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A B S T R A C T  

Transformations of trees and rewriting of terms can be found in various set- 
tings e.g. transformations of abstract syntax trees in compiler construction and 

program synthesis. 

A language is proposed combining features of a general purpose functional 
language with special means to specify tree transformations. Atomic transforma- 

tions are considered first order functions and described by pattern matching. The 
pattern specification language allows for partitioning trees by arbitrary vertical 
and horizontal cuts. This goes beyond what is possible in similar languages 
[2,13,14]. High order functions and functional combinators are used to express 
strategies for the controlled application of transformations. 

1. Introduction 

The PROSPECTRA project (PROgram development by SPECification and TRAnsformation) 
aims to provide a rigorous methodology for developing correct software [10]. It integrates pro- 
gram construction and verification, and is based on previous work in the CIP project [3]. 

A formal specification is gradually transformed into an optimized executable program by step- 

wise application of transformation n~es. These are carried out by the system, with interactive 
guidance by the implementor, or automatically by transformation tools. 

Each transition from one program version to another is done by application of an individual 
transformation rule or a transformation" script invoking rules systematically. The language to 
express such transformation scripts as well as individual rules is designed in functional style since 
transformations are functions in some tree domain, and scripts may be build up by calling high 
order functions parametrized by transformations. 

Starting points for the transformation language 'T ra foLa '  were the functional languages 
HOPE [2], ML [13], and Miranda [14] which are quite similar with respect to their functional 

kernel. They all use a very restricted form of pattern matching for trees that only allows for the 
specification of some fixed region near the root of the tree and for selecting subtrees adjacent to 

This research was partially supperted by the Commission of the European Communities under Esprit Project 
Ref. No. 390 (PROSPECTAA) and by Sonderforschungsbersich 124 - VLSI Design Methods and Parallelism 



176 

this region. Thus, it is neither possible to specify a region or to refer to a subtree whose root is 

far from the root of  the whole tree, nor to bind the context of  such a subtree to a variable. 

In these languages, sequences are represented as trees, and thus, their treatment is always 

biased to their leftmost item. Patterns only allow for selecting a fixed number  of  items at the left 

end of  the sequence and its remainder. It is impossible to access some infix or the last i tem of a 

sequence directly. 

A completely different approach was given by Huet  [9]. His second order patterns allow for 

the specification and selection of  arbitrary subtrees of a given subject tree. The patterns are used 

to express powerful transformations, but they are not embedded into a functional language. Pat- 

tern matches usually result in more than one solution, but there is no means to control sets of  

solutions by 'Boolean '  pattern operators. In fact, Huet ' s  patterns contain only a few pattern 

operators, and one - the inverse application - is extremely complex. The generality of  this 

operator is often not needed, and consequently, TrafoLa provides other, tess complex operators 

for usual purposes. 

TrafoLa was developed by increasing the power of  patterns of  Hope [2], ML [13], and 

Miranda [14] towards the power of Huet ' s  patterns [9] - or in other words, by embedding 

Huet ' s  patterns into a nice functional language. Non-determinism is used to ease the description 

- the user only needs to specify the shape of the subtree he/she wants to select, not where or 

how such a subtree is to be found (nevertheless, this is also possible). The resulting set of solu- 

tions is handled following Prolog [4] - by enumerating the elements by means of backtracking or 

by cutting it down to one element. 

We shall first consider the structure of  the objects to be transformed. Then we shall define pat- 

terns and raise their power step by step. At last, they will allow for partitioning trees by arbi- 

trary vertical and horizontal cuts. We shall introduce functions describing transformations and 

functional combinators. Finally, we shall give an example of a complex transformation. We do 

not treat the development or correctness of transformations; this is done in [12]. 

2. Objects of  the transformation language 

The objects of the transformation language called 'va lues '  are trees and sequences of trees - 

the objects to be transformed - and also functions - these are transformations and strategies. 

The domain of values is recursively defined as follows: 

1) Constants such as ' t r u e '  and ' 0 '  are values. 

2) There is a special constant ~@'  indicating the place where a subtree was cut out of some 

bigger tree. 

3) Any sequence ' [vl ,  ... , vn]' of values is a value. A special case of this is the empty 

sequence ' [ ] ' .  We do not distinguish between tuples and sequences. 

4) Each tree is a value. A tree ' op  v i consists of a root operator ' o p '  and some value ' v '  

standing for the children list of the tree. 

5) Functions mapping values into values (or sets of values) are functional values. 

Examples of  values: 0 [] [1, 2, 3] 

ife [eq Il l ,  i2], add [il ,  1], sub Il l ,  i2]] 

where ' 0 ' ,  ' 1 ' ,  ' 2 ' ,  ' 3 ' ,  ' i l ' ,  and ' i 2 '  are constants, and ' i r e ' ,  ' e q ' ,  ' a d d ' ,  and ' s u b '  

are operators. 
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Values may be checked for equality and inequality. For functional values, this is realized by 

some approximation e.g. syntactic comparison, guaranteeing that different functions are never 

claimed to be equal - whereas equal functions may be claimed to be different. 

