
Perfect Pipehning:
A New Loop Parallelization Technique*

Alexander Aiken
AIexandru Nicolau

Computer Science Department
Cornell University

Ithaca, New York 14853 USA

Abstract

Parallelizing compilers do not handle loops in a satisfactory manner. Fine-graln transformations
capture irregular parallelism inside a Mop body not amenable to coarser approaches but have limited
ability to exploit parallelism across iterations. Coarse methods sacrifice irregular forms of parallelism
in favor of pipelining (overlapping) iterations. In this paper we present a new transformation, Perfect
Pipelining, that bridges the gap between these fine- and coarse-grain transformations while retaining
the desirable features of both. This is accomplished even in the presence of conditional branches
and resource constraints. To make our claims rigorous, we develop a formalism for parallelization.
The formalism can also be used to compare transformations across computational models. As an
illustration, we show that Doaeross, a transformation intended for synchronous and asynchronous
multiprocessors, can be expressed as a restriction of Perfect Pipelining.

1 In t roduc t ion

A significant amount of research has been done on parallelization, the extraction of parallelism from
sequential programs. The extraction of fine-grain parallelism--parallelism at the level of individual
instructions--using code compaction has emerged as an important sub-field. The model of computat ion
for compaction-based parallelization is generally some form of shared-memory parallel computer consist-
ing of many synchronous, statically-scheduled functional units with a single flow of control. Programs for
these machines may be depicted as program graphs where nodes can contain multiple operations. Trans-
formations on these programs rearrange operations to shor ten- -compac t - - the paths through the program
graph. Numerous commercial machines (including Multiflow's Trace series, CHOPP, Cydrome, the FPS
series, horizontal microengines, and RISC machines) use compaction techniques to exploit parallelism.

The standard approach to extracting parallelism from a loop through compaction is to compact the
loop body. This yields some performance improvement, but does not exploit parallelism that may be
present between separate iterations of a loop. To alleviate this problem, most systems unroll (replicate)
the loop body a number of times before compacting. If a loop is unrolled k times, parallelism can be
exploited inside this unrolled loop body, but the new loop still imposes sequentiality between every group
of k iterations. We present a new loop parallelization techniqu% Perfect Pipelining, that overcomes this
problem by achieving the effect of unbounded unrolling and compaction of a loop.

The program graph in Figure l a illustrates the importance of Perfect Pipelining. (We have simplified
the loop contro| code for clarity: the induction variable i is incremented implicitly on the backedge, as in a
Fortran DO loop.) The running time of this loop is 4~ steps, where r~ is the number of iterations executed.
Multiple iterations of this loop may be overlapped subject to the constraint that the first operation of
an iteration is dependent on the result of the first operation of the previous iteration. Figure lb shows a
schedule after the loop has been unwound three times and compacted. (Two additional memory locations
are allocated to each array to handle the extra references generated when i = n.) Operation labels have
been substituted for the operations; subscripts indicate the increment to the induction variable. Multiple
operations within a node are evaluated concurrently. The running time of this loop is 2~ steps. Figure lc
shows the loop unwound five times and compacted; in this ease the running time is sn steps. Note the
low parallelism at the beginning and end of the loop body in both of these examples.

Additional unrolling and compaction will improve the running time further, although this becomes
expensive very rapidly. Existing compaction transformations can achieve the schedules in Figures lb

*This work was supported in part by NSF grant DCR-8502884 and the Cornel] NSF Supercomputing Center.

222

\ /

1",: ,,1 :-- ~c,l.B~ i : - - i ~ - !

lco ~,,, A~
I0o c, .21

i : = t + 3

(a) Original loop. (b) Unwound three times and compacted.

i Do o) .~ A31
F

~ i : = i + 5

(c) Unwound five times and compacted.

1C011"21
I'o C,.,

i : : i ÷ l

(d) Loop after pipelining.

Figure 1: A Perfect Pipelining example.

223

and lc. Perfect Pipelining derives the program shown in Figure ld. Intuitively, the transformation
accomplishes this by noticing that the fourth and fifth nodes of Figure le execute the same operations
from different iterations, and that further unrolling and compaction creates more nodes of the same type.
The transformation achieves continuous (or perfect) pipelining of the loop iterations. The running time
for this loop is n + 3 steps.

In the example, the pattern detected by Perfect Pipelining is very simple because there are no branches
(other than exits) in the loop body. A surprising property of Perfect Pipelining is that it finds such a
pattern on all paths given arbitrary flow of control within the loop body. This is a substantial improvement
over previous techniques, which rely on heuristics to estimate the runtime flow of control [FisS1] or ignore
branches altogether. Another important property of Perfect Pipelining is that the transformation applies
even in the presence of resource constraints. We prove that the transformation finds a pattern given
arbitrary resources and provide an example illustrating its performance when the loop has unpredictable
flow of control and machine resources are a limiting factor.

