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Abstr~act 

We discuss the possibility to construct a programming language in 
which we can program by proofs, in order to ensure program correct- 
ness. The logical framework we use is presented in [13], 

The main objection to that kind of approach to programming being 
the inefficiency of the program produced by proofs, the greater part 
of the paper is devoted to investigate how to define data types and 
how to construct programs for combining proofs and efficiency. Seve- 
ral solutions are proposed using recursive data types which lead, in 
particular, to new representations of natural numbers in lambda- 
calculus. 

Tntroductiem: proofs as pro~. 

We know that in mathematics the problem of the correctness has been solved for 

a long time: the correctness of a (detailed) proof is easy to verify, even automa- 

tically. We also know that a constructive proof of a theorem has an algorithmic 

content. Putting these two facts together, we are tempted to consider (formalized) 

mathematics as a programming language. This would mean that writing a program 

satisfying some specifications becomes writing a proof of a statement expressing 

these specifications. 

The theoretical basis of this approach exists: it can be found in the works of 

logicians on intuitionistic logic~ essentially HEYTINGj MARTIN-LOF and GIRARD. The 

Heyting semantics for intuitionistic logic explains proofs in terms of programs~ 

and if we invert the perspective it gives a foundation for a programming language 

where programs are proofs (the essential point in this semantics is that a proof of 

A ~ B is an algorithm which transform each proof of A into a proof of B.). 

There has been a lot of works using this principle, mainly N.G. deBRUIJN [2], 

R.L. CONSTABLE [5], J.C. REYNOLDS [19], T. COQUAND [3]. We will discuss here an 

other approach presented in [ii] and [13], based on second order intuitionistic 

logic, which allows to write in a natural way exact specifications and correct 

programs. 

The paper is organized as follows. In ~I we recall the general theory: 
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syntactic and semantic notions of type; definition of data types by second order 

formulas and extraction by proof of a representation of the data from the defini- 

tion; expression of the specifications of a program and extraction by proof of a 

program which meets these specifications. In ~2 we discuss the problem of 

efficiency and conclude to the necessity of new representations of data. In §3 we 

presents two kind of solutions using recursive definition of data types, which 

leads to new representations of the data allowing to write efficient programs: in 

particular we obtain new representations of natural numbers in ismbda-calculus for 

which there exists a program computing the predecessor in one step. Finally we 

present in ~4 a way of programming by proofs with these recursive data types. 

1. INTUITIONISTIC SECOND OB~ LOGIC AS A ~ LANGUAGE 

1.1 ~ d a - - c a l c u l u s  a s  a s a c h i n e  l a n g u a g e  

To really become programs, proofs which naturally appear as trees, have to be 

linearly coded as terms of lambda-calculus. 

The terms of lambda-calculus are obtained from variables x,y,z.., by a finite 

number of applications of the following rules: 

(a) if t and u are terms, then (t u) is a term - which represents the appli- 

cation of the function t to the argument u. 

(b) if x is a variable and t is a term, then Ax.t is a term - which repre- 

sents the function x ~-. t. 

The notion of ~£a£ion for terms is the reduction: a reduction in the term 

t is the replacement of the leftmost subterm of the form (Ax.u v) by u[v/x] (i.e 

the result of substituting v to the occurrences of x in u). We say that a term t is 

reducible to a term t' (and note t = t') if t' is obtained from t by a finite 

number of reductions. A term is normal if it does not contain a subterm of the form 

(Ax.u v). In order to compute a function t on an argltment u we reduce the term 

(t u); there are two possibilities: either we obtain, after a finite number of 

reductions, a normal term which is called the result of the computation, or there 

is an infinite number of possible reductions and the computation does not termi- 

nate. Using this notion of computation, all the recursive functions are represen- 

table by terms of the lambda-calculus. 