We adopted the following conventions in TrafoLa: 

1) Square brackets [] are used as tuple and sequence delimiters. Parentheses O will be used in 

patterns and expressions of  TrafoLa only to solve syntactic ambiguities. 

2) Constant and operator names start with a lower ease letter or are numbers. 

3) Variable names (they did not yet occur) start with upper case letters. 

4) Type names are printed in italics, and keywords of TrafoLa in bold face. 

Subsets of values may be specified by data type definitions. We give an example describing 

the abstract syntax of  a tiny imperative programming language. The generated trees will also be 

the objects of  our example transformations. 

type Program = Proc-dec 

and Proc-dec = procedure [M, /d*, Deal*, Stm*] 

and Func-dec = function [Id, Id*, Deal*, Stm*] 

and Deal = Proc-dec I Func-dec 

and Stm = hoop I assign [Id, Exp] [ pcall [Id, Exp*] [ 

ifs [Exp, Stm*, Stm*] I while [Exp, Stm*] 

and Exp - false I true I N u m  [ Id [ Unop[Exp] I 
Binop [Exp, Exp] I ife [Exp, Exp, Exp] I Fcall 

and Fca// - fcall [M, Exp*] 

and N u m  - 0 { 1 t 2 I etc. 

and /c/ . . . .  (identifiers) 

and Unop = sign ] not 

and Binop - eq I It I add I sub I mul I etc. 

The construct ~ T* ' denotes the type of all sequences of items of  type ' T ' .  

Later, it will turn out that the type expressions at the right hand sides of the type definitions 

are nothing else than patterns, i.e. data type definitions may be viewed as recursive patterns. 

Example of a value with type ' Stm ' : 

while [ It [i, n] , [ assign [s, add is, i]], assign [i, add [i, 1]] ] ] 

/* wh i l e i  < n d o s  :~  s + i ; i  :=  i + 1 od */ 

3. Patterns 

3.1. Informal semantics of  patterns 

The following transformations seem to be useful: 

dec If-true = { ife [true, T,  E] = >  T } 

dec If-false ,- { ire [false, T,  E] = > E } 

dec While-false - { while [false, S] = > n o o p }  

These are declarations binding functional values - denoted by the construct ' { pattern ~ > 

expression } '  - to the variables ' I f - t rue '  etc. 
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What  is the semantics of the function ' {p = > e} ' applied to some value v? 

If  p does not  match v, the rule fails, otherwise the variable names occurring in p are bound  to 

values (subterms of v). Thus  p matched against v returns an  env i ronment  r. T h e n  the expres- 

sion e is evaluated in this env i ronment  to a new value v'. The  t ransformat ion ' {p z > e } '  thus 

describes a partial  mapp ing  of values. ' I f - t r u e ' ,  for instance, is undef ined for ' w h i l e '  state- 

ments,  even when  a matching  ' i f '  expression occurs in its condition or body.  

Later,  we shall consider non-determinist ic  patterns that  may  match  in different ways thus 

re turning a set s of  envi ronments  when matched against  a value v. T h e  failure case fits well with 

this view, the pat tern then returns the empty set of  environments .  The  expression e wilt be 

evaluated in s, and thus eventually produce a set of  results. Later,  we shall present  different 

methods how to handle this non-determinism.  

3.2. Formal  semantics of pat terns 

The formal semantics of patterns is described by means of a semantic function 

P: Pat tern --, Env -, Value -, 2 gnv 

matching a pat tern against a value in some envi ronment  and producing a set of environments .  

An envi ronment  is a mapping  from variables to values or ' u n b o u n d ' .  We shall denote environ- 

ments by 

<A1 -* vl;  ... ; An "* v n >  

were A~ are distinct variables and  vi values (not ' u n b o u n d ' ) .  

Notice that  we shall abstract  from error cases when we shall present  parts  of  the definition of  P. 

3.3. Atomic pat terns 

Atomic patterns are constructors,  variables, syntactic types, and  wild cards. 

A constructor (constant or operator) c (or @) matches jus t  itself: 

P ( c )  r v  = if  v = c then { < > }  else 

If  the value equals c, the match succeeds re turning just  one envi ronment ,  namely < > i.e. the 

empty envi ronment  mapping  all variables to ' u n b o u n d ' .  Otherwise,  the match  fails re turning ~, 

the empty set of environments .  

Variables may be used in two ways: either to b ind subvalues or to import  values into a match.  

Binding variables (called ' o p e n '  in [1]) match any value and  create a new envi ronment  where 

they are bound  to this value: 

P(a) rv = {<A-.v>} 

Impor t ing  variables (called ' c losed '  in [1]) match jus t  the value they are bound  to in the 

env i ronment  of  the match:  

P ( %  A) r v  - if  v ~ r ( A )  then { < > }  else ¢ 

When  a type name such as ' S t m '  is encountered in a pattern,  its meaning  is looked up in the 

env i ronment  of the match.  The  meaning will be a predicate on values. 