Perfect Pipelining is defined using the primitive transformations of Percolation Scheduling [Nic85b]
and loop unrolling. To make our claims precise, we develop a formal account of our transformations. We
define the language to which the transformations apply and provide an operational semantics. A binary
relation <p is defined on programs using the operational semantics; <p measures when one program
is "more parallel" than another. We use <p to prove that Perfect Pipefining is better than any finite
unrolling with compaction.

The resulting formalism is powerful enough to capture the intuitive notion of program improvement
used informally throughout the literature on parallelization. Thus, we can use ~p to compare seemingly
unrelated transformations in a meaningful way. As an example, we show that Doacross [Cyt86] can
be derived as a restriction of Perfect Pipelining. Since Doacross is a loop pipelining transformation
intended for synchronous or asynchronous (loosely-coupled) multiprocessors, this result suggests that our
formalism is generally applicable across the various models of computation and transformations proposed
in the field of program parallelization.

2 A Simple Language

In this section we give an informal description ofSPL, a Simple Parallel Language. In the next section we
develop a formal definition of the language and an operational semantics. We have minimized the details
of language design while keeping the language rich enough to allow discussion of the important problems.
SPL is not so much a "real" programming language as a tool convenient for discussing parallelizing
transformations.

SPL is graphical; programs are represented by a control flow graph as in Figure la. Each node in
the graph contains zero or more primitive operations. These operations are divided into two categories:
assignments and tests. The evaluation of an assignment updates the store, while tests affect the flow of
control. Execution begins at the start node and proceeds sequentially from node to node. When control
reaches a particular node, all operations in that node are evaluated concurrently; the assignments update
the store and the tests return the next node in the execution sequence (see discussion below). Operations
evaluated in;parallel perform all reads before any assignment performs a write. Write conflicts within a
node are not permitted.

Care must be taken to define how multiple tests are evaluated in parallel. The set of tests within a
node is given as a directed acyclic graph (dug). Each test in the dag has two successors corresponding
to its true and false branches. A successor of a test is either another test or a name; a name is a pointer
to a program node. We require that the dug of tests be rooted--that it have a single element with no
predecessors. To evaluate a dug in a state, select the (unique) path from the root to a name such that
the branches on the path correspond to the value (true or false) of the corresponding test in the state.
Evaluation of the dag returns the node name that terminates this path. On a real machine the evaluation
of multiple tests can be very 'sophisticated to exploit parallelism. A hardware mechanism that efficiently
implements general dags of tests is described in [KN85]; tess general multiway jump mechanisms are used
in many horizontal mieroengines and the Multiflow architecture.

SPL is powerful enough to model execution of a tightly-coupled parallel machine at the instruction
level. It is at this level that our transformational system extracts parallelism from programs. A sample

224

Bool =: t t + ff
Loc = Z
Store = Loc--* Val
Assign = Store ~ Loc × Val
Test = Store -~ Bool

(a) Basic domains.

suec: Node ~ iP(Node)
suet(u) ---- H where n = (A, (B, select, r, H)I

pred: Node--~ 79(Node)
p~ed(n) -- {n% c ,~ec(n')}
op: Node -~ P(Assign + Test)
op(n) = A • B where n = (A, (B, select, r, H))

node: Assign + Test --* Node
node(z) = n where z 6 op(=)

(b) Useful functions.

Figure 2: Some definitions.

SPL program is shown in Figure la . Note tha t this program has only one operat ion per node; such a
program is sequential. Another, more parallel version of the same program is given in Figure lb .

3 L a n g u a g e D e f i n i t i o n a n d O p e r a t i o n a l S e m a n t i c s

The formal definition of SPL and its operat ional semantics provide a framework for proving propert ies
of program transformations. In subsequent sections we develop a formalism for our t ransformat ions ;
this formalism uses the operat ional semantics of SPL to define when one program is more parallel t han
another . The operat ional semantics of SPL closely follows the s t ructural style advocated by Plotkin [Plo].

Figure 2a lists the basic domains of SPL. Val is a domain of basic values--integers, f loat ing-point
numbers , etc. An assignment, a function of type Assign, deviates from the s tandard approach in t ha t it
does not re turn an updated store. Instead, an assignment returns a pair It, v), where v is the new value
of location 1. This allows us to define the parallel execution of several assignments as the parallel binding
of the new values to the updated locations. A program is a tuple (N, no, F) where:

N is a finite set of nodes
no 6 N is the s ta r t node
F C N is the set of final nodes

A node is a pair (A, C) where:

A is a set of assignments
C is a dug; a four-tuple (B, select, r, H) where:

B is a set of tests
select : B × Bool -~ B + H is an edge function
r is the root test or a node name
H is a set of node names

In what follows, s and s' range over stores; variants of v, l, a, and t range over values, locations,
assignments, and tests respectively. We assume tha t assignments and tests are to ta l atomic actions of
type Assign or Test. We use n for bo th the name of a node and the node itself; the meaning is clear f rom
the context.

