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ABOUT PROPERTIES OF THE MEAN VALUE FUNCTIONAL AND OF THE CONTINUOUS 

INFIMAL CONVOLUTION IN STOCHASTIC CONVEX ANALYSIS 

Abstract : In stochastic convex programmlng numerous examples are to be found where 

the cost functional to be minimized is o~ the form o~ a mean value functional 

Ef[x) = fOf (x, ~) dP (~J where x £ ~n and w is an uncertain quantity-element of 

a probability space. The problem o~ minimizing Ef is a deterministic problem rela- 

ted to the stochastic convex program. To be able to apply the methods of convex 

optimizat±on and the theorems of convex analysis, it is important to Know the pro- 

perties of El, both topological end algebraic. The aim of this paper is to deter- 

mine the main properties and characteristics o~ the mean value functional Ef resul- 

tin~ from these corresponding to the functions f (,, ~). By the conJugecy operation, 

the mean value functional is closely related to the continuous infimsl convolution 

of which we shall also give some properties. Finally the different results obtained 

are applied to stochastic optimization problems, 

I - Notations and terminology 

We shall adopt throughout the notations and terminology o{ P.J. Laurent C E3 ]) for 

convex anslysle and those of R.T. RocKefeller [E7~) for measurable multivalued 

mappings.Let (~, (~, P) be a complete probability space, a~s. meaning "almost sure- 

ly". ~[ ~n × ~, -~ ) will denote the set of functions defined on ~n x ~ and 

taking their values in "~. In what follows C will usually designate a measurable 

multivslued mapping defined on ~, We recall that if C [w) is a nonempty closed con- 

vex set containing no whole lines, the measurability of C is equivalent to the me- 

surability of the support functions XC(.) (x') for every x' ([7] Corollary 3.2]. 

We shall say that C is a CK-valued mapping i{ C(w) is a.s. a nonempty compact con- 

vex set of ~n 
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As for the integrabllity of a measurable multivelued mapping, we shall recall 

the following fundamental definition end properties. 

Z.1. Definition : Let C be s measurable multlvalued mapping defined on O. By mathe- 

matioal expectation of C. we shall mean the set [it may be empty) denoted E (C] 

and defined by : 

E CC) = {E iX]  / X i n t e g r a b l e  s e l e c t o r  o f  C~ 

where an i n t e g r a b l e  s e l e c t o r  o f  C i s  an f n t e g r a b l e  f u n c t i o n  X : ~ ÷ ~n such 

t h a t  X (~3 ~ C C~) a,s ,  

1.2. Definition : Let C be a CK-valued mapping ~ it is said that C is P-integrable 

if and only if C is measurable and the random variable IICII Is integrable, where 

IICI[ is defined by : 

llcll llcc )ll =sup{llxl 

1.3 .  Fundamental p r o p e r t y  [ ~ )  

I f  C i s  a CK-valued mapping, P - l n t e g r a b t e ,  then E (C) i s  a nonempty compact 

convex se t  c h a r a c t e r i z e d  by the suppor t  f u n c t i o n s  as f o l l o w s  : 

(x) E x Cl) "~x  XECC ) = {Xccm] ( x ) }  

In t h i s  case, the i n t e g r a b i l i t y  o f  C i s  e q u i v a l e n t  to  the i n t e g r a b i l i t y  o f  the 

{x)  f o r  every  x. f u n c t i o n s  XC[, ) 

RemarKs : 1 . 3 o l ,  I f  C i s  s measurable m u l t i v a l u e d  mapping such t ha t  C {w) i s  a . s .  

a closed convex set. then C is sald quasi P-integrable if there exists an integra- 

i x )  i s  a q u a s l - i n t e g r a b l e  f u n c t i o n  and the b le  s e l e c t o r  o f  C. In t h i s  case, XCC. ) 

relation (I] remains true C~2~]. 

2.3.2. In a wider sense, if C Is such that : ~ A, P CA) > 0 

E A ~ C (w) = 9, then E CC) is empty. 

1.3.3. If C is a CK-valued mapping, P-Integrable, we have the inequality 

between norms : 
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l iE [c) ll ~ E { l l c l l ~  

Our purpose in this paper is to examine the properties of the mean value functional 

and of the cont±nuous inf±mal convolution. Let us recall here their definitions as 

w e l l  as those of integrands. 

1.4,  D e f i n i t i o n s  [ [ ~ ) .  By i n t e g r a n d  we mean a f u n c t i o n  f : ~n x ~ + ~ U {+ " } .  

I f  f ( , ,  ~1 i s  p roper ,  1 , s , c ,  f o r  every  ~ and f i s  ~ n  ~ ~ [ -meesu rab le  where 

~ n  denotes the a - a l g e b r a  of  b o r e l i a n  subsets o f  ~n • ~ i s  sa id  to  be a normal 

i n t e g r e n d .  In a w ide r  sense, by normal i n t e g r a n d ,  we s h a l l  a lso mean f such t h a t  

f ( . ,  m) £ r ( ~ n )  a lmost  s u r e l y .  I f ,  moreover,  f [ , ,  ~) i s  convex f o r  every  
o 

f i s  c a l l e d  convex.  

Normality ensures in particular that for every random variable X, the function 

÷ f [ X  [ ~ ] ,  ~) is measurable.  

1 .5 .  Mean va lue  f u n c t i o n a l  : Let  g g ~ [ ~n x ~ , ~  ) be such t h a t ,  f o r  every  x ,  

f [ x ,  .) i s  measurable.  The mean value f u n c t i o n a l  Ef o f  the c o l l e c t i o n  

{f (., ~)}~ g ~ is defined by : 

~x Ef (x] = ~ f Ix, w) + dP [~) $ 18 f (x, ~]-dP (w) 

Of course, for any measurable function g : ~ ÷ ~+ U {+'} such that, if we denote 

D ( f )  = {~ I f (w) = + ~} , we have P [ ~  [ f ) )  > O, then Ef  = + ~. 

1.6. Continuous inflmal convolution [[20. ~2~). Let f be a normal integrand on 

~n x ~. By continuous inflmal convolution of the family {f [" ~]}we 

to the probability measure P , we mean the functional denoted by 

F = ~ f [ , ,  ~] dP [~] and de f ined  by : 

x e ~ l [x )  

where Cxlo {X 

re fating 
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II - Properties o~ the mean value functional El. 

A certain class of stochastic optlmlzetion problems are characterized by a cast 

functional of the form E? Ix), It is therefore interesting to know how the proper- 

ties o~ the functions f [.. w] are transmitted to the function El. We shall examine 

such topoZogical properties as 1,s.c. continuity and determine such oonvsx charac- 

teristics es ~cession funct±on, @-subdif~erentlel ,., 

II.I. L,s,c, continuity of El. 