P ( T )  r v  ,, if r (T )  v then { < > }  else ¢ 
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The wild card ~ _ '  matches any value: P ( _ ) r v  = { < > }  

Constructors,  binding variables, and the wild card also occur in Hope,  ML,  and Miranda,  but 

importing variables and types don ' t .  

3.4. Structural patterns 

Structural patterns specify the structure of  the matched value. They consist of  subpatterns to 

match designated subvalues, and the resulting sets of environments are combined into one. 

Sequence enumerat ion 

The pattern ' [Pl . . . . .  pn] ° rrmtches values of shape ' [vl, ... , vn]' : 

P ([Pl . . . . .  Pn]) r v  m if v = [vl . . . . .  vn] then P (Pl) r v l  ~0 ... @ P(pn)  r v n  else 

I f n  s O, this becomes to P ( [ ] ) r v  = if v = [] then { < > }  else 

The combination ' @ '  will be defined in the next but one section. As first approximation 

assume that it superposes all environments in its first argument  with all in its second one. 

Uni form sequence 

The pattern ' p* ' matches sequences of arbitrary length whose items are all matched by p, and 

' p  + ' matches the same sequences except the empty one ' [ ] '  

P ( p * ) r v  = if  v = [vl, ... ,vn],  n > 0 then P ( p )  r v l  O ... @ P(13) r v n  else 

if  v = [] then { < > }  else 

= if v = [vi . . . . .  v~], n > 0 then P ( p )  r v l  @ ... @ P ( p )  r v n  else q~ P ( p + )  r v 

Tree pattern 

Pattern ' p q 

by q. 

' matches trees whose operator is matched by p and whose children list is matched 

P ( p  q) r v  = if v = o p w  then P ( p )  r op @ P ( q )  r w  else q~ 

Note that p is not necessarily an operator name; this goes beyond what is possible in Hope,  

ML,  and Miranda.  

~xtamples 

' i re [true, T, E] '  matches ' i f '  expressions with condition ' t r u e '  and binds T and E to ' t h e n '  

resp. ' else'  part. 

' i fe  A '  matches any ' i f '  expression and binds A to its children list, i.e. A is bound to a value 

of  type [Exp, Exp, Exp]. 

' O  A '  matches any tree and binds O to the operator and A to the children list. 

' T '  matches any value and binds T to it. 

If  we don ' t  want to bind a subvalue to a name, we may use the symbol ' _ ' or  the name of  a 

syntactic sort such as ' S t m ' .  

' ifs [C, Stm, Stm] '  is equivalent to ' ifs [C . . . .  ] '  due to the structure of the language. Both 

patterns match ' i f '  statements and bind the condition to C. 
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3.5. Non-l inear  pat terns  

A pat tern  is non-l inear  if  a variable occurs more than  once in it or occurs inside an  iterated 

subpat tern ' p* ' or ' p + ' 

Let p = add [E, E] be a typical example for a non-l inear  pat tern,  p matches the value 

' add [a, b ] '  iff the subvalues a and  b are equal, E is then bound  to a. 

Examples: 

Pat tern 

add [E, E] 

add [E, E] 

A +  

A +  

Value Result  

add [I, 11 {<E -. I>} 
add [1, 2] q~ 

[1, 1, 2] 
[1, 1, 1] {<CA-* 12>} 

Non-linear patterns are allowed in Miranda, Prolog, and Huet's language, but forbidden in 
Hope and ML. 

3.6. Combination o f  sets o f  environments  

Now, we shall define the combinat ion ' s • t '  of two sets of envi ronments  s and  t. The  result 

is the set of all pairwise superposifions of envi ronments  where the case of inconsistent b indings  of  

variables must  be excluded in order to achieve the desired semantics of  non-l inear  patterns:  

Definit ion: 

s • t = { a + b J a i n s ,  b i n t ,  a and  b are consistent } 

a + b = XN. i f  b ( N )  = u n b o u n d  then a ( N )  else b ( N )  

a and  b are consistent iff 

for a l l v a r i a b l c s N ,  a ( N )  - unbound  or b ( N )  - u n b o u n d  or a ( N )  - b ( N )  

Examples: Remember  P ( [ p ,  q ] ) r  [u, v] - P ( p )  r u  @ P ( q )  r v  

Pat tern Value 

[A, B] [i, 21 
[A, 21 [1, 21 
[A, 11 [1, 21 

[A, A] [I, 11 
[A, A] [i ,  21 

Result  

{<A-* I>} (I) {<B-, 2>} 
{<A-. i>} ® {<>} 
{<A-i>} • {} 
{<A-, 1>} • {<A-* 1 > }  

{<A-, 12>} $ {<A-. 22>} 

- {<A -* 1; B -, 2>} 
- {<A-, 12>} 
- {} 

- {<A-, I>} 
- {} 

The  superposit ion of  environments  ' + ' is not  commutat ive  - the second operand dominates 

the first one - , but  associative, and  has a neutral  element,  namely the empty env i ronment  

' < > ' .  Since a + b - b + a holds iff a and  b are consistent, the combinat ion  ' ~ '  is com- 

mutat ive,  associative, and  has neutra l  e lement  { < > }. In  addit ion,  it distr ibutes over  set un ion  

and  satisfies s • O - s. Unfortunately,  it is not  idempotent ,  e.g. 