I£ is possible to transform lambda-calculus in a programming language using an 

implementation of reduction. In fact it can be considered as a real machine 

language, where the symbols of lambda-calculus (,A,x are interpreted as elementary 

instructions. Such an implementation has been realized by J.L. KR[VINE. 
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1.2 .  The l o g i c a l  framework 

The l o g i c a l  language c o n t a i n s  l o g i c a l  symbols,  f i x e d  p a r a m e t e r s ,  and a d d i -  

t i o n a l  pa rame te r s  depending  o f  t he  da ta  t ypes  we c o n s i d e r .  The l o g i c a l  symbols a re :  

the connective ~, the quantifier ¥, individual variables: x, y, z ..., predicate 

variables of arbitrary arity: X,Y,Z... The fixed parameters are: a binary 

function constant Ap (application) and two individual constants K,S (combinators). 

Additional parameters contains predicate constants of arbitrary arity (predicate 

constants of arity 0 are called propositional constants), and function constants of 

arbitrary arity (function constants of arity 0 are called individual constants). 

The individual terms and the (second order) formulas are defined in the usual 

way using this logical language. Note that in second order (intuitionistic) logic, 

the logical symbols I,A,V,~ and B, as well as the identity relation =, are defi- 

nable from ~ and V: for instance A A B is defined by VX[[A ~ [B ~ X]] ~ X]. 

The intended model a, representing the programs from a denotational point of 

view, is the following. The universe is the set A of terms of lambda-calculus 

modulo reduction (more precisely modulo ~-reduction). The function ~4~ is interpre- 

ted by the function u,v ~-. (u v). The constants K and S are interpreted by hx.hy.x 

and hx. Ay.Az.((x z) (y z)) respectively. This model is in fact the usual way of 

coding lambda-ealculus into a logical structure used in Combinatery Logic; it will 

be enriched by interpretations of the additional parameters. In the sequel term 

will also mean term modulo reduction. 

The rules of proof for second order logic are the following (A, B denotes 

formulas  and F sequences  o f  fo rmulas ) :  

R1 A ~ A. 

R2 if F, A ~ B, then r ~ A ~ B. 

R3 if f ~ A ~ B and f ~ A, then P ~ B. 

R4 if P ~ A and x is an individual 

free in F, then F ~ VxA. 

R5 if P ~ VxA and b is an individual term, then 

f ~ A~b/x].  

R6 i f  f ~ A and X i s  a p r e d i c a t e  v a r i a b l e  

in F,  then  r ~ ¥XA. 

R7 

R8 

R9 

The rules 

(axiom) 

( a b s t r a c t i o n )  

( a p p l i c a t i o n )  

variable which does not 

(generalisation) 

occur 

( s p e c i a l i z a t i o n )  

which does no t  occur  f r e e  

( g e n e r a l i s a t i o n )  

i f  F ~ VXA and B i s  a formula ,  then  F ~ A[B/X]. ( s p e c i a l i z a t i o n )  

i f  f ~ A, and d i s  o b t a i n e d  from F by pe rmu ta t i on ,  c o n t r a c t i o n  or  e x t e n -  

s i o n ,  then  4 ~ A. ( t h i s  pa l e  w i l l  be o m i t t e d  in  formal  d e r i v a t i o n s )  

if F ~ -~A, then F ~ A (RA) 

R1 to R8 are the rules for intuitionistic second order logic. 
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!.,3 The s y n t a c t i c  n o t i o n  o f ~ .  

From the point of view of Heyting semantics the rules of proof for intuitic- 

nistic logic can be considered as construction rules for programs (terms). Instead 

of handling formulas we handle expressions like t : A (read t is n term of t~ A), 

the hypothesis being replaced by variables declarations x : A. The rules become: 

R1 x : A ~ x : A. 

R2 if F, x : A ~ t : B, then P ~ Ax.t : A ~ B. 

R3 if f ~ t : A ~ B and F ~ u : A, then F ~ (t u) : B. 

R4 if F ~ t : A and x is an individual variable which does not occur free in 

F, then r ~ t : VxA. 

R5 if F ~ t : vxA and b is an individual term, then F ~ t : A[b/x]. 

R6 if F ~ t : A and X is a predicate variable which does not occur free in 

F, then F ~ t : VXA. 

R7 if F ~ t : VXA and B is a formula, then F ~ t : A[B/X]. 