II.I. Theorem : Let f C ~ (~ x ~ , -~) be such that : f (xj .) is measurable 

for every x and a.s. f (.~ ) is 1. s.c. If f* (0, °)+ is inte~rable, then Ef is a 

1.s.c. f~ction taking its values in ~ U {+ ~}. 

Proof : Ths inequa l i ty  @ [x,  °] ~ - fm [0, .] implies that  f o r  every x f Ix ,  .] is  

quasi - in tegrable and ~x Ef Ix]  > - ~. Suppose that  E@ is  e proper funct ion [ I~  

Ef is identically ÷ ~, Ef is l,s.c]. 

Let IXnl n C ON a sequence converging to x j a.s. f [., ~] is 1.s.c., then : 

a . s ,  
n 

According to Fetou's lemme [E5-1], = [ f [ x  n 
rt-+~ n-+er, 

E f [ x .  w] 
n 

EF [x] ~ lim Ef Cx ~ ~], Hence the 1,s,c. o4 Ef 
- n 

II.2. Recession function of El. 

II.2.1. Theorem : Let f E ~ ( ~ x ~, ~ ) be such that : f (xj .) is mea8~ 

for every x and a.s. f (.~ ~) ~ r ° (~). If moreover Ef is 1.s.c. and proper, 

then the recession fwnction (El) of Ef is given by : 

(EF) = E ( f~). 

Proof : Ef being proper, there exists x ° such that f[x o, 

a,s, x ~ dom f [,, w] 
o 

a,s. f [., w) £ r C ~n) and the recession function f 
O 

formula : [E3] Proposition 6,8.3], 

.] is integrable : thus 

[., w] is given by the 
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f i x  +Xx,~]  - f o x  ,~)  f [ x  -~Xx,~] - f o x  , ~ ]  
'~x f [x,~] = Sup o o = l lm o o 

X> 0 X~ 

This formula is only valid for functions of r 
O 

l.s.c,, it is also convex. Like previously 

[ ~n). Ef is supposed proper and 

E9 [X +hx] - E f [ x  ] 
O e 

~ x  [E'f] [x] = llm X 

Let { Xn}n C ~ an increasing sequence of real numbers such that : h n 

lim X = + ~. We take : 
n 

> 0 and 

f Ix +X x,~] - f Ix ,~ ]  
fn Ix. ~) = o n o 

n 

{fn [x, "]}n EOl is en increasing sequence of quasl-integrable 9unctions [fn[X'')- 

being integrable] and l±m 9 [x, .] = ~ [x, ,] 
n 

n->~e 

It follows that f (x,  .] i s  q u a s i - i n t e g r a b l e  and acco rd ing  to  the  Beppo-Levi mono- 

tone  convergence theorem, E9 ÷ E If ]. 
n 

II.2.2. Remarks 

a) Theorem II.1 gives conditions for Ef being 1,s.c. 

b) The 1.s.c. of E9 was proved in the convex case in ~4]. Moreover, R.J.B. Wets 

[~5]) has proved the inf-compactness of Ef when 9 [,, ~] is inf-compact. Using the 

result of theorem II.2.1 and making a proof similar to that of Wets, we prove more 

generally that : if f (., ~) is a.s. inf-compact for a slope X ° (~) where X ° is an 

integrable random variable, then Ef is inf-compact for the slope E (X ). 
0 

II.3. Conjugate of Ef 

The computation of the conjugate of Ef will show us the connection between the 

mean value functional and the continuous infimal convolution. This will allow us to 

deduce the properties of one through the properties of the other. 

II.3.1. Theorem : Let f be a convex integrand such that f (x, .) is integrable for 

every x. Then 

(El) ~ 
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Proo4 : We shall use mainly the theorem given by Valedier [L12~ Theorem 7) deter- 

ming the conjugate o4 the continuous in~imal convolution. 

"Let 4 be a normal convex integrend such that, 4or every x' , 4 m (x', .) is inte- 

grable. Then the continuous in4imel convolution F = ~O f ('' I~) dP [~) is exact 

(i.8. ~x, ~X C ~I such that E IX) = x and F Ix) = iX { (X (w], w] dP (~)). 

Moreover F ~ F (~R n] and the conjugate F m is given by : F m (x'] = ~ 4m(x',w] dP(w]. 
o 

We apply this theorem to the normal convex integrand {~ (it ~ill be shown 

in the proo~ o4 theorem II.4,2. that ?m is a normal convex integrend). We have 

4 [ , ,  ~]  = #~x [ . ,  m] and [E4) ~ = E4. The c o n j u g a t e  o4 #~ 4 ~ [ . ,  ~) dP {~ ]  i s  E# ; 

hence t h e  r e s u l t ,  

II.3.2.Remarks : Let f be anormal convex integrand such that ~m (x', .] is integra- 

ble 4or every x', Then the continuous in<imal convolution F o{ the {emily 

{ 4  [ , ,  ~ ] } w  ~ ~ i s  a co-finite c o n v e x  4 u n c t i o n  [ ~  p .  116] and F = x{o}" 

Moreover, it is deduced an interesting result o{ continuity o~ F : let X be an 
o 

integrable random vaz~;able, if f (., ~) is finite and continuous at X ° (w) a,s., 

then F is finite and continuous at E (Xo). This arises 4rom the relation between 

continuity o? 6 and in4-compectness o~ 4 m [~3] theorem 6.3.9] and {tom Remark II.2.2. 

I4 4 takes particular ?orms, specially with random matrix, the equality o4 theorem 

II,3.1 implies interesting results. 

I I , 3 , 3 .  P r o p o s i t i o _  nn : Let f be a normal convex integrand. We suppose that 

Ef ~ r ° (~) and that f~ (x, ,) is integrable for every x. Then, the multivalued 

mapping ~ + dom ~ (., ~) is a CK-valued mapping, P-integrable and : 

P r o o 4  : L e t  x ~ dom E4 ~ x £ dom ? ( . ,  w) a . s .  We have : 
e o 

V x  , ~ z  ? ( z ,  ~) ~< ~ [ x ,  ~] + ~ [ z - x ,  ~] ( [ 8 ]  C o r o l l a r y  8 . 5 . I )  

. ,  [ ~q n ) 
T h i s  i m p l i e s  t h a t  f [ x ,  ~) i s  i n t e g r a b l e  { o r  e v e r y  x .  M o r e o v e r ,  ~ [ w] ~ F ° 

and 4 ( ~] is a function o4 2 (£R n) such that : 
"J 0 
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(x ,  ~) = ×d--om f *  ( . , ~ )  Ix)  ( [3 ]  theorem 6 .6 .5 )  

