
I~O~RaMMING WITH I'HOOFS: A SEC~I~ OIM)FJ~ TYPE THEORY

Michel PARIGOT
Equipe de Logique, CNRS UA 753

Universit6 Paris 7, UFR de Math~matiques,
2 place Jussieu, 75251 PARIS Cedex 05

Abstr~act

We discuss the possibility to construct a programming language in
which we can program by proofs, in order to ensure program correct-
ness. The logical framework we use is presented in [13],

The main objection to that kind of approach to programming being
the inefficiency of the program produced by proofs, the greater part
of the paper is devoted to investigate how to define data types and
how to construct programs for combining proofs and efficiency. Seve-
ral solutions are proposed using recursive data types which lead, in
particular, to new representations of natural numbers in lambda-
calculus.

Tntroductiem: proofs as pro~.

We know that in mathematics the problem of the correctness has been solved for

a long time: the correctness of a (detailed) proof is easy to verify, even automa-

tically. We also know that a constructive proof of a theorem has an algorithmic

content. Putting these two facts together, we are tempted to consider (formalized)

mathematics as a programming language. This would mean that writing a program

satisfying some specifications becomes writing a proof of a statement expressing

these specifications.

The theoretical basis of this approach exists: it can be found in the works of

logicians on intuitionistic logic~ essentially HEYTINGj MARTIN-LOF and GIRARD. The

Heyting semantics for intuitionistic logic explains proofs in terms of programs~

and if we invert the perspective it gives a foundation for a programming language

where programs are proofs (the essential point in this semantics is that a proof of

A ~ B is an algorithm which transform each proof of A into a proof of B.).

There has been a lot of works using this principle, mainly N.G. deBRUIJN [2],

R.L. CONSTABLE [5], J.C. REYNOLDS [19], T. COQUAND [3]. We will discuss here an

other approach presented in [ii] and [13], based on second order intuitionistic

logic, which allows to write in a natural way exact specifications and correct

programs.

The paper is organized as follows. In ~I we recall the general theory:

146

syntactic and semantic notions of type; definition of data types by second order

formulas and extraction by proof of a representation of the data from the defini-

tion; expression of the specifications of a program and extraction by proof of a

program which meets these specifications. In ~2 we discuss the problem of

efficiency and conclude to the necessity of new representations of data. In §3 we

presents two kind of solutions using recursive definition of data types, which

leads to new representations of the data allowing to write efficient programs: in

particular we obtain new representations of natural numbers in ismbda-calculus for

which there exists a program computing the predecessor in one step. Finally we

present in ~4 a way of programming by proofs with these recursive data types.

1. INTUITIONISTIC SECOND OB~ LOGIC AS A ~ LANGUAGE

1.1 ~ d a - - c a l c u l u s a s a s a c h i n e l a n g u a g e

To really become programs, proofs which naturally appear as trees, have to be

linearly coded as terms of lambda-calculus.

The terms of lambda-calculus are obtained from variables x,y,z.., by a finite

number of applications of the following rules:

(a) if t and u are terms, then (t u) is a term - which represents the appli-

cation of the function t to the argument u.

(b) if x is a variable and t is a term, then Ax.t is a term - which repre-

sents the function x ~-. t.

The notion of ~£a£ion for terms is the reduction: a reduction in the term

t is the replacement of the leftmost subterm of the form (Ax.u v) by u[v/x] (i.e

the result of substituting v to the occurrences of x in u). We say that a term t is

reducible to a term t' (and note t = t') if t' is obtained from t by a finite

number of reductions. A term is normal if it does not contain a subterm of the form

(Ax.u v). In order to compute a function t on an argltment u we reduce the term

(t u); there are two possibilities: either we obtain, after a finite number of

reductions, a normal term which is called the result of the computation, or there

is an infinite number of possible reductions and the computation does not termi-

nate. Using this notion of computation, all the recursive functions are represen-

table by terms of the lambda-calculus.

I£ is possible to transform lambda-calculus in a programming language using an

implementation of reduction. In fact it can be considered as a real machine

language, where the symbols of lambda-calculus (,A,x are interpreted as elementary

instructions. Such an implementation has been realized by J.L. KR[VINE.

