quisquater. A security analysis of the Cliques
protocol suites. In Computer Security Foundations Workshop, pages 73–81. IEEE
Computer Society Press, 2001. 162

[22] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances
in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 433–444. Springer-Verlag, Berlin, Germany, 1992.

[23] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distri-
bution extended to group communication. In 3rd ACM Conference on Computer
and Communications Security, New Delhi, March 1996. ACM Press. 162, 163

[24] Wen-Guey Tzeng and Zhi-Jha Tzeng. Round-efficient conference key agreement
protocols with provable security. In T. Okamoto, editor, Advances in Cryptology
– Asiacrypt 2000, volume 1976 of LNCS, pages 614–627. Springer-Verlag, 2000.
163, 174

A Attack on Tzeng and Tzeng’s Second Protocol

Tzeng and Tzeng’s second protocol [24] relies on a proof of knowledge to provide
authentication of the principals. In this appendix we show that this proof is not
sound so that the protocol provides no authentication.

In the conference key protocol a non-interactive version of the proof is used,
but to explain the idea the authors use a conventional interactive description
which we will review now. The prover is one member of the conference which
has n users with public keys yj for 1 ≤ j ≤ n. The prover has public key ỹ and
corresponding private key x̃ so that ỹ = gx̃. The prover chooses k ∈R Zq and
calculates uj = yk

j for 1 ≤ j ≤ n.

P V
r1, r2 ∈R Zq

bj = yr1
j gr2 , 1 ≤ j ≤ n

b1, b2, . . . , bn−−−−−−−−−−−−−−→
c ∈R [0..2t − 1]

c←−−−−−−−−−−−−−−
w1 = r1 − ck

w2 = r2 − cx̃
w1, w2−−−−−−−−−−−−−−→ bj

?= yw1
j gw2(ỹuj)c

The purpose of the proof is to show that:

– the values logyj
uj are equal for all j and known to P .

– P knows the secret x̃.

We now show that an adversary A can masquerade as the prover without
knowing the value x̃. First A chooses vj ∈R Zq and chooses the values uj by
solving uj ỹ = gvj . (In the protocol the uj values are sent together with the
non-interactive proof.) Then A can choose the commitments in the usual way
as bj = yr1

j gr2 for randomly chosen r1, r2. Now when A receives the challenge c
he can compute w1 = r1 and w2 = −vjc+ r2 and the checks by V will succeed.

	Round-Optimal Contributory Conference Key Agreement
	Introduction
	Related Work
	Protocols of Tzeng and Tzeng
	Outline of Paper

	Communications Model
	Security
	Secure Encryption Schemes
	Secure Signature Scheme

	The Protocol
	Security Proof
	Signature Forger
	Encryption Attacker

	Conclusion
	References
	Attack on Tzeng and Tzeng's Second Protocol