L ikewise  : (E{)  ( x )  .= X ~ [ E { ) ,  (x)  . i s  a normal convex $ntegrand ( [6 ]  

lemma 5] and the m u l t i v a l u e d  mapping ~ ÷ ep i  f~ ( . ,  ~) i s  measurable ([7~ 

theorem 4) j hence the m e s u r ~ b i l l t y  o f  the mapping ~ ÷ dom f~ ( . , ~ )  = 

proJ (ep i  fx  [ . ,  w).  The m u l t i v a l u e d  mappin~ w + 'do'm {~ ( . ,  ~] i s  a CK-valued 
~n 

mapping, P-inte~rable because the support function ~ (x, .) is integrable ~or 

every x. Then, 

XE {d-om f * ( . , ~ } }  = E [Xd ~ f , ( , , ~ ) )  

I t  a r i ses  f rom the e q u a l i t y  ( E l )  = E ( f )  t h a t  do-~ (El )  ~ = E { ~  #x [ . ,  w)} and 

the r e s u l t  i s  deduced from the exp ress ion  (E l )  ~ ~ ( . ,  ~] dP [~ ) ,  

11.3.4 Remark : Under the assumptions of the previous theorem, f [., ~] is Lipchit- 

zian with coefficient ~ [g) and e is an integreble random varlable. Likewise, Ef 

is Lipchitzian with coefficient A and we have : A ~ E (~). 

Indeed ~ (w) i s  g iven by l l ~ f  ~ [ , ,  w) l l  = Sup { l l x ~ l l  / x ~  dom #~ ( . ,  ~ ) }  

( [ 8 ]  C o r o l l a r y  1 3 . 3 . 3 ) .  S i m i l a r l y  A = I t d ~  £Ef)*II = l ie { d - ~ f *  ( . ,   1}11 

We have seen t h a t  JIE {dom f *  ( . ,  m)} lJ  4 E Clld  f* C.,  )ll) (Remark 1 .3 .3 )  ; 

hence the r e s u l t .  

II.4, Determination of the 8-eubdlfferential of Ef 

Convex analysis [[6]) and algorithms for minimizing convex functions [[4]) 

have brought out the importance of the e-subdlfferential of a convex #unction ; in 

this paragraph, we intend to determine the O-subdlfferential o4 the mean value 

functlonel El. 

11,4.1. De#Inltion : Let f ~ ~ [ ~n -~) be a functional finite at xo. A vector 

x is called an ¢-subgredlent of fet x (where e ~ o) i# 
o 

~ ' x  f Ix ]  ~ ~ ( x )  + < x ~ , x - x > - O 
0 0 

The set of all ~-subgradlents is denoted by 28 f (x o) and is celled e-subdifferen- 

tial o4 f at x . 
0 
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Ii.4.2. Theorem : If f is a convex integrand on ~ x ~ such that f (x, 

curable for every x and such that 

mhen V ~ o  ~e ~frxJ = LJ  

0(~)~0 

• ) is mea- 

Proof : Let us take a sequence IZp} satisfying the fallowing condition : for every 

x, x is the barycenter of a finite number of z {take z ~ Z n for example) j 
P P 

# (., ~) being convex functions, we can deduce that : ~ N ~ ~L , p IN] = 0 such 

that : Y w ~ N , f ( x ,  ~) 6 ~ V x  [D@) proof of the lemma S} .  Thus there 

are no major drawbacks in supposing f real-valued. Let 8 ~I {0], e {m) ~ O. We 

have : 

~ e [ ~  f Cx, ~ = { x  x / f x  Cx*, ~) - < x ,  x ~ > 4 o (~) - f I x ,  w) }  

f i s  a norma l  convex  i n t e g r a n d  ( O 8 ] ] ,  fm i s  a l s o  one ( [ 8 ]  lemma 5 ) ,  as i s  gm d e f i -  

ned by : g~ [ x  ×, ~) = # m [ x  m, ~) - < x ,  x m> . M o r e o v e r ,  t h e  f u n c t i o n  

÷ 8 [~3 - f [ x ,  ~) i s  measu rab le .  C o n s e q u e n t l y ,  f o r  e v e r y  x ,  t he  m u l t i v a l u e d  

mapping ~ ÷ ~8[~] f {x, ~) is measurable C[7] Corollary 4.3]. 

Let X x be a measurable selection of this multivalued mapping. By definition, we 

have : 

Vy 

- - - = ~  V y 

f r x+y ,  'w) >.. f ( x .  wJ + < X ~ [ ~ ] .  y > - 8 {~]  

f [ x - y ,  e) >/ f ( x ,  ~J - < X x ( ~ ] ,  y > - e [~o9 

- f  { x - y .  ~) + f ( x .  o~J - e (~) 4 < X ~ ( ~ ) .  Y > 

..< f {x+ylco) - f Cx,co] + e {c~) 

Then, for every y, < X ~ (.), y > is an integrable function, Every selection X m of 

the multivalued mapping being integrable, the multlvalued mapping 

+ ~8[~] f (x, ,m] is P-integreble. 

By definition of the 8-subdifferential, we have : 

~ y  f [ y .  co) >.. f i x ,  ~) + < X ~ [~J .  y - x  > - e C~) 

" ~  ~ y  Ef  (yJ >~ E f  {x]  + < E {X;~), y - x  > - e 

- - ~  E (X ~) E ~e E f  [ x ]  
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There fo re .  accord ing  to  the  d e f i n i t i o n  o f  E 

> LJ 
e ~ ~ l i e )  

{~e(m) f ( x ,  ~ ) } ,  we deduce t h a t  : 

f i x ,  ~) }  C ~e Eg (x)  

e[m)>O 

Converse ly ,  l e t  x ~ ~ ~e Ef [ x ) .  We can a lso  w r i t e  : 

x* e} ~e Ef i x ]  = ~x ~ / [E l ]  ~ [ x  ~) + Ef  [ x ]  - < x,  > 

From the theorem I I , 3 , 1 ,  there  e x i s t s  X ~ ~ ~1  such t h a t  : 

E [X ~] = x ~ and (E l )  ~ (x ~) = f9  f~ iX m (w] ,  m] dP [m) 

Let  8[~) = f~ [X ~ (m], m] + f [ x ,  m] - < x ,  X ~ (m] > , Obv ious ly  we have : 

e i~ ]  ~ O, 0 £ ~1  • E ie ]  ~ 0 and X ~ im] C ~0 i~ ]  f i x ,  ~] 

By d e f i n i t i o n  of the e x p e c t a t l o n ,  x ~ E E { ~0[~] f i x ,  e ) }  j hence the r e s u l t ,  

