
A Func t iona l L a n g u a g e for the Speci f ica t ion
o f C o m p l e x T r e e T r a n s f o r m a t i o n s

Reinhold Heckmann

FB 10 - Informatik
Universi~t des Saarlandes

6600 Saarbrfcken
Bundesrepublik Deutschland

emaih heckmann % sbsvax.uucp@ germany,csnet

A B S T R A C T

Transformations of trees and rewriting of terms can be found in various set-
tings e.g. transformations of abstract syntax trees in compiler construction and

program synthesis.

A language is proposed combining features of a general purpose functional
language with special means to specify tree transformations. Atomic transforma-

tions are considered first order functions and described by pattern matching. The
pattern specification language allows for partitioning trees by arbitrary vertical
and horizontal cuts. This goes beyond what is possible in similar languages
[2,13,14]. High order functions and functional combinators are used to express
strategies for the controlled application of transformations.

1. Introduction

The PROSPECTRA project (PROgram development by SPECification and TRAnsformation)
aims to provide a rigorous methodology for developing correct software [10]. It integrates pro-
gram construction and verification, and is based on previous work in the CIP project [3].

A formal specification is gradually transformed into an optimized executable program by step-

wise application of transformation n~es. These are carried out by the system, with interactive
guidance by the implementor, or automatically by transformation tools.

Each transition from one program version to another is done by application of an individual
transformation rule or a transformation" script invoking rules systematically. The language to
express such transformation scripts as well as individual rules is designed in functional style since
transformations are functions in some tree domain, and scripts may be build up by calling high
order functions parametrized by transformations.

Starting points for the transformation language 'T ra foLa ' were the functional languages
HOPE [2], ML [13], and Miranda [14] which are quite similar with respect to their functional

kernel. They all use a very restricted form of pattern matching for trees that only allows for the
specification of some fixed region near the root of the tree and for selecting subtrees adjacent to

This research was partially supperted by the Commission of the European Communities under Esprit Project
Ref. No. 390 (PROSPECTAA) and by Sonderforschungsbersich 124 - VLSI Design Methods and Parallelism

176

this region. Thus, it is neither possible to specify a region or to refer to a subtree whose root is

far from the root of the whole tree, nor to bind the context of such a subtree to a variable.

In these languages, sequences are represented as trees, and thus, their treatment is always

biased to their leftmost item. Patterns only allow for selecting a fixed number of items at the left

end of the sequence and its remainder. It is impossible to access some infix or the last i tem of a

sequence directly.

A completely different approach was given by Huet [9]. His second order patterns allow for

the specification and selection of arbitrary subtrees of a given subject tree. The patterns are used

to express powerful transformations, but they are not embedded into a functional language. Pat-

tern matches usually result in more than one solution, but there is no means to control sets of

solutions by 'Boolean ' pattern operators. In fact, Huet ' s patterns contain only a few pattern

operators, and one - the inverse application - is extremely complex. The generality of this

operator is often not needed, and consequently, TrafoLa provides other, tess complex operators

for usual purposes.

TrafoLa was developed by increasing the power of patterns of Hope [2], ML [13], and

Miranda [14] towards the power of Huet ' s patterns [9] - or in other words, by embedding

Huet ' s patterns into a nice functional language. Non-determinism is used to ease the description

- the user only needs to specify the shape of the subtree he/she wants to select, not where or

how such a subtree is to be found (nevertheless, this is also possible). The resulting set of solu-

tions is handled following Prolog [4] - by enumerating the elements by means of backtracking or

by cutting it down to one element.

We shall first consider the structure of the objects to be transformed. Then we shall define pat-

terns and raise their power step by step. At last, they will allow for partitioning trees by arbi-

trary vertical and horizontal cuts. We shall introduce functions describing transformations and

functional combinators. Finally, we shall give an example of a complex transformation. We do

not treat the development or correctness of transformations; this is done in [12].

2. Objects of the transformation language

The objects of the transformation language called 'va lues ' are trees and sequences of trees -

the objects to be transformed - and also functions - these are transformations and strategies.

The domain of values is recursively defined as follows:

1) Constants such as ' t r u e ' and ' 0 ' are values.

2) There is a special constant ~@' indicating the place where a subtree was cut out of some

bigger tree.

3) Any sequence ' [vl , ... , vn]' of values is a value. A special case of this is the empty

sequence ' [] ' . We do not distinguish between tuples and sequences.

4) Each tree is a value. A tree ' op v i consists of a root operator ' o p ' and some value ' v '

standing for the children list of the tree.

5) Functions mapping values into values (or sets of values) are functional values.

Examples of values: 0 [] [1, 2, 3]

ife [eq Il l , i2], add [il , 1], sub Il l , i2]]

where ' 0 ' , ' 1 ' , ' 2 ' , ' 3 ' , ' i l ' , and ' i 2 ' are constants, and ' i r e ' , ' e q ' , ' a d d ' , and ' s u b '

are operators.