147

1.2 . The l o g i c a l framework

The l o g i c a l language c o n t a i n s l o g i c a l symbols, f i x e d p a r a m e t e r s , and a d d i -

t i o n a l pa rame te r s depending o f t he da ta t ypes we c o n s i d e r . The l o g i c a l symbols a re :

the connective ~, the quantifier ¥, individual variables: x, y, z ..., predicate

variables of arbitrary arity: X,Y,Z... The fixed parameters are: a binary

function constant Ap (application) and two individual constants K,S (combinators).

Additional parameters contains predicate constants of arbitrary arity (predicate

constants of arity 0 are called propositional constants), and function constants of

arbitrary arity (function constants of arity 0 are called individual constants).

The individual terms and the (second order) formulas are defined in the usual

way using this logical language. Note that in second order (intuitionistic) logic,

the logical symbols I,A,V,~ and B, as well as the identity relation =, are defi-

nable from ~ and V: for instance A A B is defined by VX[[A ~ [B ~ X]] ~ X].

The intended model a, representing the programs from a denotational point of

view, is the following. The universe is the set A of terms of lambda-calculus

modulo reduction (more precisely modulo ~-reduction). The function ~4~ is interpre-

ted by the function u,v ~-. (u v). The constants K and S are interpreted by hx.hy.x

and hx. Ay.Az.((x z) (y z)) respectively. This model is in fact the usual way of

coding lambda-ealculus into a logical structure used in Combinatery Logic; it will

be enriched by interpretations of the additional parameters. In the sequel term

will also mean term modulo reduction.

The rules of proof for second order logic are the following (A, B denotes

formulas and F sequences o f fo rmulas) :

R1 A ~ A.

R2 if F, A ~ B, then r ~ A ~ B.

R3 if f ~ A ~ B and f ~ A, then P ~ B.

R4 if P ~ A and x is an individual

free in F, then F ~ VxA.

R5 if P ~ VxA and b is an individual term, then

f ~ A~b/x].

R6 i f f ~ A and X i s a p r e d i c a t e v a r i a b l e

in F, then r ~ ¥XA.

R7

R8

R9

The rules

(axiom)

(a b s t r a c t i o n)

(a p p l i c a t i o n)

variable which does not

(generalisation)

occur

(s p e c i a l i z a t i o n)

which does no t occur f r e e

(g e n e r a l i s a t i o n)

i f F ~ VXA and B i s a formula , then F ~ A[B/X]. (s p e c i a l i z a t i o n)

i f f ~ A, and d i s o b t a i n e d from F by pe rmu ta t i on , c o n t r a c t i o n or e x t e n -

s i o n , then 4 ~ A. (t h i s pa l e w i l l be o m i t t e d in formal d e r i v a t i o n s)

if F ~ -~A, then F ~ A (RA)

R1 to R8 are the rules for intuitionistic second order logic.

148

!.,3 The s y n t a c t i c n o t i o n o f ~ .

From the point of view of Heyting semantics the rules of proof for intuitic-

nistic logic can be considered as construction rules for programs (terms). Instead

of handling formulas we handle expressions like t : A (read t is n term of t~ A),

the hypothesis being replaced by variables declarations x : A. The rules become:

R1 x : A ~ x : A.

R2 if F, x : A ~ t : B, then P ~ Ax.t : A ~ B.

R3 if f ~ t : A ~ B and F ~ u : A, then F ~ (t u) : B.

R4 if F ~ t : A and x is an individual variable which does not occur free in

F, then r ~ t : VxA.

R5 if F ~ t : vxA and b is an individual term, then F ~ t : A[b/x].

R6 if F ~ t : A and X is a predicate variable which does not occur free in

F, then F ~ t : VXA.

R7 if F ~ t : VXA and B is a formula, then F ~ t : A[B/X].

R8 if F ~ t : A, and ~ is a sequence obtained from F by permutation,

contraction or extension, then d ~ t : A.

From a programming point of view the expression "t is of type A", which relies

a term to a formula, has to be read "the program t realizes the specification A".

Terms of lambda-calculus represent programs in machine language, whereas formu-las

represent specifications expressed in a high level language. It remains to explain

the relation between the program and the specification.