The t ransformat ions we define require knowledge of the locations tha t are read and wri t ten by the
primit ive operat ions to model dependency analysis. Dependency anMysis determines when two program
s ta tements may refer to the same memory location. The analysis is used to determine when it is safe to
perform instruct ions in parallel. We define write(a, s) to be the location wri t ten by ass ignment a in store
s; read(a, s) is the set of locations read by assignment (or test) a in store s.

In Section 2, we discussed well-formedness conditions and semantic constraints on programs tha t are
not implemented by the above description. We omit the formal definition of these requirements; the
details can be found in [AN87b]. The constraints ensure tha t the dug of tests is well-formed and t ha t
two assignments in a node cannot write the same location. In addit ion, the s tar t node should have no
predecessors and a final node should have no successors. A final node contains a distinguished operat ion,
result, t ha t reads and re turns the result of the computat ion. For the purposes of this paper, we assume
t h a t result returns the entire final store.

225

C = (B, select, r, [t), t E B, select(t, t(s)) = t '

(C , s , t) - ,~ (C , s , t ')

C = (B, select, r, H), n ~ C H
(C, s, n,) ~ n'

A : { a l } ,ai(s) : (l i , ~ i) , s [. . . , l i +-- "0 i , . . .] : s t

(A,s) "-+s'

,~ = (A, C), c = (~, ,elect, ~, n) , ,~ ~_ F, (c, s, r} < ,,,, (A, ,) . . . ;
(n, s) --+ (n s, d)

Figure 3: Operational semantics of SPL.

Figure 3 gives art operational semantics for SPL. The semantics consists of a set of rewriting rules
in the style of inference rules of formal logic. There are two types of transitions: ~+, which defines
transitions within a node, and -% which defines transitions between nodes. Rules are read as stating that
the assertion below the line holds if the assertions above the line hold. The first two rules deal with the
evaluation of a dug of tests; the third rule describes the parallel evaluation of assignments. The fourth
rule defines the execution of a node in terms of the evaluation of the node's test d~g and assignments.

A rewriting sequence is an execution history of one computation of a program. For our purposes, a
complete sequence contains much irrelevant detail; in particular, we are rarely interested in the internal
evaluation of a node (the -~+ transitions). The following definition puts a rewriting sequence at the right
level of abstraction for viewing execution as transitions from nodes to nodes:

D e f i n i t i o n 3.1 The ezecntion trace of program P in initial store s, written T(P, s), is the sequence
(n0, so) ---+ (n 1 , $ 1) ----+ (n 2 , S 2) (~r~k,Sk) where so = s, no is the start node of P, and •k E F.
Traces are defined only for terminating computations.

4 T h e C o r e T r a n s f o r m a t i o n s

The core transformations are the building blocks of Perfect Pipelining. These primitive transformations
are local, involving only adjacent nodes of the program graph. Though simple, the core transformations
can be used to express very powerful code motions JAN88].

D e f i n i t i o n 4.1 The result R(P, s) of a computation is the final store of T(P, s). Two programs P and
P ' are strongly equivalent if Vs R(P, s) = 8' <~ R(P' , s) = s'.

If T is a program transformation, then 7" is correct if 7"(P) is strongly equivalent to P for all P . We
require that transformations be correct; this guarantees that any sequence of transformations is strongly
equivalent to the original program. The formal definitions of the transformations and proofs of correctness
can be found in [AN87b]. In this paper, we briefly describe and illustrate each transformation.

Figure 2b lists some useful functions. Succ returns the immediate successors of a node; when it
is convenient we refer to an edge (m, n) instead of writing rL E succ(m). Pred returns the immediate
predecessors of a node. The function op returns the operations in a node. Node(z) is the node containing
operation z (we assume there is some way of distinguishing between multiple copies of the same operation).

The DeleLe transformation removes a node from the program graph if it is empty (contains no oper-
ations) or unreachable. A node may become empty or unreachable as a result of other transformations.
Figure 4a gives a picture. Only the relevant portion.of the program graph is shown; incoming edges are
denoted by Ij and exiting edges by Ej . Note that an empty node has exactly one successor.

The Unify transformation moves a single copy z of identical assignments from a set of nodes {nj } to
a common predecessor node m. This is done if no dependency exists between ~ and the operations of
m and z does not kill any value live at m. Care must be taken not to affect the computation of paths
passing through n but not through m. To ensure this, the original node n is preserved on all other paths.
An illustration is given in Figure 4b.