177

Values may be checked for equality and inequality. For functional values, this is realized by

some approximation e.g. syntactic comparison, guaranteeing that different functions are never

claimed to be equal - whereas equal functions may be claimed to be different.

We adopted the following conventions in TrafoLa:

1) Square brackets [] are used as tuple and sequence delimiters. Parentheses O will be used in

patterns and expressions of TrafoLa only to solve syntactic ambiguities.

2) Constant and operator names start with a lower ease letter or are numbers.

3) Variable names (they did not yet occur) start with upper case letters.

4) Type names are printed in italics, and keywords of TrafoLa in bold face.

Subsets of values may be specified by data type definitions. We give an example describing

the abstract syntax of a tiny imperative programming language. The generated trees will also be

the objects of our example transformations.

type Program = Proc-dec

and Proc-dec = procedure [M, /d*, Deal*, Stm*]

and Func-dec = function [Id, Id*, Deal*, Stm*]

and Deal = Proc-dec I Func-dec

and Stm = hoop I assign [Id, Exp] [pcall [Id, Exp*] [

ifs [Exp, Stm*, Stm*] I while [Exp, Stm*]

and Exp - false I true I N u m [Id [Unop[Exp] I
Binop [Exp, Exp] I ife [Exp, Exp, Exp] I Fcall

and Fca// - fcall [M, Exp*]

and N u m - 0 { 1 t 2 I etc.

and /c/ (identifiers)

and Unop = sign] not

and Binop - eq I It I add I sub I mul I etc.

The construct ~ T* ' denotes the type of all sequences of items of type ' T ' .

Later, it will turn out that the type expressions at the right hand sides of the type definitions

are nothing else than patterns, i.e. data type definitions may be viewed as recursive patterns.

Example of a value with type ' Stm ' :

while [It [i, n] , [assign [s, add is, i]], assign [i, add [i, 1]]]]

/* wh i l e i < n d o s :~ s + i ; i := i + 1 od */

3. Patterns

3.1. Informal semantics of patterns

The following transformations seem to be useful:

dec If-true = { ife [true, T, E] = > T }

dec If-false ,- { ire [false, T, E] = > E }

dec While-false - { while [false, S] = > n o o p }

These are declarations binding functional values - denoted by the construct ' { pattern ~ >

expression } ' - to the variables ' I f - t rue ' etc.

178

What is the semantics of the function ' {p = > e} ' applied to some value v?

If p does not match v, the rule fails, otherwise the variable names occurring in p are bound to

values (subterms of v). Thus p matched against v returns an env i ronment r. T h e n the expres-

sion e is evaluated in this env i ronment to a new value v'. The t ransformat ion ' {p z > e } ' thus

describes a partial mapp ing of values. ' I f - t r u e ' , for instance, is undef ined for ' w h i l e ' state-

ments, even when a matching ' i f ' expression occurs in its condition or body.

Later, we shall consider non-determinist ic patterns that may match in different ways thus

re turning a set s of envi ronments when matched against a value v. T h e failure case fits well with

this view, the pat tern then returns the empty set of environments . The expression e wilt be

evaluated in s, and thus eventually produce a set of results. Later, we shall present different

methods how to handle this non-determinism.

3.2. Formal semantics of pat terns

The formal semantics of patterns is described by means of a semantic function

P: Pat tern --, Env -, Value -, 2 gnv

matching a pat tern against a value in some envi ronment and producing a set of environments .

An envi ronment is a mapping from variables to values or ' u n b o u n d ' . We shall denote environ-

ments by

<A1 -* vl; ... ; An "* v n >

were A~ are distinct variables and vi values (not ' u n b o u n d ') .

Notice that we shall abstract from error cases when we shall present parts of the definition of P.

3.3. Atomic pat terns

Atomic patterns are constructors, variables, syntactic types, and wild cards.

A constructor (constant or operator) c (or @) matches jus t itself:

P (c) r v = if v = c then { < > } else

If the value equals c, the match succeeds re turning just one envi ronment , namely < > i.e. the

empty envi ronment mapping all variables to ' u n b o u n d ' . Otherwise, the match fails re turning ~,

the empty set of environments .

Variables may be used in two ways: either to b ind subvalues or to import values into a match.

Binding variables (called ' o p e n ' in [1]) match any value and create a new envi ronment where

they are bound to this value:

P(a) rv = {<A-.v>}

Impor t ing variables (called ' c losed ' in [1]) match jus t the value they are bound to in the

env i ronment of the match:

P (% A) r v - if v ~ r (A) then { < > } else ¢

When a type name such as ' S t m ' is encountered in a pattern, its meaning is looked up in the

env i ronment of the match. The meaning will be a predicate on values.

P (T) r v ,, if r (T) v then { < > } else ¢

!79

The wild card ~ _ ' matches any value: P (_) r v = { < > }

Constructors, binding variables, and the wild card also occur in Hope, ML, and Miranda, but

importing variables and types don ' t .