R8 if F ~ t : A, and ~ is a sequence obtained from F by permutation, 

contraction or extension, then d ~ t : A. 

From a programming point of view the expression "t is of type A", which relies 

a term to a formula, has to be read "the program t realizes the specification A". 

Terms of lambda-calculus represent programs in machine language, whereas formu-las 

represent specifications expressed in a high level language. It remains to explain 

the relation between the program and the specification. 

There are two well-known properties of terms obtained by proofs : 

preservation and t~tion. The first one, which says that if a term t reduces to 

a term t ~ and t is of type A then t' is of type A, is essentially evident. The 

second one is much deeper: whereas the terms of lambda-calculus allow to represent 

all algorithms~ including those which do not terminate, the terms obtained from 

proofs represent algorithm which always terminate. More precisely, each time we 

derive an expression "t : A" we are sure that t reduces to a normal term. This 

property becomes more and more difficult to prove when the expressive power of the 

logic increase (the proof for second order logic is due to GIRARD [7]). 

There is one more essential property: second order intuitionistic logic can be 

considered as a programming language allowing to write exact specifications and 

¢ ~ t  pro~. We will detail this point using a semantic notion of type. 

.!....4 The s e m m t i c  n o t i o n  o f  type .  

The expression t : A (t is of type A) has been defined syntactically using the 

deduction rules for intuitionistie second order logic. But we can view a type A as 
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a set, namely the set of terms of type A (or propositional traces of proofs of A). 

Doing so we can define a kind of intuitionistic semantic in the style of LAUCHLI 

[14]: a statement being interpreted by a subset of A (instead of a boolean value), 

a unary predicate by a function from A into ~'(A) (or equivalently by a binary 

relation on A), .... It can be defined using the classical semantic of formulas in 

the Model A in the following way: we associate to each n-ary predicate variable X 

(reap. n-ary predicate constant P) a (n+l)-ary predicate variable X' (reap. 

(n+l)-ary predicate constant P'), and define inductively, for each formula A and 

variable y, a formula y ~ A as follows 

y E //Xl...x n := /['Xl.~.XnY (for /[' predicate variable or constant) 

y e A~ B := Vz[z e A~ (y z) e B] 

y e VxA := Vx[y ~ A] 

y e VXA := V×'[y e A] 

Now we have a semantic notion of type t e A ("t is in the type A") - meaning 

that the statement t E A is true in the intended model. The following lem~a shows 

that the semantic notion of type extends the syntactic one in the sense that all 

the programs typable from the syntactical point of view are also typable with the 

same type from the semantical point of view. 

Comservntiom l~a: Let A be a statement. If t : A, then t ~ A. 

The equality between types, A = B, is defined as Vy[y e A .~ y ~ B]. 

1 .5  D e f i n i t i o n  o f  data t ~ -  

The second order formalism allows natural definitions for all the data types 

usually defined by induction: integers, lists, trees .... For instance, the set of 

natural numbers can be defined as "the smallest set containing zero and closed by 

the successor operation". Formally we introduce parameters for the constructors of 

the type: an individual constant _0 (for zero) and a function constant s_ (for the 

successor operation), and consider the formula Ix saying "x is a natural number" 

v X [ v y [ X y  -~ X_syJ, ~ -. x x ] .  

(we use A, B ~ C as an abbreviation for A ~ [B -+ C]) 

A representation of the constructor _0 in lambda-calculus is given by a term in 

the type I_0; it can be obtain by a formal derivation of I0 

f : Y y [ X y ~  X s y ] ,  a : X..QOt.- a : X_O ( b y  R1) 

f : Vy[Xy -~ X_sy], F- ha.a : X_0 -, X_0 (by R2) 

~- Af. Aa.a : Vy[Xy ~ X_sy], X_O ~ X_O (by R2) 

}- hf.ha.a : VX[vy[Xy -, Xsy], X0_ -~ X_0] (by R6) 

We obtain the representation 0 = hf. Ax.x for the constructor _0, which is precisely 
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the Church numeral O. 