{<A-. I>, <B-. 2>} ® {<A-. i>, <B-- 2>} = 
{ < A ~  1 > ,  < B - , , 2 > ,  < A - - .  1; B-* 2 >  } 

But i f  the envi ronments  contained in s are ' un i fo rm '  i.e. each env i ronment  binds the same set 

of  variables, then s • s - s holds. 

The  algebraic properties ment ioned here are stated and proved in [7] together with some addi- 

t ional ones. 
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3.7. Correspondence between TrafoLa patterns and TrafoLa expressions 

Some pattern operators direcdy correspond to operators in TrafoLa expressions. There are 

expressions being constants denoting themselves, and being variables denoting the value the vari- 

able is bound to, and there are expressions '[ez, ... , en]' for sequences and expressions ' e  e "  

for trees. 

The meanings of the pattern ' [A,  B] '  and the expression ' [A,  B] '  are inverse: the pattern 

' [A,  B] '  matches pairs, decomposes them into their two components, and binds A to the first 

one and B to the second one. The expression ' [A,  B] '  composes the values bound to the vari- 

ables A resp. B to a new pair. 

The operators denoting concatenation and insertion - introduced below - will behave analo- 

gously. 

3.8. Concatenation and its inverse operation 

Assume we want to delete superfluous ' h o o p '  statements in statement lists. Then we need a rule 

{ (L1 . [noop]  . L2) m >  (L1 . L2) } 

wherc the dot stands for concatenation and its inverse operation. Thc pattern partitions the 

scqucnce of statements into three subsequenccs such that the second one is ' [ n o o p ] ' ,  and binds 

L1 m the first one and L2 to the third one. The expression concatenates L1 and L2 to a new 

sequence of statements. 

By abstracting from 'noop  ' ,  we obtain an cxample for importing variables: 

{ X - > { L1  . [% X ]  . L 2  ~ >  a l  . L 2  } } 

This is a function of second order. Given an argument x, it returns a function that removes an 

occurrence of x from a sequence. 

Examples for patterns with concatenation: 

'L1  . [while [C, B]] . L 3 '  matches lists of arbitrary length containing a 'wh i l e '  statement. 

' [S, n o o p ] .  L '  matches fists whose second element is ' n o o p ' .  

The dot operator is a potential source of non-determinism: 

L1 . [noop]  . L2 matched against [al,  noop, a2, noop] 

where the subvalues ai are statements other than ' noop  ' ,  yields a set of  two environments: 

< L 1  -, [al]; L2 -* [a2, noop]>  and < L 1  -. [al ,  noop, a2]; L2 -~ [ ]>  

Formally, the semantics of the dot operator is defined by a union over all possible partitions: 

P ( p .  q) r v  = U P (p) r u  • P ( q )  r w  
U.W---~V 

This operator allows for selecting arbitrary subsequences, and is not contained in any of  Hope, 
ML,  and Miranda. 

3.9. Tree  fragments, insertion and horizontal cuts 

The dot operator for patterns allows for partitioning values by vertical cuts into a left and a 

right hand side since it inverts concatenation. Now we want to introduce an operation - also 

not contained in Hope, ML,  and Miranda - performing horizontal cuts to obtain an upper and 

a lower part. The upper part is not a complete tree; it contains a hole ' @ '  denoting the place 

where the lower part was cut out. 
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In TrafoLa expressions, the operator ' ^ '  denotes insertion of a value into the hole of a tree 

fragment: 

ife [c, @ ,  e] ^ t 

add @ ^ [a, b] 

ifs [c, @, []] ~ [sl ,  s2] 

[s l ,  @,  s4] ^ [s2, s31 

= ife [c, t, e] 

= add [a, b] 

= ifs [c, [ s l ,  s21, [1] 

- [s l ,  [s2, s31, s4] 

The pattern operator ' " '  inverts insertion as the dot operator inverts concatenation. When a 

pattern ' p  * q '  is matched against a value v, v is separated in atl possible ways into two values u 

and w such that u contains exactly one hole and v ,, u " w holds. Then p is matched against u 

and q against w: 

P (p^  q) r v = U P ( p )  r u  @ P ( q )  r w  

Examples: 

Let v = mul [add [a, b], add [c, d]]. 

add [A, B] does not match v 

U ^ add [A, B] matches v in two ways: 

< U - ~  mul [@, add [c, d]]; A - , a ;  B - , b >  and 

< U - * m u l [ a d d  [a, b], @]; A - , c ;  B - * d > .  

U ^ mul [@, A] ^ B matched against v gives one solution only: 

< U - *  @; A - * a d d  [c, d]; B - * a d d  [a, b ] >  

Both ' ' and ' ^ ' are associative such that no parentheses are needed in the last example. 

3.10. ' Boolean'  pattern operators 

The following pattern operators don ' t  have a direct correspondent in the world of expressions. 