3.4. Structural patterns

Structural patterns specify the structure of the matched value. They consist of subpatterns to

match designated subvalues, and the resulting sets of environments are combined into one.

Sequence enumerat ion

The pattern ' [Pl pn] ° rrmtches values of shape ' [vl, ... , vn]' :

P ([Pl Pn]) r v m if v = [vl vn] then P (Pl) r v l ~0 ... @ P(pn) r v n else

I f n s O, this becomes to P ([]) r v = if v = [] then { < > } else

The combination ' @ ' will be defined in the next but one section. As first approximation

assume that it superposes all environments in its first argument with all in its second one.

Uni form sequence

The pattern ' p* ' matches sequences of arbitrary length whose items are all matched by p, and

' p + ' matches the same sequences except the empty one ' [] '

P (p *) r v = if v = [vl, ... ,vn], n > 0 then P (p) r v l O ... @ P(13) r v n else

if v = [] then { < > } else

= if v = [vi v~], n > 0 then P (p) r v l @ ... @ P (p) r v n else q~ P (p +) r v

Tree pattern

Pattern ' p q

by q.

' matches trees whose operator is matched by p and whose children list is matched

P (p q) r v = if v = o p w then P (p) r op @ P (q) r w else q~

Note that p is not necessarily an operator name; this goes beyond what is possible in Hope,

ML, and Miranda.

~xtamples

' i re [true, T, E] ' matches ' i f ' expressions with condition ' t r u e ' and binds T and E to ' t h e n '

resp. ' else' part.

' i fe A ' matches any ' i f ' expression and binds A to its children list, i.e. A is bound to a value

of type [Exp, Exp, Exp].

' O A ' matches any tree and binds O to the operator and A to the children list.

' T ' matches any value and binds T to it.

If we don ' t want to bind a subvalue to a name, we may use the symbol ' _ ' or the name of a

syntactic sort such as ' S t m ' .

' ifs [C, Stm, Stm] ' is equivalent to ' ifs [C] ' due to the structure of the language. Both

patterns match ' i f ' statements and bind the condition to C.

180

3.5. Non-l inear pat terns

A pat tern is non-l inear if a variable occurs more than once in it or occurs inside an iterated

subpat tern ' p* ' or ' p + '

Let p = add [E, E] be a typical example for a non-l inear pat tern, p matches the value

' add [a, b] ' iff the subvalues a and b are equal, E is then bound to a.

Examples:

Pat tern

add [E, E]

add [E, E]

A +

A +

Value Result

add [I, 11 {<E -. I>}
add [1, 2] q~

[1, 1, 2]
[1, 1, 1] {<CA-* 12>}

Non-linear patterns are allowed in Miranda, Prolog, and Huet's language, but forbidden in
Hope and ML.

3.6. Combination o f sets o f environments

Now, we shall define the combinat ion ' s • t ' of two sets of envi ronments s and t. The result

is the set of all pairwise superposifions of envi ronments where the case of inconsistent b indings of

variables must be excluded in order to achieve the desired semantics of non-l inear patterns:

Definit ion:

s • t = { a + b J a i n s , b i n t , a and b are consistent }

a + b = XN. i f b (N) = u n b o u n d then a (N) else b (N)

a and b are consistent iff

for a l l v a r i a b l c s N , a (N) - unbound or b (N) - u n b o u n d or a (N) - b (N)

Examples: Remember P ([p , q]) r [u, v] - P (p) r u @ P (q) r v

Pat tern Value

[A, B] [i, 21
[A, 21 [1, 21
[A, 11 [1, 21

[A, A] [I, 11
[A, A] [i , 21

Result

{<A-* I>} (I) {<B-, 2>}
{<A-. i>} ® {<>}
{<A-i>} • {}
{<A-, 1>} • {<A-* 1 > }

{<A-, 12>} $ {<A-. 22>}

- {<A -* 1; B -, 2>}
- {<A-, 12>}
- {}

- {<A-, I>}
- {}

The superposit ion of environments ' + ' is not commutat ive - the second operand dominates

the first one - , but associative, and has a neutral element, namely the empty env i ronment

' < > ' . Since a + b - b + a holds iff a and b are consistent, the combinat ion ' ~ ' is com-

mutat ive, associative, and has neutra l e lement { < > }. In addit ion, it distr ibutes over set un ion

and satisfies s • O - s. Unfortunately, it is not idempotent , e.g.

{<A-. I>, <B-. 2>} ® {<A-. i>, <B-- 2>} =
{ < A ~ 1 > , < B - , , 2 > , < A - - . 1; B-* 2 > }

But i f the envi ronments contained in s are ' un i fo rm ' i.e. each env i ronment binds the same set

of variables, then s • s - s holds.

The algebraic properties ment ioned here are stated and proved in [7] together with some addi-

t ional ones.