A representation of the constructor s in lambda-calculus is given by a term in 

the type Yx[Ix ~ I_sx] ; it can be obtained by a formal derivation of vx[Ix ~ Isx] . 

Let u : Ix. We look for a term of type I_sx, i.e. VX[Yy[Xy w X_sy], X_O ~ X_sx]. 

Let f : Yy[Xy ~ X_sy], and a : X_O. In this context we have u : vy[Xy ~ X_sy], X_O ~ Xx 

and therefore (p f a) : Xx; because f : vy[Xy ~ X_sy], we have also 

(f (u f a)) : X_sx. Finally hu.hf.hx.(f (u f a)) : Yx[Ix ~ I_sx]. 

We obtain the representation s = Ap.Af.Ax.(f (u f a)) for the constructor s, which 

is precisely a term for the successor function on the Church numerals. 

Now we can complete our intended model by interpreting 0 by 0 and s by the 

function generated by s. The crucial property is that the Church numeral (s n O) is 

the unique term of type Isno. More precisely we define a for~ data t~mpe as a 

formula A[x] such that there is an interpretation of individual and function 

constants such that the following holds in the model: 

y e A[x]  ~ y = x A  A [ x ] .  

It is readily seen that Ix is a formal data type. In fact all the usual data types 

can be defined by formal data types. 

1 . 6  Logic  a s  a h i g h  l e v e l  p r o ~  laugua~e .  

I n  o r d e r  t o  p r o g r a m  a f u n c t i o n  

f u n c t i o n  f rom I t o  I ) ,  we h a v e  t o  

( a )  

(b)  

(c) 

Why do we 

term t o f  

type, we 

between data types (say the predecessor 

introduce a function constant p. 

find a set of equations which uniquely determine p on I, for example 

_0 and pax = x, and interpret ~ by a function satisfying these equations. 

derive a term of type Yx(Ix-~ Ipx) using the previous set of equations. 

obtain in that way a program for the predecessor function? Consider a 

type Vx(Ix ~ Ipx) and a term u satisfying Ix; because IX is a formal data 

have (t u) = p[u]; therefore t is a program for the function p on I and 

thus for the predecessor function. 

This programming method extends to all the usual data types. The correctness 

of the programs is ensured by the way we derive them (we just have to verify that 

the deduction rules are well applied, and this can be checked automatically). 

EXample: a program for the addition 

We introduce a binary function constant s, and the usual equations defining 

addition: x • _0 = x, x @ _sy = _s[x @ y]. Then we look for a term t of type 

VxVy[Ix, Iy ~ I[x • y]]. 

type 

L e t  u : I x ,  g : I y ,  f :Vy[Xy -~ X s y l ,  and  a : X 0; we h a v e  t o  f i n d  a t e r m  o f  

X[x • y] in this context; we proceed by induction i.e. we look for terms of 
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type X[x • O] and ¥z[X[x • z] ~ X[x • s z ] ] .  

C lea r ly  (u f x) is  of  type Xx and thus of  type X[x • 2] (by the f i r s t  equat ion) ,  

By R5 and R4, f i s  of  type ¥z[X[x • z] ~ Xs[x • z]] and by the second equation of  

type vz[X[x • z] ~ X[x • sz]]. By R7, with B = X[x • .], ~ is of type 

v z [ x [ x  ® z] ~ X[x ® ~ z ] ] ,  x[x • 2] ~ X[x ® y ] .  

Therefore (~ f (u f x)) i s  of  type X[x • y]. F ina l ly  Au.A~.Af.Ax.(~ f (u f x)) i s  

of type WxWy[Ix, Iy ~ I[x • y]] and thus a program for addition. 

2. TI~ QUESTION OF EFFICIENCY 

Intuitionistic logic certainly provides a programming language allowing to 

write exact specifications and correct programs. But doing so, correctness has a 

counterpart: programs are often not efficient. There is first a practical reason: 

programming being reduced to the search of proofs, one can write programs without 

thinking at "how the program works". But in fact, inefficienc 3, is the main objec- 

tion to the "programming by proof" approach: we can disting~/ish three theoretical 

sources of inefficiency: 

(i) the better proofs from a conceptual point of view are not necessary the 

better ones from an algorithmic point of view. 