II.4.3. Remark : in the previous theorem, making 8 = O, we obtain the formula for 

0 

Then the formula of theorem II.4.2 becomes : 

~[Ef)  = E [~ f ]  [denoted s y m b o l i c a l l y )  

Thus we a fa i n  f i n d  the Known formula o f  the s u b d i f f e r e n t i a l  o f  the mean va lue func-  

t i o n a l  i [ 1 ]  ; [9] p,  62) 

II.4.4. Application : extremums of the expectation E (C) 

For a convex compact K, let K' be the extremum In the direction x ~. that is to say: 

= ~ X ~ ~', { x e ~ / < x ,  × > =sup i < z ,  > / z e K ) }  cD~ p. lo) 
X 

Let  us cons ide r  a CK-ve&ued mapping, P i n t e g r a b l e ,  For each x ~ , we denote by C' 
X 

the multlvalued mapping defined as following : V m c 

C' {w) = [C im~ C' i s  a lso a CK-valued mapping, 
X × X 

II.4.4. Proposition : For each x x, the multivaluad mapping C' is P-integrable and 

X 

we have : E (C' x) = ~ [C~ • ~ that is to say : the extremum of the expectation in 
X X 

the dix~etion x* is  the expectation o f  the ext~emum in the same d~rection. 
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Proof  : We have the f o l l o w i n g  equ iva lence  [ [ ~  C o r o l l a r y  23 ,5 ,3 ]  : f o r  a non-empty 

closed convex set K, K'x = ~ X~ [x~) 
X 

i 

Then, C' (~] = x Cx ~] and ~E CC~ • ~ (x ~) x ~Xg(m) = ~XEcc] 
X X 

From the fundamental property 1.3 and the formula II.4.3., it is deduced that : 

X X 

II.4.5. Remark ~ for a non-empty closed convex set C, it is said that x C C is 

"exposed in the direction x ~" if X~ is difqerentiabl8 at x ~ and if 

X~ [x~] = {x} , It follows from the previous proposition that : 

x i8 an exposed point of E (0) in the direation x'if and only ifx = E (X) 

where X (~) is a.So an exposed point of C (~) in the direction x*. 

II.5. e-directlonal derivative of Ef 

In minimization methods, when using certain methods of descent, we replace the 

directional derivative ~' [x ~ d) by an approximation f~ {x j d] whlch is the 8- 

directional derivative, We consider here the functional Ef and an expllcit charac- 

terization is given for the e-directional derivative of El. 

II,5.1. Definition : Let f E £ (~n], finite at x and 8 ~ O, The e-dlrectionel 
o 

derivative of f at x with respect to a vector d is defined by : 

f~ (x  ~ d] : Sup {< c,  d > / e ~ e  f I x ] }  

II.5.2. Theorem : Under the assumption of theorem II. 4.~,, we have : 

~@ >I 0 (EC) 8' (x ; d) = S~ E {f8'(~) (x ; d, ~)} 

eE21fe) 
e (~)>~0 

Proof : According to the previous definition, for any @ E~ i (8), we writs : 

~ [d) (E f ]~  Ix  ; d) = XaeEf[x ] and %e[m]' {x ; d, m) = xae(m) fCx,~]  

From the fundamental property 1,3 
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The functional Ef is finite and continuous at x ; ~e Ef (x) is a nonempty compact 

convex set characterized by the formula of Theorem II.4.2. Then, according to the 

iemma 16.5.1 of [8], it is deduced that : 

= Sup E {x~e (~) f [ x ,  ~)} X~ E l ( x )  
e ec~l(e) 

II,5.3. Remark : LiKe in the case o~ the previou s theorem ; i{ we take 8= O, the 

directional derivative o{ Ef at x with respect to the vector d can be expressed as 

following : 

[ E f ) '  (x ; d) = E {4 '  Ix  ; d, ~) }  

In the p resen t  case, f [ . ,  e) be ing a . s ,  q i n i t e  and cont inuous a t  x ,  t he re  i s  no 

d isc repancy  between f '  [ x  ; d) as u s u a l l y  deTined and ~ {x ~ d) f o r  e = O. L i ke -  

wise Ef  i s  f i n i t e  and cont inuous a t  x ~ so, ( E l ) '  (x  ; d) = X~SE#[x) I 

I I , 5 , 4 i  Necessary and,,,S,H,,f,,~icf,e, nt, op t ima l , i t y  c o n d i t i o n  f o r  e cla,,s,,,s,,,,,,,,,of, s t o c h a s t i e  

o p t i m i z a t i o n  problems 

Let us cons ide r  s t o c h a s t i c  programming models c o n s i s t i n g  o4 two-s tage  fo rmu la -  

t i o n s  ( ~ 4 ] ) ,  A f i r s t  s tage problem i s  t ha t  in  which an o p t i m i z a t i o n  problem i s  

per formed w i t h o u t  hav ing the p r i o r  Knowledge o f  the random outcomes, 

A f t e r  the random outcomes have been observed,  the i naccu rac ies  occured are compen- 

sated in another optimization problem : second stage program, Generally, the func- 

tional to be minimized is o4 the ~orm E~, x may be subject to certain constraints : 

I x E C 

fi (x) ~ 0 i = 1 ..... m where C is a convex set and fi 

are convex 

This deterministic program can be written as : 

(9) Find ~ such that : ~ ~ Q and Ef [~] = Inf {El Ix) / x C QI. 
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II.5.~. Proposition : Let @ a convex integrand a ~n x ~ such that f (x, ,) is in- 

tegrable ~or every x, ~ a convex set. Then a necessary and sufficient condition for 

b e i n g  a solution of ( ~ )  is that : 

Proof : This arises from t he  usual optimality conditions in convex programming and 

from the remark ~I,5,3. concerning the directional derivative of El. 

III- Properties of the continuous infimal convolution 

The continuous inflmal convolution F is closely related to the average functio- 

nal Ef by the conjugacy operation ; for the operations concerning the measurable 

~ ] under multivalued mappings, we remark that ; on the one hand : XECC ~ = E [Xccw] 

certain assumptions ~ on the other hand, more generally : XECC) = ~O×CCw) dP [w). 