226

I1

I2

II

El

E1

(a) The delete transformation.

II

m p

nk

El

I1

m P

nk

El

(b) The unify transformation.

Figure 4: Primitive transformations.

The Move-test transformation moves a test z from a node n to a node m through an edge (re, n)
provided that no dependency exists between z and the operations of m. Paths passing through n but
not through m must not be affected; n is preserved on the other paths. Because we allow an arbitrary
rooted dag of tests in a node and the test being moved may come from an arbitrary point in that dug, n
is split into at and ny, where nt and ~/ correspond to the true and false branches of z. An illustration
of the transformation is given in Figure 5. In the illustration, a represents the dug of tests (in n) not
reached by z, b represents the dug of tests reached on z's true branch, and e the dug of tests reached on
z's false branch.

Loop unrolling (or unwinding) is a standard non-local transformation. When a loop is unrolled,
the loop body is replicated to create a new loop. Loop unrolling helps exploit fine-grain parallelism
by providing a large number of operations (the unrolled loop body) for scheduling. The operations
ha the unwound loop body come from previously separate iterations and are thus freer of the order
imposed by the original loop. Recent work has focused on the correct unwinding of multiple nested loops
[Nic85a,AN87a,CCK87]. The shorthand uiL denotes the loop where i copies of the loop body of L are
unrolled.

5 A F o r m a l i z a t i o n o f Para l l e l i sm

In this section we develop a formal account of our transformations. This allows us to make precise claims
about the effect of Perfect Pipelining and to compare Perfect Pipelining with other transformations. We
restrict the development to transformations that exploit only control and dependency information; this is
a natural and large class of transformations (including our transformations) dominating the literature on
paral]elization. Examples of transformations in this class include: vectorization, the hyper-plane method
[Lam741, loop distribution [Kuc76], loop interchange [AK84], trace scheduling [FERNS4], and Doacross
[CytS6].

We introduce a preorder on programs, "sim" (for similarity), that captures when one program ap-
proximates the control and dependency structure of another. We then introduce a relation _~p that is a
restriction of sire. If P _~ pt, then P ' is a more parallel program than P.

Informally, a program P is s lm to P~ if P* executes the same operations as P in an order compatible
with the data and control dependencies present in P. pt may, however, have additional operations on
some paths that do not affect the output of the program. The sample program in Figure lb has more
operations on some paths than the program in Figure la, but the two programs compute the same
function. The purpose of sire is to establish a dependency-preserving mapping between operations in
traces of P and operations in traces of P~.

Def in i t ion 5.1 We say that y depends on z in trace T(P, s), written ~ ~ y, if y reads a value written
by z. Formally, let (no, so) -L (n, ,s ,) -~ Inj,s~). Then z -~ y i f z G op(ni), y E op(nj), write(z, sl) C_
read(!l, s i) , and there is no operation z in nl for i < h < j such that write(z, sl) : write(z, s~).

227

I2

n

E2

I I

rfl

E1

\

I1

¢
m

E1

l i t

E3

I2

E2 E4 E3

Figure 5: The move-test transformation.

The relation -~ models true dependencies [Kuc76], which correspond to actual definitions and uses of
values during execution. This is not conservative dependency analysis--the relation -< precisely captures
the flow of values through an execution of a program. This is all that is required to define the relation
sin1.

Def in i t ion 5.2 (S imi la r i ty) P sire P~ if and only if there exists a function f satisfying:

V, z ~ y in T(P, s) =:~ f(z) ~ f(y) in T(P', ,)A
J(z) -~ !t in T(P', ,) ~ z -~ f - l (y ,) in T(P,s)

where J is I-to-1 from operations in T(P, s) to operations in T(P ' , s) and f(z) ks an occurrence of z.

The function f provides a mapping demonstrating that P~ preserves the dependency structure of P.
It can be shown that P is strongly equivalent to P ' if P sian P'. We now introduce the relation -<e" If
P _p P ' , then all operations in P ' are executed at least as early in the trace as corresponding operations
in P. We use _<p to prove that some improvement results from the application of the core transformations.

Def in i t ion 5.3 Let z E op(n~) in T(P, s). The position of z, written pos(z), is i.

P <p P ' ¢~ P sire P ' A Vs pos(z) in T(P, s) > pos(f(z)) in T(P', s)

T h e o r e m 5.4 Let T be any core transformation or unrolling. Then for all P, P <_p T(P).

Proof: [sketch] The transformations preserve dependencies and do not remove an operation from any
path on which it occurs--thus P slm T(P). For each core transformation, if it succeeds, at least one
operation appears earlier on at least one path, so P <_p T(P). 1:3

228

6 Pipelining Loop Iterations

Existing compaction systems all use the same technique to exploit parallelism across iterations of a
loop. The loop is unwound a number of times and the new loop body is compacted. If there are no
dependencies between the unwound iterations, then for a fixed size machine there is an unwinding that
yields near optimal resource utilization after compaction.