(ii) the efficient algorithms of pure lambda-calculus do not always come from 

proofs, even in second order intuitionistic logic. 

(iii) the efficient algorithms are not always expressible in pure lambda- 

calculus. 

The order in which these problems are enumerated indicates the increasing 

difficulties to find remedies for them. The first one does not call our approach in 

question: it just says that we must learn what are the best proofs from an algori- 

thJmic point of view (for instance, an immoderate use of proofs by induction can 

lead to disastrous algorithms). The second one objects to the choice of the high 

level language: the crude version of second order intuitionistic logic does not 

provide a real programming langn/age, and we must at least construct more elaborate 

versions. The third one is a priori more worrying: our machine language seems too 

weak; fortunatly there is another possible diagnosis: the existence of some algori- 

thras depends on the coding of the data in lambda-calculus. Let us give simple 

examples for the last two problems. 

In order to program the inf of two natural numbers we have %o deduce the statement 

"if x and y are natural numbers, then inf[x,y] is a natural number" from the set of 

equations defining the inf; doing this we must choose x or y as base of the induc- 

tion; if for instance we choose x, then the resulting program will need at least 

5]2 steps to compute inf[5]2,0]! In fact there exists a program in lambda-calculus 
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which computes inf[x,y] in inf[x,y] steps, but it doesn't come from a proof 

(thisresult is proved in J.L. KRIVINE [12] ). 

The situation get worse if we try to construct a program computing the predecessor 

of a natural number. The classical definition of natural numbers by induction gives 

the Church numerals (which are of the form Af.hx.(f n x)); whereas the program for 

the successor function is obtained by a direct proof, all the programs for the 

predecessor function require a proof by induction, which means from an algorithmic 

point of view that the computation of the predecessor of 512 uses at least 512 

steps! Moreover, the proof by induction which gives a "bad" algorithm is essen- 

tially the only possible one, and even in pure lambda-calculus no better algorithm 

exists.The same phenomena appears for all the usual data types: we are in the 

situation of a LISP language without direct access to the cdr of the lists (each 

time we need to recalculate the entire list). Such a situation become disastrous 

when we execute complicated programs such as sorting programs where the call to the 

cdr is iterated. 

How to solve these basic difficulties without destroying the essential~ i.e. 

programming with proofs in order to obtain correct programs? There are at least two 

ways that give enought new algorithms: we can either extend lambda-calculus, or 

change the definition of the data types. Here we will take the second way and 

present a solution based on the semantic notion of type. Because of lack of space, 

we only investigate the example of the predecessor. 

3 .  I~ECUI~IVE DATA TYPES 

We look for definitions of data types satisfying the following requirements: 

(a) the definition must be a formal data type in order £o obtain correct 

programs. 

(b) the representation of data must allow efficient programming (in parti- 

cular direct access to cdr). 

(e) the formula defining the data type must remain closely related to our 

intuition o f  the d a t a  type. 

Two kinds of solutions have a particular interest: we will present them for 

the type of natural numbers, but they easely extend to all usual data types. They 

are based on a deep use of the semantic notion of type: instead of considering a 

type as a formula, we will consider a type as predicate defined by axioms. 

3.1 The type Number 

We introduce a unary predicate constant N and two constructors O (for zero) 
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and o (for the successor function)~ We define the intuitionistic interpretation 

y ~ lqx of the type Number N as the minimal solution K of the equation 

Kx : vY[Vy[Ky, Xy ~ Xoy], XO ~ Xx] 

Note that because K occurs positively in VX[vy[Ky, Xy ~ Xoy], X_0 ~ Xx] ,this 

solution exists. 

One possible motivation for this recursive definition of the type Number is the 

following: the equation Nx = VX[Vy[Ny, Xy ~ Xo_y], X_0 ~ Xx] is a possible formula- 

tion of induction where the induction step is not formulated for arbitrary elements 

but just for natural numbers. 

Representation of the constructbrs. 