This last equality brings out the @act that F = ~@ [., ~) dP [w) may not be l.s,c, 

for a normal convex integrand @, Let fl and @2 ~ [  ~n -~ ] [not identically 

equal to + ~) ~ Z@ the inf±mal convolution fl q f2 is exact in x = x I * x 2 , we 

have : ~ [@ lq f2) Ix) = B fl [Xl) ~ ~ @2Ix2 ) (~3~ Proposition 6.6.4). Our purpose 

is to obtain a similar formula @or the subdif@erential of the continuous infimal 

convolution. For that end, we shall define the continuous intersection of a family 

of sets indexed by ~, 

III.1. Definition : Let A be a multivalued mapping defined on ~ ~ we shall call 

continuous intersection of the family {A (m) 1 w ~ O' the set denoted by A m and 

defined by : 

A ~ = L.J [ ~ A [~ 
N c ~  ~ c ~ \ N 

where ~indicates the family of P-null sets of ~ 

Remark : It is indeed ~ generalization to the continuous case o@ the intersecting 

operation. For example, we Know that if we consider two @unctions @Iet @2 we obtain 

, x ~, ~ ) such epi Esup If1' @2 ~ = epi fl ~ epl f2" Similarly let @ e ~ ( ~n 

that @or each x, @ Cx, .) is measurable. Let W defined by : 
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(x) = e s s ,  sup, f Cx, ~) = I n f  {~ / f (x ,  m) ~ 

Then, i t  i s  easy to  see t h a t  : e p l  ~ = [ e p i  f ( . ,  m~m 

a,e,} 

III.2. Properties 

a) If we modlfy A on a P-null set, we do not alter An. 

b) I~  A i s  a . s .  c o n v e x - v a l u e d  ( resp .  c losed  v a l u e d ,  compact v a l u e d ]  mapping,  

then A ~ i s  convex ( rasp .  c l osed ,  compact) 

c) The indicator function of A ~ i s  : XA ~ = E (XA(~))  

Proofs : 

a) Let  A and B two m u l t l v a l u e d  mappings such t h a t  i f  we denote by N the set  
0 

{W ~ / A (~3 # B (m)} we have P [ N  ) : 0 
0 

Let x E A x ~ ~ a C ~ such that : ~ £ ~ \ N x C A (~) ~ this implies that : 

~ ~ ~ \ NUN ° x ~ B (m] ; thus x E B ~. ConverseIy, a similar proof shows us 

that B~C A ~. 

b) According to the property a) we may suppose the required hypothesis assumed 

for every w ~.~ . 

Convexity of A ~ : let x, y E A n ; ~N , N E ~ such that : 
x y 

x eA (m) Vw E£ \ N ~ x e B (w) Vm £ £ \ Ny. Taking X ~ [0, i] A (w) 
X • 

being convex, we have : Xx + (I-X) y ¢ A (m]Vm E ~ \ N U N . So, Xx + (i-X) yEA m. 
x y 

Closedness o f  A n : l e t  {x  n}n ~ N  a convergen t  sequence o~ A n, For  each n C IN, 

t h e r e  e x i s t s  N C ~ such t h a t  : x 6 A (~] ~ m  £ 8 \ N . But : 
n n n 

n n£~ n 

-- 7 {Xn}n CON ~ A [ m )  which is closed and included 
~a\ LJ N n 

n E[N 

in A ~. Thus, lim x ~ A ~ and A ~ is a closed set. 
n 

Compactness of A ~ : the same inclusion as previously shows us that A ~ is compact 

when A (~) is compact. 
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c]  I n d i c a t o r  f u n c t i o n  o f  A X : E [ X A [ 9 ] [ x ) ]  = 0 <----~> ~ N E ~ V g ~ \ N  

that i s  t o  say ~ E [ X A [ 9 ] C x ] ]  = 0 <~ > x ~ A ~. 

XA[9)  ( x )=O 

III.3. Subdifgerentlal o9 the continuous infimal convolution F 

III.3.1. Theorem : Let f be a normal convex integrand such that f* (x*, .) is inte- 

grable for every x ~. Let x 0 e dom ~and X 0 a random variable whose expectation is 

x 0 and g i v i n g  the  e x a c t n e s s  o f  the  c o n t i n u o u s  i n f i m a l  o a n v o l u t i o n  a t  x O. I f  we 

denote by DXo the multivalued mo~ping : ~ ÷ ~f (X 0 (~),~), then 

~F (x O) = (DXoJX 

Proof = Let x X ~ S F Ix ] ~ x X~ ~ F (x) ~ F(x ) + FX[xX) = < x ,x X > 
0 O 0 O 

M o r e o v e r  x ~ i v i n ~  t h e  e x a c t n e s s  o f  t h e  c o n t i n u o u s  i n g i m a l  c o n v o l u t i o n  F a t  x , we 
o o 

have = 

E CX ] = x and F i x  ] = ~ f CX ° [ ~ ] ,  ~] dP [~] 
o o o 

By Theorem 7 o f  ~ 2 ]  , F ~ = E f  X and 

9 X Cx ~, ~] dP [9]  = ~ <X [ 9 ) ,  x X > dP Cw] 
o 

Ne a l w a y s  have : f [X  ( 9 ] ,  9]  + 9 X I x  X, ~) ~ < X C~] ,  x m >.  The e q u a l i t y  be tween 
o o 

i n t e g r a l s  i m p l i e s  t h e n  = a . s .  9 [X [ 9 ] , 9  ] + 9 X [ x  X, 9) = < X [ 9 ] ,  x m >, t h a t  i s  
o o 

[w] ~]. Consequently ~F (x o] C [O x ]x t o  say  : a . s .  x ~ ~9 [X ° , 
o 

C o n v e r s e l y ,  l e t  x X b e l o n g i n g  t o  ~ f  [X ( 9 ] ,  9] a . s .  
o 

f [ X  C9) ,~  ) + 9 ~ [ x ~ , ~  ] = < X C9] ,  x X > a , s .  
o o 

X X ----~ F [ x  ] + fix [ x  ~] = < x > t h a t  i s  to  say : x E @F[x  ] ,  
o o o 

Thus ~F [ x  ] : L~  [ ~ -~  3# [ x  [ w ] ,  ~ ] ]  Q .E .D .  
o N C ~  ~ e ~ \ N o 

III.3.2. Application ~ normal cone to E[C] 

We shall apply the previous result to determining the normal cone to E [C]. For 

a convex set K, the normal cone to K at x ° is denoted by N K [Xo ) and is defined by 

N K I x  o) = { x X l  V x e  K < x ~, x - x  ° > ~ O} 
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I I I . 3 . 2 .  P r o p o s i t i o n  : Le t  C be a CK-va lued mapping,  P - i n t e g r a b l e  ; x b e l o n g i n g  
o 

t o  E(C) .  I {  we denote  by X a random v a r i a b l e  such t h a t  E [X ] = x , 
o o o 

X ° (~) E C (~) a . s ,  and by N X the  m u l t i v a l u e d  mapping : w ÷ NC(~) (X ° ( ~ ) ) ,  
o 

then  we have : 