There are two well-known properties of terms obtained by proofs :

preservation and t~tion. The first one, which says that if a term t reduces to

a term t ~ and t is of type A then t' is of type A, is essentially evident. The

second one is much deeper: whereas the terms of lambda-calculus allow to represent

all algorithms~ including those which do not terminate, the terms obtained from

proofs represent algorithm which always terminate. More precisely, each time we

derive an expression "t : A" we are sure that t reduces to a normal term. This

property becomes more and more difficult to prove when the expressive power of the

logic increase (the proof for second order logic is due to GIRARD [7]).

There is one more essential property: second order intuitionistic logic can be

considered as a programming language allowing to write exact specifications and

¢ ~ t pro~. We will detail this point using a semantic notion of type.

.!....4 The s e m m t i c n o t i o n o f type .

The expression t : A (t is of type A) has been defined syntactically using the

deduction rules for intuitionistie second order logic. But we can view a type A as

t49

a set, namely the set of terms of type A (or propositional traces of proofs of A).

Doing so we can define a kind of intuitionistic semantic in the style of LAUCHLI

[14]: a statement being interpreted by a subset of A (instead of a boolean value),

a unary predicate by a function from A into ~'(A) (or equivalently by a binary

relation on A), It can be defined using the classical semantic of formulas in

the Model A in the following way: we associate to each n-ary predicate variable X

(reap. n-ary predicate constant P) a (n+l)-ary predicate variable X' (reap.

(n+l)-ary predicate constant P'), and define inductively, for each formula A and

variable y, a formula y ~ A as follows

y E //Xl...x n := /['Xl.~.XnY (for /[' predicate variable or constant)

y e A~ B := Vz[z e A~ (y z) e B]

y e VxA := Vx[y ~ A]

y e VXA := V×'[y e A]

Now we have a semantic notion of type t e A ("t is in the type A") - meaning

that the statement t E A is true in the intended model. The following lem~a shows

that the semantic notion of type extends the syntactic one in the sense that all

the programs typable from the syntactical point of view are also typable with the

same type from the semantical point of view.

Comservntiom l~a: Let A be a statement. If t : A, then t ~ A.

The equality between types, A = B, is defined as Vy[y e A .~ y ~ B].

1 .5 D e f i n i t i o n o f data t ~ -

The second order formalism allows natural definitions for all the data types

usually defined by induction: integers, lists, trees For instance, the set of

natural numbers can be defined as "the smallest set containing zero and closed by

the successor operation". Formally we introduce parameters for the constructors of

the type: an individual constant _0 (for zero) and a function constant s_ (for the

successor operation), and consider the formula Ix saying "x is a natural number"

v X [v y [X y -~ X_syJ, ~ -. x x] .

(we use A, B ~ C as an abbreviation for A ~ [B -+ C])

A representation of the constructor _0 in lambda-calculus is given by a term in

the type I_0; it can be obtain by a formal derivation of I0

f : Y y [X y ~ X s y] , a : X..QOt.- a : X_O (b y R1)

f : Vy[Xy -~ X_sy], F- ha.a : X_0 -, X_0 (by R2)

~- Af. Aa.a : Vy[Xy ~ X_sy], X_O ~ X_O (by R2)

}- hf.ha.a : VX[vy[Xy -, Xsy], X0_ -~ X_0] (by R6)

We obtain the representation 0 = hf. Ax.x for the constructor _0, which is precisely

150

the Church numeral O.

A representation of the constructor s in lambda-calculus is given by a term in

the type Yx[Ix ~ I_sx] ; it can be obtained by a formal derivation of vx[Ix ~ Isx] .

Let u : Ix. We look for a term of type I_sx, i.e. VX[Yy[Xy w X_sy], X_O ~ X_sx].

Let f : Yy[Xy ~ X_sy], and a : X_O. In this context we have u : vy[Xy ~ X_sy], X_O ~ Xx

and therefore (p f a) : Xx; because f : vy[Xy ~ X_sy], we have also

(f (u f a)) : X_sx. Finally hu.hf.hx.(f (u f a)) : Yx[Ix ~ I_sx].

We obtain the representation s = Ap.Af.Ax.(f (u f a)) for the constructor s, which

is precisely a term for the successor function on the Church numerals.

Now we can complete our intended model by interpreting 0 by 0 and s by the

function generated by s. The crucial property is that the Church numeral (s n O) is

the unique term of type Isno. More precisely we define a for~ data t~mpe as a

formula A[x] such that there is an interpretation of individual and function

constants such that the following holds in the model:

y e A[x] ~ y = x A A [x] .