181

3.7. Correspondence between TrafoLa patterns and TrafoLa expressions

Some pattern operators direcdy correspond to operators in TrafoLa expressions. There are

expressions being constants denoting themselves, and being variables denoting the value the vari-

able is bound to, and there are expressions '[ez, ... , en]' for sequences and expressions ' e e "

for trees.

The meanings of the pattern ' [A, B] ' and the expression ' [A, B] ' are inverse: the pattern

' [A, B] ' matches pairs, decomposes them into their two components, and binds A to the first

one and B to the second one. The expression ' [A, B] ' composes the values bound to the vari-

ables A resp. B to a new pair.

The operators denoting concatenation and insertion - introduced below - will behave analo-

gously.

3.8. Concatenation and its inverse operation

Assume we want to delete superfluous ' h o o p ' statements in statement lists. Then we need a rule

{ (L1 . [noop] . L2) m > (L1 . L2) }

wherc the dot stands for concatenation and its inverse operation. Thc pattern partitions the

scqucnce of statements into three subsequenccs such that the second one is ' [n o o p] ' , and binds

L1 m the first one and L2 to the third one. The expression concatenates L1 and L2 to a new

sequence of statements.

By abstracting from 'noop ' , we obtain an cxample for importing variables:

{ X - > { L1 . [% X] . L 2 ~ > a l . L 2 } }

This is a function of second order. Given an argument x, it returns a function that removes an

occurrence of x from a sequence.

Examples for patterns with concatenation:

'L1 . [while [C, B]] . L 3 ' matches lists of arbitrary length containing a 'wh i l e ' statement.

' [S, n o o p] . L ' matches fists whose second element is ' n o o p ' .

The dot operator is a potential source of non-determinism:

L1 . [noop] . L2 matched against [al, noop, a2, noop]

where the subvalues ai are statements other than ' noop ' , yields a set of two environments:

< L 1 -, [al]; L2 -* [a2, noop]> and < L 1 -. [al , noop, a2]; L2 -~ []>

Formally, the semantics of the dot operator is defined by a union over all possible partitions:

P (p . q) r v = U P (p) r u • P (q) r w
U.W---~V

This operator allows for selecting arbitrary subsequences, and is not contained in any of Hope,
ML, and Miranda.

3.9. Tree fragments, insertion and horizontal cuts

The dot operator for patterns allows for partitioning values by vertical cuts into a left and a

right hand side since it inverts concatenation. Now we want to introduce an operation - also

not contained in Hope, ML, and Miranda - performing horizontal cuts to obtain an upper and

a lower part. The upper part is not a complete tree; it contains a hole ' @ ' denoting the place

where the lower part was cut out.

182

In TrafoLa expressions, the operator ' ^ ' denotes insertion of a value into the hole of a tree

fragment:

ife [c, @ , e] ^ t

add @ ^ [a, b]

ifs [c, @, []] ~ [sl , s2]

[s l , @, s4] ^ [s2, s31

= ife [c, t, e]

= add [a, b]

= ifs [c, [s l , s21, [1]

- [s l , [s2, s31, s4]

The pattern operator ' " ' inverts insertion as the dot operator inverts concatenation. When a

pattern ' p * q ' is matched against a value v, v is separated in atl possible ways into two values u

and w such that u contains exactly one hole and v ,, u " w holds. Then p is matched against u

and q against w:

P (p^ q) r v = U P (p) r u @ P (q) r w

Examples:

Let v = mul [add [a, b], add [c, d]].

add [A, B] does not match v

U ^ add [A, B] matches v in two ways:

< U - ~ mul [@, add [c, d]]; A - , a ; B - , b > and

< U - * m u l [a d d [a, b], @]; A - , c ; B - * d > .

U ^ mul [@, A] ^ B matched against v gives one solution only:

< U - * @; A - * a d d [c, d]; B - * a d d [a, b] >

Both ' ' and ' ^ ' are associative such that no parentheses are needed in the last example.

3.10. ' Boolean' pattern operators

The following pattern operators don ' t have a direct correspondent in the world of expressions.

They serve to extend or restrict the set of environments produced by pattern matches.

Intersection

The pattern ' p & q ' is used to specify that a value to be matched must satisfy both the

requirements imposed by pattern p and by pattern q. I f the pattern p is simply a variable - this

is an important special case - we write ' V : q ' instead of ' V & q ' due to aesthetic reasons.

Hope and M L contain only the special case (' & ' in Hope, ' a s ' in ML) whereas Miranda con-

tains nothing of this feature.

Example: S: (L1 . [W: while _] . L2) & St.m*

matches any sequence of statements containing a 'wh i l e ' statement. The 'wh i l e ' statement is

bound to W, its left context to L1, and its right context to L2, whereas the whole sequence is

bound to S.

Formal definition: P (p & q) r v = P (p) r v @ P (q) r v

183

Union

The pattern ' p I q ' matches all values matched by p or by q or by both p and q. The sets

of environments produced by p and by q are simply joined together:

P (p I q) r v - P (p) r v U P (q) r v

Example: matching sums or products: A: (add [Exp, Exp] I mul [Exp, Exp])

The ' I ' operator is also a potential source of non-determinism. There are some problems

with variables explained in the next section.