NE[C ) (Xo) = (N X )m 
o 

P roo f  : , L e t  f be d e f i n e d  by { (x ,  ~) = XC(m ) (x ]  ; the p r o p e r t i e s  o{  C imp l y  t h a t  

{ i s  a normal  convex I n teB rand  ( [ 7 ] ) .  The normal  cone i s  r e l a t e d  t o  the  i n d i c a t o r  

{ u n c t i o n  by the  f o l l o w i n g  e q u a l i t y  

No[m) (x) = 8Xc(m] [x )  ( [ 8 ]  Page 215] 

It is enough then to apply Theorem III,3,1, whose assumptions are satls{/ed, bearing 

i n  mind t h a t  XE(C) = ~Q XC[m) dP (m),  

III,4, Directional derivative of the continuous in{imal convolution 

III,4,1, Lemm____~a : Let A be a measurable multivalued mappinB defined on ~ such that 

A (w) is a.s, a nonempty closed convex set, Then the support function o{ A M is 

given by : 

m m 

XA~ -- ~£ XA(~) dP [m) 

Proof : Let ~ = ~Q XA(w) dP [w), According to the definition of the continuous 

infimal convolution, ~ is convex and positively homogeneous, The l,s,o, regulariza- 

tion { of { is the support function of a certain closed convex set C, namely : 

c = {x *  / Vx  < x, x * > ~  ~ [ x ) }  

m Let  X £ ~ 1  (x)  ~ V Y  £ An < X (m), y > 4 XA(~) 

> V y E A .m < x ,  y > ~ { (x)  

m 
' )  XAm~ ~ , thus A ~ C  C 

C o n v e r s e l y ,  l e t  x ~ g C. F o r  e v e r y  A g (,4,. 

( [ 8 ]  Corollary 13 .2 ,1 )  

(X(w))  a . s .  

such that P (A] > O, we define the ran- 

doe v a r i a b l e  X A by : 

XA(~) = 

x 
i f  ~ E A 

0 e lsewhere  
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E (X A) = x and a c c o r d i n g  t o  t h e  d e f i n l t i o n s  o f  ~ and C, we deduce t h a t  : 

1 ~ [ x )  dP (w) OR) Vx, VA e & P (A) > 0 < x, x* > ~ ~ fA XA[~) 

This inequality implies that : 

x ~ ~ [ x )  a . s .  ~ x  < x ,  > ~ XAC~) 

Suppose that this last inequality is not satlsfied, there is A ~(~L , P[A) > 0 and 

> 0 such that : 

~ E A x ~ ~ [ x )  + < x ,  > ~ XA[~)  

x ~ 1 
--  ~ < x, > ~ p-~-~T-~A XA(~) 

and this is in contrad$otion with the inequality (R). 

I x )  + 

III,4.2, Remark : The result of the previous lemma is a ~eneralization to the con- 

t i n u o u s  case o f  t he  f o l l o w i n g  f o r m u l a  : t 4  A 1 . . . . .  A m 

s e t s  o f  ~ n  
m 

Xm V XA ' 
~ I A  i i=1 1 

a re  non -emp ty  c l o s e d  convex  

III.4.3, Theorem : Let f be a normal convex integrand such that f ~ (x ~ .) is inte- 

grable for every x ~. Let x 0 such that ~F (x O) ~ ~ , X 0 a random variable whose 

expectation is x 0 and giving the exactness of the continuous infimal convolution 

at Xoo Then, the l,s.co regularization of the directional derivative F' is given 

by : 

F -T (Xo~ o) = ~ f-~ (X 0 (~), .) d~ (~) 

Proo# : We suppose that ~F [x ) # ~. According to Theorem III.3.1., ~f (X (~), ~) 
0 0 

is a.s. e non empty closed convex set. The multivalued mapping 

D X : ~ ÷ ~f (Xo (~]" ~) is measurable : consequently, the support function of 
0 

D X , i . e .  t h e  f u n c t i o n  g d e f i n e d  by : g [ d ,  m) = f '  (X ° ( w ) ,  d) i s  e n o r m a l  c o n v e x  

o 

integrand. We apply then the previous lemma and conclude with the equality : 

X~F[ x ~  ) : F ~ [Xo,  , )  ( [ 3 ]  Theorem 6 . 4 . 8 ) .  
0 
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Remark : the formula o~ Theorem ~II.4.3. generalizes the corresponding @ormula for 

two convex functions gl et g2 : let g l "  g2 proper convex {unctions and g = gi V g2" 

2 
~g the Infimal convolution g is exact in x = x + x and if Sg (x) # O, then : 

o o o o 

g--7 Cx , . ]  = g'  (x , .) V ~ I x  2, .) 
o o 

IV. Applications 

A - We first apply the obtained results to determining some convex characteristics 

of the mean value ?unctienal E? and continuous infimal convolution such as : level 

sets, 1,s.c. conlcal hull, gauge functional o{ the polar of the expectation E(C)... 

1 - Level  sets  o{ the cont inuous i n f i m a l  c o n v o l u t i o n  F 

For a convex f u n c t i o n  g, i t  i s  i n t e r e s t i n g  to  be ab le  to  determine the h - l e v e l  

set  o f  g, i . e .  g~ [h) = {x  / g Ix )  { X} . For the cont inuous i n f i m a l  c o n v o l u t i o n  

F = f£ f [ , ,  w) dP C~), our purpose i s  to  determine F ~ (k) by exp ress ing  i t  w i t h  

the l e v e l  sets  of  { [ . ,  ~ ) .  

Let  Tf [~) the p r o j e c t i o n  of  ep i  f [ , ,  ~) on ~ ,  t ha t  i s  to  say : 

{X / ~ x  ~ Cx, ~ ~ h} , L i kew ise ,  ~F = p r o j  (ep iF)  

1,1, Theorem ; Let f be a normal convex integrand such that f~ (x/ .) i8 integrable 

for every x . Then : 

A ¢21(x) 

A(~Je Tf(~) a.s. 

Preo____t  We have Tf ° +o[ and ° [M, + Ewhere we denote by 

m C~) = Inf If Cx, ~I / x c ~n} and M = inf {F Cx) / x ( ~"} . According to the 

e q u a l i t y  F ~ = E (?~) ([12~ Theorem 7) ,  i t  i s  easy to  remark t h a t  M = E (m), Moreo- 

ve r ,  i t  i s  c l e a r  t h a t  Tf i s  a measurable m u l t i v a l u e d  mapping such t h a t ,  a . s .  T?[w) 

i s  a non-empty c losed se t .  Let XCT F ; ~ A  ~ 1  (X) such t h a t  : a . s .  A ( w ) ~ T g ( w ) .  