If there are dependencies between the unwound iterations the result can be much worse. Typically, the
compacted loop has nodes containing many operations near the beginning of the loop, but towards the end
of the loop body operations "thin out" because of dependency chains between unwound iterations. Thus
the code becomes increasingly sequential towards the end of the compacted loop body. The problem can
be somewhat alleviated by additional unwinding and compaction; however, this becomes eomputationally
expensive rapidly and there will still be a "tail" of sequential code at the end of the loop body.

We apply the results of the previous sections to develop a new loop transformation, Perfect Pipelining,
that has the effect of unbounded unwinding and compaction. This transformation cannot be achieved
directly using the core transformations. For this reason, the relation _<p is crucial to proving properties
of Perfect Pipelining.

6 .1 T h e P r o b l e m

For simplicity, we disregard the particular strategy for compacting a loop and assume only that we
are given a deterministic compaction operator C built on the core transformations. We assume that a
program is a simple (innermost) loop of the type discussed in the section on unrolling. Nested loops can
be handled using techniques for unrolling multiple loops [AN87a].

Consider the sequence CuL, Cu2L, CuZL,.... If Vi Cull <p cui+lL, then C is well-behaved. We give
a method, for a class of programs and well-behaved compaction operators, to compute a program Cu°°L
satisfying

Vi Cu~ L <p Cu°° L

6 .2 T h e P r o g r a m s

A loop uiL consists of unwound iterations L1 , . . . , L~. A loop carried dependency [AK84] is a dependency
between separate iterations of a loop. In this context we are referring to the approximate dependency
graphs a compiler computes using conservative dependency analysis, rather than the precise trace de-
pendency graphs used to define ___p. We consider simple loops satisfying the following property for any
unwinding:

C o n s t r a i n t 6.1 Assume there is a loop carried dependency between operations z and y in L. Then in
uiL, there is a dependency between operations z of Lj and y of Lj+t for all j .

Virtually all loops encountered in practice can be mechanically rewritten to satisfy this constraint
[MS87]. In essence, the requirement is that the dependencies present in a loop unwound i times are a
good predictor of the dependencies in the loop unwound i + 1 times. In practice, these conditions can be
checked by inspection of the loop without resorting to computation of the dependency graph.

7 Compaction Operators
We are interested in the class of bounded compaction operators. The key characteristic of these operators
is that on any path of CuiL the distance between the first and last scheduled operations of Lj is bounded
by a constant. The fact that any iteration Lj cannot be "stretched" too much allows us to compute
Cu°°L. We present the simplest bounded operator, the simple rule. More powerful bounded operators
are discussed in [AN87b]. Initially we assume that computational resources are unlimited; in Section 9
we discuss Perfect Pipellning when resources are bounded.

229

7 .1 T h e S i m p l e R u l e

To simplify the algorithms, we combine the primitives Unify and Move-test into one operation Move
(see Figure 6a). The simple rule moves an iteration Lj as far "up" in the program graph on as many paths
as possible. Operations in the iteration remain in adjacent nodes and the iteration keeps its "shape"--
operations appear in the order of the original loop body. These restrictions are not great; the original
loop body L could have been compacted prior to application of unrolling and the simple rule, in which
case the operations in an unwound L i are actually nodes containing multiple operations.

One step of the simple rule moves each operation in one copy of an iteration up one node in the
program graph. An algorithm that accomplishes this is given in Figure 6b. We assume .that operations
are identified with their Lj. A fail command causes the entire recursive computation to terminate and
restores the original program graph.

The simple rule is given in Figure 7. The algorithm guarantees that all possible unifications are
performed, thus minimizing code explosion. As iterations move through the program graph, copies of
operations--forming distinct copies of the iteration--are generated where paths split. The top-level
algorithm refers to the first operation in each copy of the iteration; the other operations are handled by
Move_iteration. Let C stand for the simple rule. An important property of C is that it is maximal--
for any C' using Move_iteration and for all programs P and unrollings i, CuiP ~p CluiP. The simple
rule is well-behaved. Figure lc shows a loop unwound and compacted using ¢. The only loop carried
dependency is between the first operation of consecutive iterations; after application of C the iterations
overlap, staggered by one node.

8 P e r f e c t P i p e l i n i n g

In this section, we require that looi) carried dependencies satisfy Constraint 6.1 and that there be enough
such dependencies that C cannot completely overlap unwound iterations on any path. In Section 9 we
remove this stronger condition. The following two properties of the simple rule are required for Perfect
Pipelining. Proofs of lemmas not included in this paper may be found in [AN87b].