Complement
If p is a pattern matching some values, then ' !p ' is a pattern matching all but those values.

P (! p) r v - if P (p) r v = ¢ then { < > } else

Note that the pattern ' ! p ' does not bind variables since there are no subvalues they could be

bound to when ' ! p ' matches i.e. p does not match. Thus, the pattern ' !!p' is not equivalent to

p - it matches the same values but does not bind variables. This is similar to Prolog's ' n o t '

predicate [4].

Examples

Pattern

add [A, B] & ! add [E, E]

add [A, B] & ! add [E, E]

Deterministic ' hoop ' elimination rule:

Value Result

add [1, 2] { < A -, 1; B -, 2 > }

add [1, 11

{ (LI : (S t m & !noop)*) . [noop] . (L2: Stm*) - > L1 . L2 }

The sequence bound to L1 must not contain ' n o o p ' statements such that the rule eliminates the

first occurrence of ' n o o p ' . Later, we shall give examples for functions deleting all occurrences.

Assume we want to select a function call in an assignment:

assign [V, E] ^ F: FcMI
The additional constraint that the function call is not the whole expression may be expressed as

assign [V, E & !@] ^ F: Fca//

3.11. Binding variables in patterns

Let V(p) denote the set of variables that are eventually bound by p. It is defined recursivety:

V (c) = V (_) = V (T) - V (% A) = V (! p) = ¢

V (A) - {A}

V (p q) - V (p . q) - V (p O q) - v (p a q) - V (p Z q) - V (p) U V (q)

v ([p~ pn]) - v (p l) u . . . u v (p .) v ([1) - ¢

V (p *) - V (p +) - V (p)

Alternatives ' p I q ' must be considered a little bit closer. Their components independently
try to match and bind only the variables contained in themselves.

For instance, the (strange) pattern ' A I B ' matches any value v and produces a set of two

environments { < A -~ v > , < B -, v > } . Such strange patterns are forbidden; both operands of

an ' I ' operator must bind the same set of variables. A similar problem arises with ' p * ' when
matching the empty sequence.

t84

Adopting these restrictions, the sets of environments produced by a pattern will be uniform:

Theorem:

Let p be a normal pattern i.e. satisfying two restrictions:

1) For all subpatterns ql t q2 of p, V (ql) " V (q2) holds.

2) For all subpatterns q* of p, V (q) = ¢ holds.

Then for all environments %, all values v and all environments r in P (p) r0 v,

the set of variables bound in r is just V (p)

The restriction to normality excludes some awkward transformations, and implies the

equivalence of ' p & p ' with p for all patterns p due to the idempotence of ' @ ' for uniform sets

of environments.

3.12. Other operators

There are a few other pattern operators already integrated in TrafoLa (see [8]), but the general-

ity of Huet ' s inverse application is not yet reached. Its full integration will be investigated soon.

4. Expressions and definitions

Besides patterns, TrafoLa contains two other basic syntactic sorts: expressions and definitions.

Patterns serve to analyze values, whereas expressions are used to synthesize values. Definitions

occur at the top level of TrafoLa and in ' l e t ' and ' l e t rec ' constructs and bind variables to

values.

The partners of the P R O S P E C T R A project did not yet agree upon the handling of

non-determinism introduced by the pattern operators ' . ' , ' ^ ' , and ' I ' . There are two variants

of TrafoLa: a deterministic one (D-TrafoLa [8]) where each function returns exacdy one value,

and a non-deterministic one (N-TrafoLa [5]) where each function returns a set of values that is

enumerated by backtracking as in Prolog [4]. Accordingly, the semantic function for expressions

has different type:

D-TrafoLa: E: Expression -* Env -, Value

N-TrafoLa: E: Expression ~ Env -* 2 wtu°

4.1. Unfunctional expressions

These expressions are quite straightforward and only enumerated here:

Constructors: c

Variables: A

Sequences: [e~ en]

Application: e e '

Concatenation: e . e '

Insertion: e * e '

Comparison: e - e ' resp. e ! = e'

' l e t ' expressions: let d in e end resp. letrec d in e end

w h e r e ' d ' is a definition (see below)

Application also comprises tree construction e.g. ' add [1, 2] '

is call by value since the complex patterns - especially ' * '

abstract syntax trees to be transformed are usually finite.

The present evaluation strategy

- exclude lazy evaluation, and

185

In N-TrafoLa, non-de terminism is accumulated by these operations: if ' e ' denotes n values

and ' e ' ' denotes m values, then ' e . e " will denote up to n • m values.

4.2. Funct ional expressions

Functional expressions are abstract ion by a pat tern and superposit ion of functions. The

abstract ion has syntax ' { p = > e } ' where p is a pat tern and e an expression. Its meaning

depends on the handl ing of non-determinism:

N-TrafoLa: E ({p = > e}) r = hx. U E (e) (r + r ')
r' inP (p) rx

If p does not match the argument x, the function returns ¢.