It is readily seen that Ix is a formal data type. In fact all the usual data types

can be defined by formal data types.

1 . 6 Logic a s a h i g h l e v e l p r o ~ laugua~e .

I n o r d e r t o p r o g r a m a f u n c t i o n

f u n c t i o n f rom I t o I) , we h a v e t o

(a)

(b)

(c)

Why do we

term t o f

type, we

between data types (say the predecessor

introduce a function constant p.

find a set of equations which uniquely determine p on I, for example

_0 and pax = x, and interpret ~ by a function satisfying these equations.

derive a term of type Yx(Ix-~ Ipx) using the previous set of equations.

obtain in that way a program for the predecessor function? Consider a

type Vx(Ix ~ Ipx) and a term u satisfying Ix; because IX is a formal data

have (t u) = p[u]; therefore t is a program for the function p on I and

thus for the predecessor function.

This programming method extends to all the usual data types. The correctness

of the programs is ensured by the way we derive them (we just have to verify that

the deduction rules are well applied, and this can be checked automatically).

EXample: a program for the addition

We introduce a binary function constant s, and the usual equations defining

addition: x • _0 = x, x @ _sy = _s[x @ y]. Then we look for a term t of type

VxVy[Ix, Iy ~ I[x • y]].

type

L e t u : I x , g : I y , f :Vy[Xy -~ X s y l , and a : X 0; we h a v e t o f i n d a t e r m o f

X[x • y] in this context; we proceed by induction i.e. we look for terms of

151

type X[x • O] and ¥z[X[x • z] ~ X[x • s z]] .

C lea r ly (u f x) is of type Xx and thus of type X[x • 2] (by the f i r s t equat ion) ,

By R5 and R4, f i s of type ¥z[X[x • z] ~ Xs[x • z]] and by the second equation of

type vz[X[x • z] ~ X[x • sz]]. By R7, with B = X[x • .], ~ is of type

v z [x [x ® z] ~ X[x ® ~ z]] , x[x • 2] ~ X[x ® y] .

Therefore (~ f (u f x)) i s of type X[x • y]. F ina l ly Au.A~.Af.Ax.(~ f (u f x)) i s

of type WxWy[Ix, Iy ~ I[x • y]] and thus a program for addition.

2. TI~ QUESTION OF EFFICIENCY

Intuitionistic logic certainly provides a programming language allowing to

write exact specifications and correct programs. But doing so, correctness has a

counterpart: programs are often not efficient. There is first a practical reason:

programming being reduced to the search of proofs, one can write programs without

thinking at "how the program works". But in fact, inefficienc 3, is the main objec-

tion to the "programming by proof" approach: we can disting~/ish three theoretical

sources of inefficiency:

(i) the better proofs from a conceptual point of view are not necessary the

better ones from an algorithmic point of view.

(ii) the efficient algorithms of pure lambda-calculus do not always come from

proofs, even in second order intuitionistic logic.

(iii) the efficient algorithms are not always expressible in pure lambda-

calculus.

The order in which these problems are enumerated indicates the increasing

difficulties to find remedies for them. The first one does not call our approach in

question: it just says that we must learn what are the best proofs from an algori-

thJmic point of view (for instance, an immoderate use of proofs by induction can

lead to disastrous algorithms). The second one objects to the choice of the high

level language: the crude version of second order intuitionistic logic does not

provide a real programming langn/age, and we must at least construct more elaborate

versions. The third one is a priori more worrying: our machine language seems too

weak; fortunatly there is another possible diagnosis: the existence of some algori-

thras depends on the coding of the data in lambda-calculus. Let us give simple

examples for the last two problems.

In order to program the inf of two natural numbers we have %o deduce the statement

"if x and y are natural numbers, then inf[x,y] is a natural number" from the set of

equations defining the inf; doing this we must choose x or y as base of the induc-

tion; if for instance we choose x, then the resulting program will need at least

5]2 steps to compute inf[5]2,0]! In fact there exists a program in lambda-calculus

152

which computes inf[x,y] in inf[x,y] steps, but it doesn't come from a proof

(thisresult is proved in J.L. KRIVINE [12]).