They serve to extend or restrict the set of environments produced by pattern matches. 

Intersection 

The pattern ' p  & q '  is used to specify that a value to be matched must satisfy both the 

requirements imposed by pattern p and by pattern q. I f  the pattern p is simply a variable - this 

is an important special case - we write ' V :  q '  instead of  ' V  & q '  due to aesthetic reasons. 

Hope and M L  contain only the special case ( ' & '  in Hope, ' a s '  in ML)  whereas Miranda con- 

tains nothing of  this feature. 

Example: S: (L1 . [W: while _ ] . L2) & St.m* 

matches any sequence of statements containing a 'wh i l e '  statement. The  'wh i l e '  statement is 

bound to W, its left context to L1, and its right context to L2, whereas the whole sequence is 

bound to S. 

Formal definition: P ( p & q )  r v  = P ( p )  r v  @ P ( q )  r v  
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Union 

The pattern ' p  I q '  matches all values matched by p or by q or by both p and q. The sets 

of  environments produced by p and by q are simply joined together: 

P ( p  I q) r v  - P ( p )  r v  U P ( q )  r v  

Example: matching sums or products: A: ( add [Exp, Exp] I mul [Exp, Exp] ) 

The ' I ' operator is also a potential source of  non-determinism. There are some problems 

with variables explained in the next section. 

Complement 
If  p is a pattern matching some values, then ' !p ' is a pattern matching all but those values. 

P ( ! p )  r v  - if  P ( p )  r v  = ¢ then { < > }  else 

Note that the pattern ' ! p '  does not bind variables since there are no subvalues they could be 

bound to when ' ! p '  matches i.e. p does not match. Thus, the pattern ' !!p' is not equivalent to 

p - it matches the same values but does not bind variables. This is similar to Prolog's ' n o t '  

predicate [4]. 

Examples 

Pattern 

add [A, B] & ! add [E, E] 

add [A, B] & ! add [E, E] 

Deterministic ' hoop ' elimination rule: 

Value Result 

add [1, 2] { < A  -, 1; B -, 2 > }  

add [1, 11 

{ (LI :  ( S t m &  !noop)*) .  [noop] .  (L2: Stm*) - >  L1 . L2 } 

The sequence bound to L1 must not contain ' n o o p '  statements such that the rule eliminates the 

first occurrence of  ' n o o p ' .  Later, we shall give examples for functions deleting all occurrences. 

Assume we want to select a function call in an assignment: 

assign [V, E] ^ F: FcMI 
The additional constraint that the function call is not the whole expression may be expressed as 

assign [V, E & !@] ^ F: Fca// 

3.11. Binding variables in patterns 

Let V(p) denote the set of variables that are eventually bound by p. It is defined recursivety: 

V ( c )  = V ( _ )  = V (T)  - V ( %  A) = V ( ! p )  = ¢ 

V (A) - {A} 

V ( p q )  - V ( p . q )  - V ( p O q )  - v ( p a q )  - V ( p Z  q) - V ( p ) U V ( q )  

v ([p~ . . . . .  pn]) - v (p l )  u . . .  u v (p . )  v ([1) - ¢ 

V ( p * )  - V ( p + )  - V ( p )  

Alternatives ' p  I q '  must be considered a little bit closer. Their  components independently 
try to match and bind only the variables contained in themselves. 

For instance, the (strange) pattern ' A  I B '  matches any value v and produces a set of two 

environments { < A  -~ v > ,  < B  -, v > } .  Such strange patterns are forbidden; both operands of 

an ' I ' operator must bind the same set of  variables. A similar problem arises with ' p * '  when 
matching the empty sequence. 
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Adopting these restrictions, the sets of environments produced by a pattern will be uniform: 

Theorem: 

Let p be a normal pattern i.e. satisfying two restrictions: 

1) For all subpatterns ql t q2 of p, V (ql) " V (q2) holds. 

2) For all subpatterns q* of p, V (q) = ¢ holds. 

Then for all environments %, all values v and all environments r in P (p) r0 v, 

the set of variables bound in r is just V (p) 

The restriction to normality excludes some awkward transformations, and implies the 

equivalence of  ' p & p '  with p for all patterns p due to the idempotence of ' @ ' for uniform sets 

of environments. 

3.12. Other  operators 

There are a few other pattern operators already integrated in TrafoLa (see [8]), but the general- 

ity of Huet ' s  inverse application is not yet reached. Its full integration will be investigated soon. 

4. Expressions and definitions 

Besides patterns, TrafoLa contains two other basic syntactic sorts: expressions and definitions. 

Patterns serve to analyze values, whereas expressions are used to synthesize values. Definitions 

occur at the top level of TrafoLa and in ' l e t '  and ' l e t rec '  constructs and bind variables to 

values. 