D-TrafoLa:

Here, abstract ion contains an implicit ' c u t ' operator as known from Prolog:

Let select: 2 ~nv -. Env be some mapping with select s ~ s if s # q~

Then E ({ p - > e }) r = hx. if s = ~ then fail else E (e) (r + select s)

where s = P (p) r x

' f a i l ' is a special value indicating that the pat tern p failed to match the a rgument value x.

All expressions except the ' I ' construct below are assumed to be strict wi th respect to

' fail ' i.e. if one operand evaluates to ' fail ' then the whole expression will also.

The superposit ion of (partial) functions is denoted by ' 1 ' This is a common operator in

functional languages, bu t in Hope, ML, and Miranda , it is allowed in the context (Pz - > el I

... I Pn = > en) only.

In D-TrafoLa, ' I ' is only applicable to functions, and the first operand dominates:

E (f I g) r - hx. if E (f) r x - fail then E (g) r x else E (f) r x

In N-TrafoLa, it may be applied to all TrafoLa expressions:

E (e I e ') r = E (e) r U E (e ') r

Both variants of TrafoLa might contain the facility to collect the set of solutions into one

sequence. In D-TrafoLa, this is done by a second abstract ion mechanism ' { p = > all e } '

4.3. Definitions and top level declarations

Definitions have syn tax A1 = el and ... and An = en

Instead of ' A = {p = > e} ' , we may write ' A p = e ' .

Top level declarations are wri t ten ' dec d ' if they shall not be recursive, and ' rec d ' otherwise.

4.4. Some syntactic sugar:

Original form:

({Pz = > el} I .. I {Pn = > ca}) e

({true = > el} I {false ,* > ca}) e

{x - > g (f x)}

Alternative syntax:

c a s e e o f { p l = > el} I .. I {Pn = > en} end

i f e then el else ez end

f; g

186

4.5. Examples

AU examples are given for D-TrafoLa.

Function to simplify ' if ' expressions:

decSim- i f ~ { ife [true, T, _] * > T } I { ife [false, _ , E] - > E }

Identity: dec I X = X / , alternatively for dec I = {X i > X} */

Totalization by identity: dec Total F = (F I I)

Repetition: rec Repeat F = (F; Repeat F) I I

'Tota l f v ' computes ' f v ' If it is defined, it is the result, otherwise the result is the original

argument v. 'Repeat f ' repeatedly applies fun t i l it is no longer possible.

Functionals for sequences

r e c M a p F = { [] = > [] } I { [H] . T = > [F H] . M a p F T }

r e c E x t e n d F = { [] - > [] } I { [H l . T = > F H . Extend F T }

Note the difference: ' M a p ' applies a function item by item to a llst, whereas 'Ex tend ' performs

a homomorphic extension of its argument function from items to lists.

With dec Double X . , [X, X]

we obtain Double [al, a2, a31 ~ [[al, a2, a31, [al, a2, a3l]
Map Double [al , a2, a3] - [[al, at] , [a2, a2], [a3, a31]

and Extend Double [al, a2, a3] = [al , a l , a2, a2, a3, a3]

Other classical functionals:

rec Fold F X0 - { [] - > X0 } l { [H] . T * > (F H (Fold F X0 T)) }
where F is a binary function and X0 typically is its neutral element.

Example: Fold (*) 1 [1, 2, 3, 4, 5] = 120.

rec Filter P - { [] = > [] } I { [H] . T s > if P H then [H l else [] e n d . F i l t e r P T }
' Filter ' removes all list items not satisfying the predicate P.

Three functions deleting all ' n o o p ' statements from sequences of statements:

Repeat {S1 . [hoop]. S2 * > Sl . S2}

Extend ({noop - > [1} I {X m > [X]})

Filter {X = > X ! - noop}

Flat insertion

Remember that insertion ' * ' treats its second argument as a unit:

[t , @ , 4 1 ^[2 ,31 = [1 , [2 , 3] , 4]

But it is not difficult to define a function ' flat-insert' splicing its second argument into the hole

of the first:

dec Fiat-insert m { U ' (L . [@] . R) = > { X s > U ^ (L . x . R) } }

This is a carried function with two arguments. The first argument is partitioned by the pattern
' U ^ (L . [@] . R) ' into an upper context U, a left context L, and a right context R of the hole.

The second argument is bound to X.

Ftat-insert (ifs [c, [sl, @1, [11) [1 " ifs [c, Is11, [11 (U - its [c, @, [11 L - [sq R - [])
Flat-insert [1, @, 41 [2, 31 s [1, 2, 3, 4] (U - @ L - [11 R - [41)
Flat-insert (add @) [1, 2] - fail (pattern match fails)

Fiat-insert [1, @, 31 2 ~ error (L . X . R - [I] . 2. [31 - error)

187

5. A complex transformation: removal of function calls

5.1. The problem

At last, we shall give a larger example of program transformation. The problem is to replace

function calls in a Pascal like language by procedure calls; it is first described in [11], and also

presented in [12].