A representation 0 of the constructor O in lambda-calculus is given by a term 

in the type N_0, i.e. in the type VX[vy[Ny, Xy ~ ~/_y], X_0 ~ g_0]. Clearly Af.Aa.a is 

in this type, an~ we have the same representation as for the type Iterator. 

A representation a of the constructor a in lambda-calculus is given by a term 

in Vx[Nx ~ No_x]. Let u ~ Nx~ f E vy[Ny, Xy ~ Xoy] and a ~ X_0; then (u f a) ~ Xx 

and (f u) E Xx ~ Xc/x; therefore ((f u) (u f a)) E Xc/_x and finally 

Au.Af.Aa.((f u) (u f a)) E vx[Nx ~ K/x]. 

We complete our intended model by interpreting O by 0 and o by the function 

generated by ~. Because we have a predicate instead of a formula we must also 

define the classical interpretation Nx of the type Number N. Of course, we take 

"the smallest set containing 0 and closed by the function generated by a"; this 

mean that the following holds in the model: Nx ~ vX[vy[Xy ~ X_sy], X_Q0 ~ Xx]. It is 

easy to see that with this interpretation Nx is a formal data type. 

An equivalent definition of the type Number. 

We can give an inductive definition of the type Number using a universal 

formal data type U defined as follows: the intuitionistic interpretation is defined 

in the model by VxVy[x ~ ~y ~ x = y], and the classical one is just A (note that 

this type is not syntactically definable). The new definition of the type Number Nx 

is just VX[Vy[Uy, Xy ~ Xoy], XO ~ X×]. 

This definition gives a new intuition of the type Number: take the definition 

Ix of the type of iterators but replace the trivial interpretation of the universal 

quantification by the traditional constructivist one: a proof of VxA is a function 

which associates to each element u of the domain a proof of A[u/x]. 

Ex~Dle: a program for the predecessor 

The type Number has an essential property which is due to its recursive 

definition: there exists a program which compute the predecessor in one step (to be 

more precise: by five elementary reductions). We introduce a new function constant 

S and two axioms which define fl semantically 
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~X = x 

We have to find a term t ~ Vx[Nx ~ NSx]. Let u E Nx; by specialization to NS., we 

obtain u E [Vy[Ny, Nay ~ N~y], N~_Q0 ~ Nax], and by the equations 

u e [Vy[Ny, NaY ~ Ny], NO ~ Nax]. 

C l e a r l y  Ax.Ay.x e Vy[Ny, NaY ~ Ny] and Ax.Ay.y e NO; 

t h e r e f o r e  (u h x . h y . x  Ax.Ay.y) e Nax and hu . (u  Ax.hy.x  Ax.Ay.y) e vx(Nx ~ Nflx). 

Example: i n d u c t i v e  programming on the  type  number. 

Though the type Number has a recursive definition it allows to program using 

proofs by induction. As an example we will construct a program which translates 

numbers into iterators. We introduce an unary function constant h and axioms 

semantically defining 

h0 = 0 

__~x = s hx 

We have to find a term t E Vx(Nx ~ lhx). Let u E Nx. By specialization to Ih., we 

obtain u ~ [Vy[Ny, I_hy ~ Ih_qy], Ih_O0 ~ If/x] and using the equations 

u ~ [vy[Ny~ Ihy ~ Ishy], I n ~ I hx]. We have Au.Av. (s v) ~ Vy[Ny, l hy ~ Ishy] and 

Af.Ax.x E I n. Therefore (u Au.Av.(s v) Af.Ax.x) e I_hx and 

Au.(u Au. Av.(s v) Af. Ax.x) is the term we looked for. 

A comparison. 

There is an interesting formal analogy between this new representation of the 

natural numbers and the Von Neumann~s representation of natural numbers in Set 

Theory: 

n+l in Lambda-calculus Af.Ax.(f n (n f x)) 

n+l in Set Theory {n) U n 

In the first part of the representation of n+l, we have n as a complete entity, 

whereas in the second part n is executed: it is precisely the first part of the 

representation which allows to compute directly the predecessor. 