The partners of the P R O S P E C T R A  project did not yet agree upon the handling of 

non-determinism introduced by the pattern operators ' . ' ,  ' ^ ' ,  and ' I ' .  There are two variants 

of TrafoLa: a deterministic one (D-TrafoLa [8]) where each function returns exacdy one value, 

and a non-deterministic one (N-TrafoLa [5]) where each function returns a set of values that is 

enumerated by backtracking as in Prolog [4]. Accordingly, the semantic function for expressions 

has different type: 

D-TrafoLa: E: Expression -* Env -, Value 

N-TrafoLa: E: Expression ~ Env -* 2 wtu° 

4.1. Unfunctional expressions 

These expressions are quite straightforward and only enumerated here: 

Constructors: c 

Variables: A 

Sequences: [e~ . . . . .  en] 

Application: e e '  

Concatenation: e . e '  

Insertion: e * e '  

Comparison: e - e '  resp. e ! =  e' 

' l e t '  expressions: let d in e end resp. letrec d in e end 

w h e r e ' d '  is a definition (see below) 

Application also comprises tree construction e.g. ' add  [1, 2] '  

is call by value since the complex patterns - especially ' * '  

abstract syntax trees to be transformed are usually finite. 

The present evaluation strategy 

- exclude lazy evaluation, and 
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In N-TrafoLa,  non-de terminism is accumulated by  these operations: if ' e '  denotes n values 

and  ' e '  ' denotes m values, then ' e . e "  will denote  up  to n • m values. 

4.2. Funct ional  expressions 

Functional  expressions are abstract ion by a pat tern  and  superposit ion of functions. The  

abstract ion has syntax ' { p = > e } '  where p is a pat tern and  e an  expression. Its meaning  

depends on the handl ing  of  non-determinism:  

N-TrafoLa:  E ({p = > e}) r = hx. U E (e) (r + r ' )  
r' inP (p) rx 

If p does not match the argument x, the function returns ¢. 

D-TrafoLa: 

Here,  abstract ion contains an  implicit ' c u t '  operator  as known from Prolog: 

Let  select: 2 ~nv -. Env be some mapping  with select s ~ s if  s # q~ 

Then  E ( { p  - > e } ) r  = hx. if  s = ~ then fail else E ( e ) ( r  + select s) 

where s = P ( p )  r x  

' f a i l '  is a special value indicating that  the pat tern p failed to match  the a rgument  value x. 

All expressions except the ' I '  construct  below are assumed to be strict wi th  respect to 

' fail ' i.e. if  one operand evaluates to ' fail '  then the whole expression will also. 

The  superposit ion of (partial) functions is denoted by  ' 1 '  This  is a common  operator  in 

functional languages,  bu t  in  Hope,  ML,  and  Miranda ,  it is allowed in the context (Pz - > el I 

... I Pn = >  en) only. 

In D-TrafoLa,  ' I ' is only applicable to functions, and  the first operand dominates:  

E (f I g) r - hx. if  E ( f )  r x - fail then E ( g )  r x  else E ( f )  r x  

In  N-TrafoLa,  it may  be applied to all TrafoLa  expressions: 

E ( e  I e ' ) r  = E ( e )  r U E ( e ' ) r  

Both variants  of  TrafoLa might  contain the facility to collect the set of solutions into one 

sequence. In D-TrafoLa,  this is done by a second abstract ion mechanism ' { p = > all e } '  

4.3. Definitions and  top level declarations 

Definitions have syn tax  A1 = el and  ... and  An = en 

Instead of ' A  = {p = >  e} '  , we may write ' A p  = e ' .  

Top  level declarations are wri t ten ' dec d '  if  they shall not  be recursive, and  ' rec d '  otherwise. 

4.4. Some syntactic sugar: 

Original  form: 

({Pz = >  el} I .. I {Pn = >  ca}) e 

({true = >  el} I {false ,* > ca}) e 

{x  - > g (f x)} 

Alternative syntax: 

c a s e e  o f { p l  = >  el} I .. I {Pn = >  en} end 

i f  e then el else ez end 

f; g 
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4.5. Examples 

AU examples are given for D-TrafoLa. 

Function to simplify ' if '  expressions: 

decSim- i f  ~ { ife [true, T,  _ ]  * >  T } I { ife [false, _ ,  E] - >  E } 

Identity: dec I X = X / ,  alternatively for dec I = {X i > X} */ 

Totalization by identity: dec Total F = (F I I) 

Repetition: rec Repeat F = (F; Repeat F) I I 

'Tota l  f v '  computes ' f v '  If  it is defined, it is the result, otherwise the result is the original 

argument v. 'Repeat  f '  repeatedly applies fun t i l  it is no longer possible. 

Functionals for sequences 

r e c M a p F  = { [] = >  [] } I { [H] . T = >  [ F H ] .  M a p F T  } 

r e c E x t e n d F  = { [] - > [] } I { [H l . T  = > F H .  Extend F T  } 

Note the difference: ' M a p '  applies a function item by item to a llst, whereas 'Ex tend '  performs 

a homomorphic extension of its argument function from items to lists. 