Let  us c o n s i d e r  the m u l t i v a l u e d  mapping : ~ + f ( . ,  m)~< (A (w ) ] ,  The con jugate  

f~ ( . ,  m] i s  a .s .  f i n i t e  end cont inuous at 0 (proo@ of theorem I 1 . 4 . 2 )  and 

8@f '~ (0, ~) i s  a , s ,  a nonempty compact convex set  c h a r a c t e r i z e d  by : 
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Let O [~3 = A [~) + ~ [O, ~) ~ O [~) > 0 a . s .  because A (~) £ Tf  [~) a . s .  The ran-  

dom v a r i a b l e  A + {~ [0 ,  .) i s  i n t e g r a b l e  and we can deduce l i k e  in  the proo~ o# 

Theorem II.4.2 that the multivalued mapping ~ ÷ ~8[~) [0, ~] is P-integrable. 

On the o the r  hand ~ we have : ~ X  ~ r F F ~ ( l )  =~h+E[ {~ ) [o ]  E ( {  x ]  Co) 

The~ it is enough to apply theorem II,4,2 to obtain that : 

a.a. Hence the result. 

2 - Level  sets  o f  the mean va lue { u n c t i o n a l  E l .  

2.1. Theorem ~ Let f C ~ (~n x ~, ~) be such that f (x, .) is measurable for eve- 

ry x andEf the mean value functional. If, for each random variable A, we denote by 

S A the multivalued mapping : ~ ~ f (., ~)~ (A (~)), then : 

(Ef) ~ (h) = {~ (SA) ~ ((SA)~i8 defined in III. 1) 

Proof : It is trivial to see that : V A ¢ ~I [h) (SA)~ E# ~[~3. Conversely, let 

x 6 E~4(X] and def±ne A by 
o 

A (~) = f (x ,  ~) - Ef  (x)  + I a . s .  Then h ¢ ~ 1  [k3 and x ~ (S A )~.  
o o o 

This theorem is proved to show the analogy between the expressions of the level sets 

of the mean value {unctlonal end continuous in#imal convolution. 

3 - L . s . c .  c o n i c a l  h u l l  o# E{ 

For g 6 ~ [  ~n,  ~ ) ,  we denote by gC the 1 . s . c .  c o n i c a l  h u l l  o f  g ([3~ deT in i -  

t i o n  6 . 8 . 6 ) .  

3 ,1 .  Theorem ~ Let f be a convex integrand such that, for every x, f (x, .) is inte- 

grable. We suppose that E~ (0) >i O. Then : 

A ¢ $1 (o) 
f(o,~)+A(~)>~o a.s. 
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P r o o f  : Ef  i s  r e a l - v a l u e d  ; ~Ef[O) # ~.  Let  x m e ~Ef ( 0 ) ,  we have : 

x Ef [x )  ~ Ef [o) + < x m, x > ; t h i s  i m p l i e s  t h a t  [E l )  ~ (x  m) 4 O. Moreover  

(E l )  c i s  the  suppo r t  f u n c t i o n  o{ C, where C = { x  m / {E l )  m ( x * ]  ~ 0 } ,  ( 0 ~  Theorem 

6 , 8 . 7 ) .  The re fo re  C # ~ and (E l )  c ~  - ~ ,  [E~) ~ = ~ { ×  ( , ,  ~) dP (~ ) ,  t hen ,  acco r -  

din~ to Theorem 1,1. 

c =  LJ 
A ¢~ Co) 

fCO,~)÷A(~]~O a . s .  

The con juga te  o f  # + A b e i n l  ~ - A, ~f { . ,  ~) + A ( ~ c  

the  se t  f~  { . ,  ~) ~ [ A { ~ ) ) .  

f Co, 

is the support function of 

.) + A i s  i n t e g r a b l e  and the m u l t i v a l u e d  mapping 

f~  { . ,  ~) ~ [ A ( w ) )  = ~#(O,w),+A(m.) { (O, ~) i s  P - i n t e g r a b l e .  Hence : 

X C = Sup X E { ~ * ( . , ~ ) ~ ( A [ ~ ) )  } = Sup f a  [4 ( . ,  ~1 + A [ ~ c  dP (~) 
A A 

4 - L . s . c ,  c o n i c a l  h u l l  o f  F 

4.1. Theorem : Let f a normal convex integrand such that f ~(x ~, .) is integrable 

for every x ~ and F = ~ f (., ~) dP (~), The 1.s.c. conical hull of the continuous 

infimal convolution F is given by : 

¢ + c 

A ¢ ~1 (o) 

fCO,~J+A(~)>O a.s.  

Proo# : For  a f u n c t i o n  g £ £ ( ~ n ) ,  i t  i s  easy t o  s t a t e  the  # o l l o w i n ~  e q u i v a l e n c e  : 

go ~ - ~ < > g ( o )  > 0 

Let  A £ ~ t  (0) such t h a t  f [0 ,  w] + A [w) > 0 a , s .  . Ef [ . ,  w) + A [wO c 

which i s  the suppor t  # u n c t i o n  o f  the mu i r±va lued  mapping S A : ~ ÷ #~ [ . , ~ ) ~ [ A ( w ) )  

i s  a normal  convex i n t e g r a n d .  I f  D = { x / F ~ Ix)  ~ 0 } ,  acco rd ing  t o  Theorem 2 .1 ,  

we have = 

X D = Sup 
A ~ 1 ( 0 )  

According to lemma III.4.1, X(SA)~ 

o~ F c . 

X(SA)~ 

= ~ X~A dPC~), Hence the  ~ o r m u l a t i o n  
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5 - Polar o# E CC), Gauge #unction o# EE (C~ ~ 

5,I, Theorem : Let C be a measurable multivalued mapping such that, for every ~, 

a (~) is a closed convex set containing O, Then the gauge function y~ECC~O and 

the polar ~E (C)~ o are given by : 

w yE m8o--  eye, o) 

~) [E(C)~ o = L] E. A. C°~ ~ , AC ° indicating the multivalued 

A CS (a) 

m a Q Q i n g  o~ ÷ A (coJ C ° (oa),  

Proo# : C being measurable, the multivalued mapp±ng C ~ : ~ ÷ [C [w~ ° is also mea- 

surable [E TO Corollary 3,5), 

[[8~ Theorem 14.5) a)ECC) is a convex set contalning 0 and : y [E[C~O = XECC) 

Moreover, 0 ~ C [~] and C is a quasi P-integrable multivalued mappinz. ThereTore, 

according to Remark 1.3,1,  

XE[C ) XC[~) dP (~) = Ja YC°[~) dP [~) 

b) TEE[C~ ~_ is a l,soc, and positively homogeneous #unction such that : 

V~ > O ,~[EC:~]o "< IX) - X [E C:~] ° [[8] Corollary 9.7.1) 

Thus EEOC)] e = YEE(c)]~ ~< [I) = L_J [SA) × with S A [~) = yco(~)~<[A[w))=A[~)C°[~) 

A ~ 1 ( 1 ]  

IV.I.6. Remark : I#, #urthermore C (~} is a cone, we have : ×C[w) = YC[~) and 

× B c c j 0  ° E C X c o l ,  so, EE ° = cc°  " .  