From a computational point of view, this representation has an apparent 

inconvenient from the programming point of rue: as for the Von Neumann~s represen- 

tation, the developed form of the natural number n has lenght zno We will see later 

that this is no real problem; however, it would be nice to have a type for natural 

numbers with direct access to the predecessor and a developed representation of n 

of lenght n. This is in fact possible: in the same way the iterators are obtained 

from the numbers by just keeping the second part of the representation, we can 

obtain other natural numbers (called "stacks"), which will have the required 

properties, by just keeping the first part of the representation. 
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3.2 The tYPe  S t a c k  

We introduce a unary predicate constant S and two constructors O (for zero) 

and i (for the successor function). We define the intuitionistic interpretation 

y e Sx of the type Stack S as the minimal solution K of the equation 

Kx = vX[Vy[Ky ~ X/y], X_0 ~ Xx] 

Note that the definitions of the types Iterator and Stack are both obtained from 

that of the type Number by removing a part of the definition: either Ky or Xy. 

Representation of the constructors. 

The representation of the constructors of the type Stack is obtained as for 

the type Number: the representations of O and ~ are respectively 0 = Af.Aa.a and 

= Au.Af.ha.(f u). We interpret O by 0 and Z by the function generated by r, and 

define the classical interpretation Sx of the type Stack in the model by: 

Sx ~ vX[¥y[Xy ~ X~y], X_0 ~ Xx]. With this interpretation, Sx is a formal data type. 

Example: a program for the predecessor 

We introduce a new function constant K and two axioms which define K semanti- 

cally: r0 = 0 and rTx = x. 

We have to find a term t E Vx[Sx ~ S~x]. Let u e Sx; by specialization to S~. we 

obtain u E [vy[Sy ~ Sr_ty], SrO ~ SXx], and by the equations 

u E [vy[Sy ~ Sy], S0 ~ S_rx]. 

Clearly Ax.x e [wy[Sy ~ Sy] and Ax.Ay.y e $0; 

therefore (u Ax.x Ay.Ax.y) e SXx and Au.(u Ax.x Ay.Ax.y) e Vx(Sx ~ S_rx). 

In the case of stacks we again obtain a program which compute the predecessor 

in one step, and this time we have a representation of lengh% n for the natural 

number n. There is however an apparent problem: how can we make proofs by induction 

with this purely recursive definition of the type? 

4 .  ~ I l ~  USING ~6"I~SIYE DATA TYPES 

In the case where a type is defined by induction, like the type Iterator, we 

obtain directly a term for the proofs by induction. For instance the term 

ind = Ax.hf.hu.(u f x) is in the type VX[X0, Vy[Xy ~ X~y] ~ Vx[Ix ~ Xx]], and  comes 

directly from a proof of this statement. But for types having a purely recursive 

definition, we have to construct such a term using a metareasoning. 

Induction on the type Stack 

We look f o r  a term r e c  in t h e  t y p e  VX[XO, Vy[Xy ~ XXy I ~ Vx[Sx  ~ Xx] ] ;  
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assuming ~ e XO et ~ e vy[Xy ~ XZy], we have to find a term ~ in the type 

v×[Sx ~ X×]. 

lem~a: if • satisfies the equations 

(~ O) = = 

(v ZY) = (~ (~ Y)), 

t h e n  • e vx[Sx ~ Xx]. 

p r o o f .  We have  t o  p r o v e  t h a t  (~ y) e Xx f o l l c ~ s  f rom t h e  h y p o t h e s i s  y ~ Sx; 

b e c a u s e  Sx i s  a fo rma l  d a t a  t y p e ,  i t  s u f f i c e s  to  p r o v e  t h a t  (~ x) e Xx f o l l o w s  

from the hypothesis Sx, or equivalently from the hypothesis 

vX[vy[Xy ~ XZy], XO ~ Xx]. We proceed by induction (formally this means that 

we specialize the previous formula to (7 .) e X.): for x : O, the first 

equation gives the result; now assume that (~ y) e Xy; because 

e vy[Xy ~ XZy] we have (~ (~ y)) e X_Ty and by the second equation 

(~ ~y) e XZY. 