With dec Double X . ,  [X, X] 

we obtain Double [al,  a2, a31 ~ [[al, a2, a31, [al,  a2, a3l] 
Map Double [al ,  a2, a3] - [[al, at] ,  [a2, a2], [a3, a31] 

and Extend Double [al,  a2, a3] = [al ,  a l ,  a2, a2, a3, a3] 

Other classical functionals: 

rec Fold F X0 - { [] - >  X0 } l { [ H ] . T  * >  (F H (Fold F X0 T ) ) }  
where F is a binary function and X0 typically is its neutral element. 

Example: Fold (*) 1 [1, 2, 3, 4, 5] = 120. 

rec Filter P - { [] = >  [] } I { [H] . T s > if  P H  then [H l else [] e n d .  F i l t e r P T  } 
' Filter '  removes all list items not satisfying the predicate P. 

Three functions deleting all ' n o o p '  statements from sequences of statements: 

Repeat {S1 . [hoop].  S2 * > Sl  . S2} 

Extend ({noop - >  [1} I {X m >  [X]}) 

Filter {X = >  X ! -  noop} 

Flat insertion 

Remember that insertion ' * ' treats its second argument as a unit: 

[ t , @ , 4 1  ^[2 ,31  = [ 1 , [ 2 , 3 ] , 4 ]  

But it is not difficult to define a function ' flat-insert' splicing its second argument into the hole 

of the first: 

dec Fiat-insert m { U ' ( L .  [@] . R) = >  { X s >  U ^ ( L . x .  R) } } 

This is a carried function with two arguments. The first argument is partitioned by the pattern 
' U  ^ (L . [@] . R) '  into an upper context U, a left context L, and a right context R of the hole. 

The second argument is bound to X. 

Ftat-insert (ifs [c, [sl,  @1, [11) [1 " ifs [c, Is11, [11 (U - its [c, @, [11 L - [ sq  R - []) 
Flat-insert [1, @, 41 [2, 31 s [1, 2, 3, 4] (U - @ L - [11 R - [41) 
Flat-insert (add @) [1, 2] - fail (pattern match fails) 

Fiat-insert [1, @, 31 2 ~ error (L . X . R - [I] . 2. [31 - error) 
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5. A complex transformation: removal of  function calls 

5.1. The problem 

At last, we shall give a larger example of program transformation. The  problem is to replace 

function calls in a Pascal like language by procedure calls; it is first described in [11], and also 

presented in [12]. 

5.2. How to get a new identifier 

We shall first define some functions relying on an implementation of  identifiers as numbers. 

All functions except these will be independent from this specific implementation. 

Id = id Num 
dec Leastid = id 0 /* Id */ 
dec Max (id A) (id B) - i f  A < B then i d B  else i d A  end /* Id- . , Id . . , Id*/  
dec N e x t i d ( i d A )  - i d ( A  + 1) /* Id~  Id*/ 

' Leas t id '  is the least identifier that may occur in a program. Naturally, we must be sure that 

this is guaranteed by the tools generating the actual program. 

When given a program, we may construct a new identifier not occurring in it by looking for 

the maximal identifier in the program and then building a greater one by ' Nex t id ' .  

dec Maxid m { _ ^ X :  Id - >  a l l X  } ; Fold Max Leastid 

/* computes list of  all identifiers */ /* determines maximum of list */ 

dec Newid s Maxid;  Nextid 

5 . 3 .  Subtasks to be d o n e  

Our  task is to transform function calls in a Pascal like programming language into procedure 

calls by adding a new parameter exporting the restflt. To  do so, we must first achieve that all 

fimction calls occur as right hand side of assignments only. In a second step, these assignments 

are transformed into procedure calls, and function declarations into procedure declarations. 

/* Func-to-proc: Program -, Program */ 
dec Func-to-proc - Unnest-all;  Transform-all 

5.4. Unnest ing of  function 

The transformation 'Unnes t -a l l '  will transform the program such that it subsequently contains 

only calks ' V  : =  F ( . . . ) ' .  

/ .  Unnest-all: Program-. Program */ 
dec Unnest-aU = Repeat  { P: Program = > Unnest-1 (Newid P) P } 

' Unnest-all '  repeatedly calls the function ' Unnest- t  ' until it is no more defined. ' Unnest-1 ' 

unnests just  one function call and uses the new identifier ' Newid P '  

A type name such as 'E, xp '  only matches complete values i.e. values without holes. We use 

' Exp@' to match upper fragments of expressions. The  unnesting of function calls already hav- 

ing the desired form ' v  : -  f ( . . . ) ' ,  is avoided by the pattern 'assign [Id, Exp~ & !@]'. 