The situation get worse if we try to construct a program computing the predecessor

of a natural number. The classical definition of natural numbers by induction gives

the Church numerals (which are of the form Af.hx.(f n x)); whereas the program for

the successor function is obtained by a direct proof, all the programs for the

predecessor function require a proof by induction, which means from an algorithmic

point of view that the computation of the predecessor of 512 uses at least 512

steps! Moreover, the proof by induction which gives a "bad" algorithm is essen-

tially the only possible one, and even in pure lambda-calculus no better algorithm

exists.The same phenomena appears for all the usual data types: we are in the

situation of a LISP language without direct access to the cdr of the lists (each

time we need to recalculate the entire list). Such a situation become disastrous

when we execute complicated programs such as sorting programs where the call to the

cdr is iterated.

How to solve these basic difficulties without destroying the essential~ i.e.

programming with proofs in order to obtain correct programs? There are at least two

ways that give enought new algorithms: we can either extend lambda-calculus, or

change the definition of the data types. Here we will take the second way and

present a solution based on the semantic notion of type. Because of lack of space,

we only investigate the example of the predecessor.

3 . I~ECUI~IVE DATA TYPES

We look for definitions of data types satisfying the following requirements:

(a) the definition must be a formal data type in order £o obtain correct

programs.

(b) the representation of data must allow efficient programming (in parti-

cular direct access to cdr).

(e) the formula defining the data type must remain closely related to our

intuition o f the d a t a type.

Two kinds of solutions have a particular interest: we will present them for

the type of natural numbers, but they easely extend to all usual data types. They

are based on a deep use of the semantic notion of type: instead of considering a

type as a formula, we will consider a type as predicate defined by axioms.

3.1 The type Number

We introduce a unary predicate constant N and two constructors O (for zero)

153

and o (for the successor function)~ We define the intuitionistic interpretation

y ~ lqx of the type Number N as the minimal solution K of the equation

Kx : vY[Vy[Ky, Xy ~ Xoy], XO ~ Xx]

Note that because K occurs positively in VX[vy[Ky, Xy ~ Xoy], X_0 ~ Xx] ,this

solution exists.

One possible motivation for this recursive definition of the type Number is the

following: the equation Nx = VX[Vy[Ny, Xy ~ Xo_y], X_0 ~ Xx] is a possible formula-

tion of induction where the induction step is not formulated for arbitrary elements

but just for natural numbers.

Representation of the constructbrs.

A representation 0 of the constructor O in lambda-calculus is given by a term

in the type N_0, i.e. in the type VX[vy[Ny, Xy ~ ~/_y], X_0 ~ g_0]. Clearly Af.Aa.a is

in this type, an~ we have the same representation as for the type Iterator.

A representation a of the constructor a in lambda-calculus is given by a term

in Vx[Nx ~ No_x]. Let u ~ Nx~ f E vy[Ny, Xy ~ Xoy] and a ~ X_0; then (u f a) ~ Xx

and (f u) E Xx ~ Xc/x; therefore ((f u) (u f a)) E Xc/_x and finally

Au.Af.Aa.((f u) (u f a)) E vx[Nx ~ K/x].

We complete our intended model by interpreting O by 0 and o by the function

generated by ~. Because we have a predicate instead of a formula we must also

define the classical interpretation Nx of the type Number N. Of course, we take

"the smallest set containing 0 and closed by the function generated by a"; this

mean that the following holds in the model: Nx ~ vX[vy[Xy ~ X_sy], X_Q0 ~ Xx]. It is

easy to see that with this interpretation Nx is a formal data type.

An equivalent definition of the type Number.

We can give an inductive definition of the type Number using a universal

formal data type U defined as follows: the intuitionistic interpretation is defined

in the model by VxVy[x ~ ~y ~ x = y], and the classical one is just A (note that

this type is not syntactically definable). The new definition of the type Number Nx

is just VX[Vy[Uy, Xy ~ Xoy], XO ~ X×].

This definition gives a new intuition of the type Number: take the definition

Ix of the type of iterators but replace the trivial interpretation of the universal

quantification by the traditional constructivist one: a proof of VxA is a function

which associates to each element u of the domain a proof of A[u/x].