It remains to find ~ satisfying the equations of the ]emma. Because elements of the 

type Stack are binary functions, we look for a term ~ of the form Ax.t[(x p ~)] 

where t,p,t are unknown (intuitively, c is the initial condition and p the 

recursive one). It follows 

(~ ZY) = t[(zy p ~)] = t[(p y)] 

and the equations become 

tic] = a 

t [ ( p  y ) ]  = (# t [ ( y p  ~ ) ] ) .  

Because p appears in the second part of the equation, we will have a recursive call 

of p. The simplest possible form for t is t[z] = (z p). In this case the equations 

are 

(P Y P) : (~ (Y # t p ) ) .  

We can take 

t = Ad,a 

p = Ay.Ar.(# (y r ~ r)). 

Finally we have • = Ax.(x p ~ p), with the previous values for p and t. 

Example. 

Having the possibility of reasoning by induction on stacks, we are able to 

construct all the programs we want using the general method presented for the type 

iterator. As an example we give a program translating stacks into iterators. 

Consider a unary function constant f and the following set of equations which 

semantically define the translation 
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fO = 0 

fzx =_sfx. 

We have to find a term t in Yx[Sx ~ Ifx]. It follows directly from the equations 

that 

0 e If_O 

s e Vy[Ify~ Ifzy]. 

(recall that 0 and s are the programs for the constructors of the type I) 

Therefore Ax.(x p 0 p) with p = hy.Ar.(s (y r 0 r) is in the type Vx[Sx ~ Ifx]. 

Two kinds of induction on the type Number. 

In the case of the type N, we have two terms for proofs by induction, which 

gives two completely different progrann~ing methods. The first one, which is the 

analogue of the term ind for the type I, follows the inductive definition of the 

type N: a direct proof shows that Ax.Af.Au.(u Ad.f x) is in the type 

VX[XO, Vy[Xy ~ XLv] ~ Vx[Ix ~ Xx]]. The second one is obtained using the same 

reasoning as in the case of the term rec for the type S, and has the same recursive 

nature: this term is Ax.Af.Au.(u p ~ p), with ~ = Ad.x and 

p = Ay. Az. Ar.(f (y r ~ r)). 

Therefore, for the type number we can choose, depending of the function we 

want to compute, either an inductive progrsaming method or a recursive one or even 

mix them together, and this flexibility increases our ability to write efficient 

programs. 

We will now briefly explain why the fact that the number n has a normal 

representation of lenght 2 n is not an objection for programming. We have to distin- 

guish between execution (which is not a rewriting for the implementation we have in 

mind) and output storage. For input and output, we can choose a representation of 

lenght n for the number n, for instance (a n 0). During the execution the developped 

form of n, which is a binary tree of height n, never appears: execution corresponds 

to a run along a branch of the tree (the two progranwaing methods correspond to runs 

along the left-most branch and the right-most branch). 

A T ~ O I ~ f f Y  CONCLUSION 

In the case of inductively defined data types, it is possible to program just 

using proofs. But doing so we are condemned to write inefficient programs. On the 

other hand with recursive data types~ we have to construct preliminary tools using 

a different method; but then we can write efficient programs just using proofs (and 

thus ensuring correctness). 
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Once we have  found  t h e  te rm r e c ,  we can g i v e  an 

t he  type  S in  t h e  s t y l e  o f  P. MARTIN-LOF [16]:  

S - i n t r o d u c t i o n  

S-elimination 

alternative presentation of 

OeS_O yeSx 

(~ y) e SZy 

u ~ Xy 

c G Sx a s X_O (fl u) E XLY 

( rec ~ ~ c) e XX 

An essential difference with MARTIN-LOF's approach is that the definition of the 

type S gives the implementation of O, 7 and rec. 

The point which seems to be a difficulty for prograyaning with recursive data 

types in comparison with inductive data types, namely the fact that for each data 

type we have to construct preliminary tools like rec, can be overcome using an 

other programming method based on the universal data type U and a fixed point 

operator (see [18]). 
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