/* Unnest - l :  Id-.  Program-. Program */ 
dec Unnest-1 N E W  = 

{ U " S: assign [Id, g x p ~  & !@] " F: Fcall 
= > Flat-insert U [assign [NEW, F], S ^ NEW] } I 
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/* v : . . . .  f ( . . . )  . . . .  > N E W  :=  f ( . . . ) ;  v : . . . .  N E W  . . . .  / 

{ U " S: pcaU _ " F: Fcall 
= > Flat-insert U [assign [NEW, F], S " NEW] } I 

/* p (... f (.. .) ...) = > N E W  :=  f (...); p ( . . .NEW.. . )  */ 

{ U " S: ifs [Exp@, Sam*, Sam*] " F: Fcalt 
• . > Flat-insert U [assign [NEW, F], S ^ NEW] } 1 

/* i f . .  f ( . . )  .. then .. else .. fi - > N E W  : -  f ( . . ) ;  if  . .NEW..  then .. else .. fi */ 

{ U ^ while [E: E x p , ,  SL: Stm*] * F: Fcall 
= > Flat-insert U [assign [NEW, F], while [E ^ NEW,  SL . [assign [NEW, F]]]] } 

/* while .. f (..) .. do .. od 

= >  N E W  :-- f (..); while . .NEW..  d o . .  ; N E W  :=  f ( . . ) o d * /  

Note that we replace one s ta tement  by two; thus, we need the 'F la t - inse r t '  function to avoid 

the building of nested subsequences. 

The  function ' U n n e s t - l '  may be made a little bit more readable (hopefully) by introducing a 

bigger upper  context ' B U '  and  a name  for the new assignment.  

/* Unnes t - l :  Id-* Program-* Program */ 
dec Unnest-1 N E W  = 

{ (BU: Program@ & ! ( _  ~ assign lid, @])) ^ F: Fcalt = > 
let AS = assign [NEW, F] in 

case BU of  { U ^ S: (assign _ I pcall _ I ifs [Exp@, Sam*, Sam*]) 

= > Flat-insert U [AS, S ^ NEW] } I 

{ U ^ while [E: E x p , ,  SL: Stm*] 
- > Flat-insert U [AS, while [E ^ NEW, SL . [AS]]] } 

end 

e n d  

} 

5.5. The  real t ransformat ion 

We define the function 'T rans fo rm-a l l '  by repetit ion of a simpler function t ransforming func- 

tions with some specific name  only: 

/* Transform-all :  Program-* Program */ 
dee Transform-al l  ,- Repeat  { P: ( _ ^ function [FN . . . . . .  D 

= > Transform-1 FN (Newid P) P } 

'T rans form-1  FN P N '  transforms all functions named  FN into procedures named  PN. T h e  

function name  is added as an  addit ional  formal parameter  such that  the ass ignment  to the func- 

t ion name  in the body will export  the result of the call. 

/* Trans fo rm- l :  Id- ,  M-* Program-~ Program */ 
dee Transform-1 FN PN ,- 

Repeat  ( { U *  function [% FN, PL, D, B] = >  U ^procedure  [PN, PL . [FN], D, B] } I 

/* f u n F N ( . . . )  - >  p r o c P N (  . . . .  FN) */ 

{ U ^ass ign  [V, fca l t [% FN, ELl] = >  U ^ p c a l t [ e N ,  E L .  [V]] } 

/* V : -  FN (...) - > PN ( . . . .  V) . /  

) 
Here,  we don ' t  need the function 'F la t - inse r t '  since we replace one by  one: one fimction 
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declaration by one procedure declaration, and one assignment with function call by one procedure 

call. 

5.6. Optimization of the transformation 

Each call to 'Newid '  always computes the maximal identifier in the program from scratch, but 
we know that it is always the previous new one. Thus, we store the actual maximal identifier at 

the root of the program tree. 

/* Func-to-proc': Program -~ Program */ 
dec Func-to-proc' = {P: Program = > [Maxid P, P]} ; 

Unnest-all' ; Transform-all' ; 

{ [ - , P I  = >  P} 

We compute the maximum identifier once and store it at the root, then we transform, and omit 
it at the end. 

/* Unnest-all', Transform-all': [Id, Program] -. lid, Program] */ 
dec Unnest-alt' = Repeat { [MI, P] = > let NI = Nextid MI in [NI, Unnest-1 N I P ]  end } 

dec Transform-all' = 

Repeat { [MI, P: (_  ^ function [FN . . . . . .  1)] 
= > let NI -= Nextid MI in [NI, Transform-1 FN NI P] end } 

The mappings 'Unnes t - l '  and 'Transform-l '  may still be used, such that this optimization 

can be done with little effort. 

6. Gondusion and future research 

The ability to specify patterns partitioning trees by arbitrary vertical and horizontal cuts allows 
for the definition of powerful transformation rules. Usual features of functional languages may be 

used to combine individual rules to transformation programs. A polymorphic type discipline has 

to be developed including both high order functions and tree grammar like data types. 

The most significant element of our language is the powerful patterns. Many algebraic proper- 

ties concerning the semantic equivalence of patterns hold e.g. the associativity of the pattern 

operators ' t ' ,  ' & ' ,  ' . ' ,  and ' " '  (see [7]). An abstract pattern matching machine t-ms been 
designed having many degrees of freedom such that there will be a flexible trade-off between the 
amount of precomputation by analyzing the pattern and the efficiency of matching it against con- 
crete values. A prototype implementation of D-TrafoLa is available in ML [13]; it was created 
by translating the semantic clauses of TrafoLa into ML and does not yet include data type defini- 

tions and occurrences of data type names in patterns. 
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