Def in i t ion 8.1 Two nodes n and u' are equivalent if they have the same operations (from different
iterations) and dug structure and there is a k such that if operation z E op(n) is from iteration Lj, then
z C op(n') is from iteration Lj+k.

L e m m a 8.2 (P r o p e r t y 1) Let n and u J be nodes in CuiL. Assume i is large enough that the succes-
sors of n and n ' are unaffected by larger unwindings and apphcations of C--the stronger dependency
assumption guarantees the existence of i. If n and u' are equivalent, then corresponding successors of n
and n' are equivalent.

L e m m a 8.3 (P r o p e r t y 2) There is a constant c, dependent only on L, satisfying

w ,~ e C ~ L ~ Iov(~)t < c

T h e o r e m 8.4 (Convergence) For a sufficiently large unwinding i, on every path in Cu~L there exists
a node n such that there is another node n ~ (not necessarily on the same path) equivalent to n.

Proof : Property 2 assures the existence of n and u', as every node can have operations from some
fixed range of iterations and there are no more than c operations per node, implying that there are only
finitely many distinct classes of equivalent nodes. []

This theorem combined with Property 1 shows that a loop repeatedly unwound and compacted using
C eventually falls into a repeating pattern. The pattern itself may be very complex, but it is sufficient to
find two equivalent nodes to detect when it repeats. For the simple rule, it is sufficient to unwind k + 1
copies of L to find the pattern on every path, where k is the length of the longest path in the loop body.
The Perfect Pipelining transformation is given in Figure 8. The algorithm finds equivalent nodes n and
n ' in the compacted program graph, deletes n', and adds backedges from the predecessors of n ' to n.
For the simple rule, it can be shown that the first node on any path without an operation from the first
iteration is repeated.

230

mo,,e(z, n, m)
i f z is an assignment

t h e n P ~ unify(P, z, n, m)
else P ~- move-test(P, z, n, m)

i f no change in P
t h e n r e t u r n (False)
else r e t u r n (True)

(a) The Move operator.

move_iteration(z, n, ra)
i f z E op(n)

t h e n
i f -,move(z, n, m) t h e n fail;

(,nezt_op_in_it(z, n, p) is next operation
in the iteration after z on edge (n,p). *)
for each (p, y) such that

p c ,,,cc(n) A ne~t_op_i~_it(~, n, p) = it

do move_iteration(y, p, n);
Delete all empty nodes;

(b) Moving an iteration.

Figure 6: Higher-level transformations.

(* Let P = uiL *)
for each iteration L1,..., Li do

X ~- {z} where z is the first operation in Lj
r e p e a t

(* we assume that X always contains all copies of operation z *)
1. whi le 3y C X s.t. prea~node(y)) = {p} and it's iteration can move

do move_iteration(y, node(y), p)

2. i f 3y E X s.t. it can move to node p C pred(node(it))
and the rest of the iteration can move accordingly t h e n

select it s.t. the depth of node(it) in the program graph is maximized;
move_iteration(it, node(y), p)

u n t i l 2 fails.
Delete all empty nodes.

Figure 7: The simple rule.

let k = length of longest path in the loop body L;
P ~ Cui+tL;
for each path p through P do

let n be the first node on p s.t. no operation
in u is from iteration L1.

Find n' equivalent to n;
Replace edges (m, u ') by (m, n);
Delete n * and any other unreachable nodes;

Figure 8: Perfect Pipelining.

231

L e m m a 8.5 Let Cu°°L be the result of the application of Perfect Pipelining. For sufficiently large
unwindings i, T(Cu°°L, s) is identical to T(Cu~L, s) for the first i/2 steps.

T h e o r e m 8.6 For all i and L satisfying the dependency constraint, Cu~L _~p Cu~L.

Proof: Let k be the length ofT(CoiL, s). Consider a program CuJL where j >> max(i , /) . By the
previous lemma, T(CuJL, s) = T(Cu°°L, s). Because C is well-behaved, CuiL <v CuJL. We conclude that
CuiL <p Cu~°L. []

This shows that Perfect Pipelining is as good as full unwinding and compaction on all paths. The
transformation computes a closed form of the pattern generated by repeated unwinding and compaction
using C. Refer again to the loop in Figure la. The result of applying Perfect Pipelining to this loop
is shown in Figure ld. The length of the loop body of the original loop is four; in Figure lc the loop
has been unwound five times and compacted using C. The fourth and fifth nodes are equivalent. The
transformation deletes the fifth node and all succeeding nodes and adds an edge from the fourth node to
itself with an induction variable increment of one (the increment is the number k in Definition 8.1).