Ex~Dle: a program for the predecessor

The type Number has an essential property which is due to its recursive

definition: there exists a program which compute the predecessor in one step (to be

more precise: by five elementary reductions). We introduce a new function constant

S and two axioms which define fl semantically

154

~X = x

We have to find a term t ~ Vx[Nx ~ NSx]. Let u E Nx; by specialization to NS., we

obtain u E [Vy[Ny, Nay ~ N~y], N~_Q0 ~ Nax], and by the equations

u e [Vy[Ny, NaY ~ Ny], NO ~ Nax].

C l e a r l y Ax.Ay.x e Vy[Ny, NaY ~ Ny] and Ax.Ay.y e NO;

t h e r e f o r e (u h x . h y . x Ax.Ay.y) e Nax and hu . (u Ax.hy.x Ax.Ay.y) e vx(Nx ~ Nflx).

Example: i n d u c t i v e programming on the type number.

Though the type Number has a recursive definition it allows to program using

proofs by induction. As an example we will construct a program which translates

numbers into iterators. We introduce an unary function constant h and axioms

semantically defining

h0 = 0

__~x = s hx

We have to find a term t E Vx(Nx ~ lhx). Let u E Nx. By specialization to Ih., we

obtain u ~ [Vy[Ny, I_hy ~ Ih_qy], Ih_O0 ~ If/x] and using the equations

u ~ [vy[Ny~ Ihy ~ Ishy], I n ~ I hx]. We have Au.Av. (s v) ~ Vy[Ny, l hy ~ Ishy] and

Af.Ax.x E I n. Therefore (u Au.Av.(s v) Af.Ax.x) e I_hx and

Au.(u Au. Av.(s v) Af. Ax.x) is the term we looked for.

A comparison.

There is an interesting formal analogy between this new representation of the

natural numbers and the Von Neumann~s representation of natural numbers in Set

Theory:

n+l in Lambda-calculus Af.Ax.(f n (n f x))

n+l in Set Theory {n) U n

In the first part of the representation of n+l, we have n as a complete entity,

whereas in the second part n is executed: it is precisely the first part of the

representation which allows to compute directly the predecessor.

From a computational point of view, this representation has an apparent

inconvenient from the programming point of rue: as for the Von Neumann~s represen-

tation, the developed form of the natural number n has lenght zno We will see later

that this is no real problem; however, it would be nice to have a type for natural

numbers with direct access to the predecessor and a developed representation of n

of lenght n. This is in fact possible: in the same way the iterators are obtained

from the numbers by just keeping the second part of the representation, we can

obtain other natural numbers (called "stacks"), which will have the required

properties, by just keeping the first part of the representation.

155

3.2 The tYPe S t a c k

We introduce a unary predicate constant S and two constructors O (for zero)

and i (for the successor function). We define the intuitionistic interpretation

y e Sx of the type Stack S as the minimal solution K of the equation

Kx = vX[Vy[Ky ~ X/y], X_0 ~ Xx]

Note that the definitions of the types Iterator and Stack are both obtained from

that of the type Number by removing a part of the definition: either Ky or Xy.

Representation of the constructors.

The representation of the constructors of the type Stack is obtained as for

the type Number: the representations of O and ~ are respectively 0 = Af.Aa.a and

= Au.Af.ha.(f u). We interpret O by 0 and Z by the function generated by r, and

define the classical interpretation Sx of the type Stack in the model by:

Sx ~ vX[¥y[Xy ~ X~y], X_0 ~ Xx]. With this interpretation, Sx is a formal data type.

Example: a program for the predecessor

We introduce a new function constant K and two axioms which define K semanti-

cally: r0 = 0 and rTx = x.

We have to find a term t E Vx[Sx ~ S~x]. Let u e Sx; by specialization to S~. we

obtain u E [vy[Sy ~ Sr_ty], SrO ~ SXx], and by the equations

u E [vy[Sy ~ Sy], S0 ~ S_rx].

Clearly Ax.x e [wy[Sy ~ Sy] and Ax.Ay.y e $0;

therefore (u Ax.x Ay.Ax.y) e SXx and Au.(u Ax.x Ay.Ax.y) e Vx(Sx ~ S_rx).

In the case of stacks we again obtain a program which compute the predecessor

in one step, and this time we have a representation of lengh% n for the natural

number n. There is however an apparent problem: how can we make proofs by induction

with this purely recursive definition of the type?