5.2. How to get a new identifier

We shall first define some functions relying on an implementation of identifiers as numbers.

All functions except these will be independent from this specific implementation.

Id = id Num
dec Leastid = id 0 /* Id */
dec Max (id A) (id B) - i f A < B then i d B else i d A end /* Id- . , Id . . , Id*/
dec N e x t i d (i d A) - i d (A + 1) /* Id~ Id*/

' Leas t id ' is the least identifier that may occur in a program. Naturally, we must be sure that

this is guaranteed by the tools generating the actual program.

When given a program, we may construct a new identifier not occurring in it by looking for

the maximal identifier in the program and then building a greater one by ' Nex t id ' .

dec Maxid m { _ ^ X : Id - > a l l X } ; Fold Max Leastid

/* computes list of all identifiers */ /* determines maximum of list */

dec Newid s Maxid; Nextid

5 . 3 . Subtasks to be d o n e

Our task is to transform function calls in a Pascal like programming language into procedure

calls by adding a new parameter exporting the restflt. To do so, we must first achieve that all

fimction calls occur as right hand side of assignments only. In a second step, these assignments

are transformed into procedure calls, and function declarations into procedure declarations.

/* Func-to-proc: Program -, Program */
dec Func-to-proc - Unnest-all; Transform-all

5.4. Unnest ing of function

The transformation 'Unnes t -a l l ' will transform the program such that it subsequently contains

only calks ' V : = F (. . .) ' .

/ . Unnest-all: Program-. Program */
dec Unnest-aU = Repeat { P: Program = > Unnest-1 (Newid P) P }

' Unnest-all ' repeatedly calls the function ' Unnest- t ' until it is no more defined. ' Unnest-1 '

unnests just one function call and uses the new identifier ' Newid P '

A type name such as 'E, xp ' only matches complete values i.e. values without holes. We use

' Exp@' to match upper fragments of expressions. The unnesting of function calls already hav-

ing the desired form ' v : - f (. . .) ' , is avoided by the pattern 'assign [Id, Exp~ & !@]'.

/* Unnest - l : Id-. Program-. Program */
dec Unnest-1 N E W =

{ U " S: assign [Id, g x p ~ & !@] " F: Fcall
= > Flat-insert U [assign [NEW, F], S ^ NEW] } I

188

/* v : f (. . .) > N E W := f (. . .) ; v : N E W /

{ U " S: pcaU _ " F: Fcall
= > Flat-insert U [assign [NEW, F], S " NEW] } I

/* p (... f (.. .) ...) = > N E W := f (...); p (. . .NEW.. .) */

{ U " S: ifs [Exp@, Sam*, Sam*] " F: Fcalt
• . > Flat-insert U [assign [NEW, F], S ^ NEW] } 1

/* i f . . f (. .) .. then .. else .. fi - > N E W : - f (. .) ; if . .NEW.. then .. else .. fi */

{ U ^ while [E: E x p , , SL: Stm*] * F: Fcall
= > Flat-insert U [assign [NEW, F], while [E ^ NEW, SL . [assign [NEW, F]]]] }

/* while .. f (..) .. do .. od

= > N E W :-- f (..); while . .NEW.. d o . . ; N E W := f (. .) o d * /

Note that we replace one s ta tement by two; thus, we need the 'F la t - inse r t ' function to avoid

the building of nested subsequences.

The function ' U n n e s t - l ' may be made a little bit more readable (hopefully) by introducing a

bigger upper context ' B U ' and a name for the new assignment.

/* Unnes t - l : Id-* Program-* Program */
dec Unnest-1 N E W =

{ (BU: Program@ & ! (_ ~ assign lid, @])) ^ F: Fcalt = >
let AS = assign [NEW, F] in

case BU of { U ^ S: (assign _ I pcall _ I ifs [Exp@, Sam*, Sam*])

= > Flat-insert U [AS, S ^ NEW] } I

{ U ^ while [E: E x p , , SL: Stm*]
- > Flat-insert U [AS, while [E ^ NEW, SL . [AS]]] }

end

e n d

}

5.5. The real t ransformat ion

We define the function 'T rans fo rm-a l l ' by repetit ion of a simpler function t ransforming func-

tions with some specific name only:

/* Transform-all : Program-* Program */
dee Transform-al l ,- Repeat { P: (_ ^ function [FN D

= > Transform-1 FN (Newid P) P }

'T rans form-1 FN P N ' transforms all functions named FN into procedures named PN. T h e

function name is added as an addit ional formal parameter such that the ass ignment to the func-

t ion name in the body will export the result of the call.