9 Pipelining with Limited Resources

Thus far we have assumed that our machine has unlimited resources. In practice, compilers must consider
the fact that parallel computers have restrictions on the number of operations of a particular type that
can be executed simultaneously. In our program graph representation, a node may not contain more
than a fixed number of operations of a given type. The modification to Perfect Pipelining is made in the
Move transformation (Figure 6). The change is simple: an operation may not move into a node if the
node then violates the resource constraints.

Resource constraints guarantee Property 2 (Lemma 8.3) by imposing a fixed upper bound on the
size of program nodes. Thus, the simple rule applies to all loops satisfying Constraint 6.1 without the
stronger condition used in Section 8. A proof that Property 1 (Lemma 8.2) holds in the presence of
resource constraints may be found in [AN87b].

Figure 9 shows a simple loop L. The loop searches an array of elements, saving the position of all
elements that match a key in order on a list. As before, we have left the details of the loop control code
implicit. There is also no exit test; we stress that this is only for simplicity. We assume that the target
machine can execute up to three tests in parallel.

This particular loop highlights the problem that unpredictable flow of control presents in paralleliza-
tion. Note that while the path corresponding to the true branches has tight dependencies preventing
speedup, the path corresponding to the false branches has no dependencies whatsoever. Other paths
(some true branches, some false branches) have intermediate parallelism.

Existing restructuring transformations for multiprocessors can do very little with such a loop. Doacross
is a transformation that assigns the iterations of a loop to the processors of a synchronous or asynchronous
multiprocessor [Cyt86]. Doacross computes a delay that must be observed between the start of a loop
iteration Li and the start of L~+t on each path of Li. For this loop, the computed delay is one on both
paths; i.e., iteration i + 1 may begin after iteration i has executed its first statement. The dynamic
execution of this loop using Doacross is shown in Figure 10a. An equivalent static SPL schedule is shown
in Figure 10b.

We now show how Perfect Pipelining applies to this loop. Figure 11 shows the original loop unwound
seven times. The operations have been replaced by labels with subscripts indicating the increment to the
induction variable. The result of applying the simple rule is shown in Figure 12. The dag of tests within
each node is arranged as a chain with the false branches pointing to the next test and the true branches
exiting the node; the lowest numbered test is the root of the dag.

The first four nodes in the left column of Figure 12 are equivalent and the start node is equivalent to
the first two nodes in the right column. Figure 13 shows the result of applying Perfect Pipelining--only
the first two nodes remain. In this program, three tests are performed in parallel. If Tj is the lowest
numbered test that evaluates to true, then the induction variable i is incremented by j and control passes
to the node with the append operation. If none of the tests is true, control transfers to the first node.
The second node performs an append and evaluates the next three tests.

232

The pipefined loop executes three tests at every step, achieving optimal use of the critical resource.
The final code can run on the Multiflow machine, a commercial tightly-coupled parallel architecture that
supports multiway jumps. The running time of Perfect Pipelining with resource constraints is dependent
on the size (number of resources) of the machine as well as the original loop.

10 Compar i son wi th Doacross

As suggested in the previous section, loops transformed by Doacross can be represented in our formahsm.
In fact, a restriction on the pipelining transformation corresponds exactly to Doaeross for single loops on
synchronous multiprocessors. Another, more restrictive version corresponds to Doacross for asynchronous
multiproeessors. Thus a family of transformations aimed at different machine models can be directly
formulated and compared in our framework.

The basic algorithm for Doacross analyzes a loop body and decides where, on each path, it is safe
to begin the next iteration. A communication instruction is added to the loop at those points. During
execution, when a processor executing iteration i encounters a communication instruction, it sends a
message signaling another processor that execution of iteration i + 1 can begin.

Let 7)~y~ be the compaction operator implementing Doacross for synchronous multiprocessors. The
restriction to the pipelining algorithm is made in Move (see Figure 14). The new requirement is that
if an iteration moves above a test, then it must move above that test on all paths. This restriction is
necessary for Doacross because the various processors have independent flow of control--once an iteration
is started on a processor it must be able to proceed regardless of the path taken by any other processor.
It is easily shown that for O,~,~hL, the first operation of iteration i + 1 overlaps iteration i exactly where
the communications are introduced by Doacross. The asynchronous case (~D~,~,~u) is similar and can
also be written as a restriction on the pipelining transformation. The following theorem summarizes the
relationship between the three transformations.

T h e o r e m 10.1 For all loops L, 7Da,u,~.:t,L <~v D,v"chL ~p Cu°°L"

11 Efficiency

There are loops satisfying Constraint 6.1 for which Perfect Pipehning requires exponential time. In
particular, ff there are no loop carried dependencies at all--iterations are completely independent--then
the running time is exponential in the unwinding if there is at least one test in the loop body. However,
this can be detected after unrolling only once, because the iterations completely overlap after applying
C. In this ease, the loop is completely vectorizable and generating good code is relatively easy.