4 . ~ I l ~ USING ~6"I~SIYE DATA TYPES

In the case where a type is defined by induction, like the type Iterator, we

obtain directly a term for the proofs by induction. For instance the term

ind = Ax.hf.hu.(u f x) is in the type VX[X0, Vy[Xy ~ X~y] ~ Vx[Ix ~ Xx]], and comes

directly from a proof of this statement. But for types having a purely recursive

definition, we have to construct such a term using a metareasoning.

Induction on the type Stack

We look f o r a term r e c in t h e t y p e VX[XO, Vy[Xy ~ XXy I ~ Vx[Sx ~ Xx]] ;

156

assuming ~ e XO et ~ e vy[Xy ~ XZy], we have to find a term ~ in the type

v×[Sx ~ X×].

lem~a: if • satisfies the equations

(~ O) = =

(v ZY) = (~ (~ Y)),

t h e n • e vx[Sx ~ Xx].

p r o o f . We have t o p r o v e t h a t (~ y) e Xx f o l l c ~ s f rom t h e h y p o t h e s i s y ~ Sx;

b e c a u s e Sx i s a fo rma l d a t a t y p e , i t s u f f i c e s to p r o v e t h a t (~ x) e Xx f o l l o w s

from the hypothesis Sx, or equivalently from the hypothesis

vX[vy[Xy ~ XZy], XO ~ Xx]. We proceed by induction (formally this means that

we specialize the previous formula to (7 .) e X.): for x : O, the first

equation gives the result; now assume that (~ y) e Xy; because

e vy[Xy ~ XZy] we have (~ (~ y)) e X_Ty and by the second equation

(~ ~y) e XZY.

It remains to find ~ satisfying the equations of the]emma. Because elements of the

type Stack are binary functions, we look for a term ~ of the form Ax.t[(x p ~)]

where t,p,t are unknown (intuitively, c is the initial condition and p the

recursive one). It follows

(~ ZY) = t[(zy p ~)] = t[(p y)]

and the equations become

tic] = a

t [(p y)] = (# t [(y p ~)]) .

Because p appears in the second part of the equation, we will have a recursive call

of p. The simplest possible form for t is t[z] = (z p). In this case the equations

are

(P Y P) : (~ (Y # t p)) .

We can take

t = Ad,a

p = Ay.Ar.(# (y r ~ r)).

Finally we have • = Ax.(x p ~ p), with the previous values for p and t.

Example.

Having the possibility of reasoning by induction on stacks, we are able to

construct all the programs we want using the general method presented for the type

iterator. As an example we give a program translating stacks into iterators.

Consider a unary function constant f and the following set of equations which

semantically define the translation

157

fO = 0

fzx =_sfx.

We have to find a term t in Yx[Sx ~ Ifx]. It follows directly from the equations

that

0 e If_O

s e Vy[Ify~ Ifzy].

(recall that 0 and s are the programs for the constructors of the type I)

Therefore Ax.(x p 0 p) with p = hy.Ar.(s (y r 0 r) is in the type Vx[Sx ~ Ifx].

Two kinds of induction on the type Number.

In the case of the type N, we have two terms for proofs by induction, which

gives two completely different progrann~ing methods. The first one, which is the

analogue of the term ind for the type I, follows the inductive definition of the

type N: a direct proof shows that Ax.Af.Au.(u Ad.f x) is in the type

VX[XO, Vy[Xy ~ XLv] ~ Vx[Ix ~ Xx]]. The second one is obtained using the same

reasoning as in the case of the term rec for the type S, and has the same recursive

nature: this term is Ax.Af.Au.(u p ~ p), with ~ = Ad.x and

p = Ay. Az. Ar.(f (y r ~ r)).

Therefore, for the type number we can choose, depending of the function we

want to compute, either an inductive progrsaming method or a recursive one or even

mix them together, and this flexibility increases our ability to write efficient

programs.

We will now briefly explain why the fact that the number n has a normal

representation of lenght 2 n is not an objection for programming. We have to distin-

guish between execution (which is not a rewriting for the implementation we have in

mind) and output storage. For input and output, we can choose a representation of

lenght n for the number n, for instance (a n 0). During the execution the developped

form of n, which is a binary tree of height n, never appears: execution corresponds

to a run along a branch of the tree (the two progranwaing methods correspond to runs

along the left-most branch and the right-most branch).