/* Trans fo rm- l : Id- , M-* Program-~ Program */
dee Transform-1 FN PN ,-

Repeat ({ U * function [% FN, PL, D, B] = > U ^procedure [PN, PL . [FN], D, B] } I

/* f u n F N (. . .) - > p r o c P N (. . . . FN) */

{ U ^ass ign [V, fca l t [% FN, ELl] = > U ^ p c a l t [e N , E L . [V]] }

/* V : - FN (...) - > PN (. . . . V) . /

)
Here, we don ' t need the function 'F la t - inse r t ' since we replace one by one: one fimction

t89

declaration by one procedure declaration, and one assignment with function call by one procedure

call.

5.6. Optimization of the transformation

Each call to 'Newid ' always computes the maximal identifier in the program from scratch, but
we know that it is always the previous new one. Thus, we store the actual maximal identifier at

the root of the program tree.

/* Func-to-proc': Program -~ Program */
dec Func-to-proc' = {P: Program = > [Maxid P, P]} ;

Unnest-all' ; Transform-all' ;

{ [- , P I = > P}

We compute the maximum identifier once and store it at the root, then we transform, and omit
it at the end.

/* Unnest-all', Transform-all': [Id, Program] -. lid, Program] */
dec Unnest-alt' = Repeat { [MI, P] = > let NI = Nextid MI in [NI, Unnest-1 N I P] end }

dec Transform-all' =

Repeat { [MI, P: (_ ^ function [FN 1)]
= > let NI -= Nextid MI in [NI, Transform-1 FN NI P] end }

The mappings 'Unnes t - l ' and 'Transform-l ' may still be used, such that this optimization

can be done with little effort.

6. Gondusion and future research

The ability to specify patterns partitioning trees by arbitrary vertical and horizontal cuts allows
for the definition of powerful transformation rules. Usual features of functional languages may be

used to combine individual rules to transformation programs. A polymorphic type discipline has

to be developed including both high order functions and tree grammar like data types.

The most significant element of our language is the powerful patterns. Many algebraic proper-

ties concerning the semantic equivalence of patterns hold e.g. the associativity of the pattern

operators ' t ' , ' & ' , ' . ' , and ' " ' (see [7]). An abstract pattern matching machine t-ms been
designed having many degrees of freedom such that there will be a flexible trade-off between the
amount of precomputation by analyzing the pattern and the efficiency of matching it against con-
crete values. A prototype implementation of D-TrafoLa is available in ML [13]; it was created
by translating the semantic clauses of TrafoLa into ML and does not yet include data type defini-

tions and occurrences of data type names in patterns.

Acknowledgement

I wish to thank B. Gersdorf, B. Krieg-Brfickner, U. MSncke, and R. Wilhelm for many discus-

sions of TrafoLa, and H. G. Oberhauser and the ESOP '88 referees for comments on earlier
drafts of this paper.

References

[1] Bobrow, D. G., Raphael, B.: New Programming Languages for

Artificial Intelligence Research, ACM Comp. Sur. 6, 153 - 174, (1974)

190

[2] Burstall, R., MacQueen, D,, Sannella, D.: HOPE: An Experimental Applicative Language,
Report C S R - 6 2 - 80, Computer Science Dept., Edinburgh, (1980)

[3] CIP Language Group: The Munich Project CIP.
Volume I: The wide spectrum language C I P - L, Springer, LNCS 183, (1985)

[4] Clocksin, F. W., MeUish, C. S.: Programming in Prolog, Springer (1981)

[5] Gersdorf, B,: A Functional Language for Term Manipulation,
PROSPECTRA M.3.1.$1 - SN - 2.0, (1987)

[6] Heckmann, R.: A Proposal for the Syntactic Part of the PROSPECTRA
Transformation Language, PROSPECTRA S.1.6- S N - 6.0, (1987)

[7] Heckmann, R.: Semantics of Patterns, PROSPECTRA S.1.6 - SN - 8.0, (1987)

[8] Heckmann, R.: Syntax and Semantics of TrafoLa, PROSPECTKA S.1.6- S N - 10.0, (1987)

[9] Huet, G., Lang., B.: Proving and Applying Program Transformations
Expressed with Second Order Patterns, Acta Inf. 11, 31 - 55, (1978)

[10] Krieg-Br/ickner, B.: Informal Specification of the PROSPECTRA System,
PROSPECTRA M.1.1.$1 - R - 9.1, (1986)

[11] Krieg-Br/ickner, B.: Systematic Transformation of Interface Specifications,
in: Partsch, H. (ed.): Program Specification and Transformation,
Proc. IFIP TC2 Working Conf. (T61z '86), North Holland, (1987)

[12] Krieg-Brfickner, B.: Algebraic Formalisation of Program Development by Transformation,
Springer, this volume, (1988)

[13] Milner, R.: The Standard ML Core Language,
In: Polymorphism, Vol. II, Number 2, (Oct. 1985)

[14] Turner, D.A.: Miranda: a non-strict Functional Language with Polymorphic Types,
Springer, LNCS 201, (1985)