It is also possible to construct examples with some loop carried dependencies for which Perfect Pipelin-
ing requires exponential time. However, several conditions must be simultaneously satisfied for this to
happen. We believe that these conditions do not commonly arise in practice. In fact, for every program
we have examined (including the examples in this paper and all of the Livermore Loops) the pipelining
algorithm runs in low-order polynomial time and requires at most quadratic space. Convergence often
occurs on many or all paths for unrollings much smaller than the worst case bound; thus interleaving
unwinding, compaction, and the test for equivalent nodes substantially improves the efficiency of the
algorithm. Using simple data structures, the check for equivalent nodes can be done very quickly.

12 Conclus ion

We have presented a new technique, Perfect Pipelining, that allows full fine-grain parallelization of loops.
Perfect Pipelining is currently being integrated into ESP, an Environment for Scientific Programming
under development at Cornell. The environment already includes Percolation Schedufing and other
transformations. We believe that Perfect Pipefining will greatly enhance the power of our environment
by subsuming the effects of a class of coarse-grain transformations in a uniform, integrated fashion
compatible with our fine-grain approach.

233

i : = i + I

I Test: tf A[i]

kAP': list : = a

Figure 9: A simple loop L.

Processor I

Processor 2

T ~ Processor 1

(a) Dynamic schedule.

g i : =

i : = i +

' + 2

(b) Static SPL program.

Figure 10: Doacross applied to L.

i : = i + 7

4)

Figure i1: L unwound seven times.

234

Figure 12: L unwound seven times and compacted.

' : '" ' I \ I I " ~
f n \ ' l L m

"V V n ,:.m
i : - i ÷ I

i : ~ i + 2

Figure 13: The same loop after pipellning.

235

i f z is an assignment
t h e n i f , ~ op(s) for aU s ~ s,,~(,~)

P , - . n i b (P , z, n, m)
else P *-- move-test(P, z, n, m)

i f no change in P
t h e n r e t u r n (False)
else r e t u r n (True)

Figure 14: The Move operator for ~Dsv,~n.

13 Acknowledgements

Anne Neirynck and Prakash Panangaden provided a great deal of helpful advice on many aspects of this
work. Laurie Hendren, Prakash Panangaden, and Jennifer Widom criticized drafts of this paper and
contributed greatly to its final form.

Refe rences

[AK84] J . R . Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the 198~ SIGPLAN
Symposium on Compiler Construction, pages 233-246, June 1984.

[AN87a] A. Aiken and A. Nicolau. Loop Ouantization: an Analysis and Algorithm. Technical Report 87-821~
CorneU University, 1987.

[AN87b] A. Aiken and A. Nicolau. Perfect Pipelining: A New Loop Parallelization Technique. Technical
Report 87-873, Cornel] University, 1987.

[AN88] A. Aiken and A. Nieolau. A development environment for horizontal microeode. IEEE Transactions
on Software Engineering, To Appear March 1988. Also available as Cornell Technical Report TR
86-785.

!CCK87] D. Callahma, J. Cooke, and K. Kennedy. Estimating interlock and improving balance for pipelined
architectures. In Proceedings of the i987 International Conference on Parallel Processing, pages 297-
304, August 1987.

[Cyt86] R. Cytron. Doacross: beyond vectorization for multiprocessers. In Proceedings o/the 1986 Interna-
tional Conference on Parallel Processing, pages 836-844, August 1986.

[FERN84] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing: a smart compiler
and a dumb machine. In Proceedings of the 198~ S[GPLAN Symposium on Compiler Construction,
pages 37-47, June t984.

[Fis81] J, A. Fisher. Trace Scheduling: a technique for global microcode compaction. IEEE Transactions on
Computers, C-30(7):478-90, July 1981.

[KN85] K. Karplus and A. Nicolau. Efficient hardware for multi-way jumps and pre-fetches. In Proceedings
of the 18th Annual Workshop on Mieroprogramming, pages 11-18, December 1985.

[Kue76] D. Kuck. Parallel processing of ordinary programs. In Advances in Computers, pages 119-179, Aca-
demic Press, New York, 1976.

[Lam74] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83-93, February
1974.

[MS87] A. Munshi and B. Simons. Scheduling Sequential Loops on Parallel Processors. Technical Report 5546,
IBM, 1987.

[Nic85a] A. Nicolau. Loop Quantization, or Unwinding Done Right. Technical Report 85-709, Cornel] Univer-
sity, 1985.

[Nic85b] A. Nicolau. Uniform parallelism exploitation in ordinary programs. In Proceedings of the 1985 Inter-
national Conference on Parallel Processing, pages 614-618, August 1985.

IPlo] G.D. Plotkin. A structural approach to operational semantics. Text prepared at University of Aarhus.