A T ~ O I ~ f f Y CONCLUSION

In the case of inductively defined data types, it is possible to program just

using proofs. But doing so we are condemned to write inefficient programs. On the

other hand with recursive data types~ we have to construct preliminary tools using

a different method; but then we can write efficient programs just using proofs (and

thus ensuring correctness).

158

Once we have found t h e te rm r e c , we can g i v e an

t he type S in t h e s t y l e o f P. MARTIN-LOF [16]:

S - i n t r o d u c t i o n

S-elimination

alternative presentation of

OeS_O yeSx

(~ y) e SZy

u ~ Xy

c G Sx a s X_O (fl u) E XLY

(rec ~ ~ c) e XX

An essential difference with MARTIN-LOF's approach is that the definition of the

type S gives the implementation of O, 7 and rec.

The point which seems to be a difficulty for prograyaning with recursive data

types in comparison with inductive data types, namely the fact that for each data

type we have to construct preliminary tools like rec, can be overcome using an

other programming method based on the universal data type U and a fixed point

operator (see [18]).

BIBLIOGRAPHIE

[I] H.P. BARENDREGT, The Lambda Calculus, Studies in Logic,
North-Holland, 1981.

[2] N. DE BRUIJN, A survey of the project Automath, to H.B. CURRY:
essays on combinatory logic, A-calculus and formalism,
Seldin/Hindley (ads), pp 579-606, Academic Press, 1980.

[3] T. COQUAND, Une th~orie des constructions~ These de 3eme cycle,
Universit~ Paris 7, 1985.

[4] T. COQUAND, G. HUET, Constructlons: a higher order proof system for
mechanizing mathematics, Proc. EUROCAL 85, LNCS 203.

[5] R.L. CONSTABLE et. al., Imp]ementing Mathematics with the Nuprl
Proof Development System, Prentice-Hall, 1986.

[6] G. COUSINEAU, P.L. CURIEN, M. MAUNY, The categorlcal abstract
machine, LNCS 201, 1985.

[7] J . ¥ . GIRARD, Une e x t e n s i o n de 1 ' i n t e r p r e t a t i o n de G6del ~ t ' a n a l y s e ,
et son application ~l'~limlnatlon des coupures dans l'analyse et
dana la theorle des types, Proc. 2nd Scandinavian Logic Symp., pp
83-92, North-Holland, 1970.

[8] J.Y. GIRARD, Interpretation fonctionnelle et ~limlnatlon des
coupures de l'arith~tlque d'ordre s~perie~r, T~se d'~tat,
Universite Paris 7, 1972.

[9] J.Y. GIRARD, The System F of variab]e types, fifteen years later,
Theoretical Computer Science, 1987.

[10] W.A. HOWARD, The Formulae as types notion of construction,
manuscript, 1969 (published in Seldin/Hindley (eds), To H.B. CURRY:
essays on combinatory logic, A-calculus and formalism, pp 479-490,
Academic Press, 1980).

[11] J.L. KRIVINE, Progranm~atlon en Arithmetique Fonctionnelle dn Second
Ordre, manuscript.

[12] 5. L. KRIVINE, Un algorithme non typable dans le syst6me F, CRAS,
1987.

159

[13] J.L. KRIVINE, M. PARIGOT, Programming wlth proofs, preprint,
presented at 6th Symposium on Computation Theory, Wendisch-Rietz,
November 1987.

[14] H. LAUCHLI, An abstract notion of realizability for which intui-
tionlstlc predicate calculus is complete, in Kino/Myhi!I/vesley
(eds), Intuitionism and proof theory, pp Z27-234, North-Holland,
1970.

[15] P. MARTIN-LOF, Constructive Mathematics and Computer programming,
Proc. 6th Cong. Logic, Methodology and Philosophy of Science, pp
153-175, North-Holland, 1982.

[16] P. MARTIN-LOF, Intuitionistic type theory, Bibliopolis, 1984.
[17] M. PARIGOT, Preuves et programmes: les mathematiques comme langage

de programma t i on, Images des Ha th~ma t l ques , Courrier du CN~
(a paral%re).

[18] M. PARIGOT, Recursive programming with proofs, preprint~ december
1987.

[19] J.R. REYNOLDS,Three approaches to type structure, LNCS 185, 1985,
pp 97-138.