B - Optimization problems 

In this second part o< applications, we consider difqerent optimization problems 

where the #unction to be minimized end the constraints may depend on the random out-- 

come ~. 
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6 - A i flrst minimization problem 

Let f be a real,valued convex function and C a CK-valued mapping which is suppo- 

sed P-Integrable. Let us consider the following problems : 

[ ~b j ~(x~ ~) = Znf {f (x-y) / y g C (~)} 

[~J ~ (x) = In F {f (x-y) / y e E (C)} 

The r e l a t i o n  between ~ and ~ i s  g iven by the p r o p o s i t i o n  below : 

6 , I ,  p r o p o s i t i o n  : ~ = ~ ~ [ , ,  ~) dP (~) 

Proof : 

a) f being convex, the definition of ~ shows us that ~ is a real-valued convex func- 

tlon. C is a measurable mult±valued mapping such that C (~] is nonempty and closed, 

Then, there exists a countable collection of measurable %unctions {fil igO such 

t h a t  : 

C [~) = { f i  [wj / i c O} [ [ ~  Theorem 1) 

[~) )  i s  measurable ; ~ i s  then a normal convex i n t e -  Than ~[x, ~) = inf f [x - fi 
leo 

grand. Let S (x, w) = {[y E C [w] / f [x-y) = ~[x, w)}. For every x, S[x, .) is 

a CK-valued measurable multivalued mapping. According to the theorem of KuratowsKi - 

Ryll-NardzewsKi [[7] Corollary 1.1J, there exists a measurable selector of S (x, .) 

i.e. a measurable function Y such that : Y [m) g S Cx, ~] a.s. Then, a.s. 

f (×-Y (~)) = ~(x, m) and for every random variable X such that E[X) = x, we have : 

f£  f [X[w) - YEw)) dP [~) ~ f [ x  - E [ Y ) )  ~ i n f  { f  [ x - y )  / y e E [C)}  

b] Converse ly ,  l e t  7 g E CC] such t ha t  f [ x - ~ l  ~ { Cx), Denote by Y a measurable se-  

l e c t o r  o f  C such t h a t  E [Y] = 7 .  Let  X [~] = x + Y [~) - 7 ~ we deduce t h a t  : 

E [X] = x and ~ [X [~ ] ,  ~) ~ f [X [~] - Y [w] = f [ x  - 7) 

Consequent ly : { ~ £  ~ ( . ,  w] dP (w). We a lso  concZude t h a t  the  cont inuous i n f i m a l  

c o n v o l u t i o n  i s  exac t .  
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A?plic~tion 

Let f (x) = j j xJJ ~ then ~ ( x ,  ~ o d ( x ,  c m ~ .  Aocordin~ to the previous 

result ~ d (., E (C)) = #~ d (., C (~)) dP (~). 

7 - Minimization of the continuous infimal convolution 

Let f a normal integrand and F the continuous inflmal convolution of the ~amily 

~f ('" ~)}~ C ~ relatlng to the probability measure P, We consider the following 

optimization problems : 

( ~[]'e~ I Find x such that  : f (~, ~) = I n f  { f  (x, ~) / x ~ ~ n }  

( ~P] Find x such that : F (~x) = Znf F (x) / x e 

We call S [~J and ~ the solution sets of respectively [~ ) and (~). The follo- 

win~ theorem a l l o w  us t o  compare S [~)  and ~ as w e l l  as the  o p t i m a l  v a l u e s ,  

7.1. Theorem :Let f be a normal integrand on ~n x ~. We denote by 

m (~) = Inf{ f (x, ~) / x e L~nl and M = inf { F (x) / x e t~ 1 . Then 

a) If there exists a measurable selector for the multivalued mapping S, we have : 

M : E (m). 

b) Moreover, if f is a normal convex integrand such that f (x', .) is integrable 

for every x' ~ S is a CK-val~d m~pping, P-integrable and E (S) = ~. In other 

words : 
% 

solution of (~) ~--~ x ~ E (X) where X (~) is a.s. solution of ( ~ ). 

P r o o f  : 

a) Let X a measurable selector of S and E (X) = x • From the definitlon of F, 
o o o 

F (x o) ~< f~ ~ [Xo [w)~ '~) dP [~) = ff~ m (~) dP [~) ~ thus M~< E[m). Conversely, 

V x ,  V X  e d~l  ( x )  J'O 1~ (X [o~), ~o} dP [w) ~- ]'g~ m (o~] dP [~o} because a . s .  

f (X [ ~ ) ,  ~0) >/ m [ ~ ) .  T h e r e f o r e  : V x  F (x )  >/ E [ m )  and M >I E (m] 
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b) We have a l r e a d y  seen t h a t  F and a , s .  f ( . ,  ~)  are  i n f - c o m p a c t  f u n c t i o n s .  

C.~ ~) E 7 C ~n )  ~ t he  s o l u t i o n  se t  o f  ( ~ )  i s  ~ f~  (0,  ~) ( ~  Theorem 27.1)  
0 

Likewise, the solution set ~ of (~b) is ~F ~ [0) = DE (~) CO). According to Theorem 

I I . 4 , 1 . ,  we have ~E C~ ~) (0) = E C~% ~ CO, ~ ) ) .  O.E.D. 

7,2. Remarks : 

a] More generally, for a normal integrand f, we have only the following inequality : 

E Cm) x < N in ~. The equality M = E (mJ appears in a different form and in the 

convex case in 010~ (Proposition 1), 

b) Under the assumptions bJ of Theorem 7.1., concerning the uniqueness of solutions 

o f  C~J and ( ~D ) ,  we may asse r t  t h a t  : 
to 

: (~ }  < > S C~) = {X Cw)} a . s .  with E CX) = ~" 

The previous theorem may be extended when considering approximated optimizatlon 

problems. Let [ 0 be ) and C~0 ) the following approximated minimization problems. 
~0 

( ~  J F ind ~ such t h a t  : m (wJ x < f (~, ~) ~< m [~) + 
£0 

(0 ~0 ) Find ~ such that : M ~< F (~) ~< M +0 . 

7.3. Theorem : Let f be a normal convex integrand such that ~(x', .) is integrable 

for every x'. Then~ for each e >I O, 

rV 

solution of (~e ) ¢ ~ ~X~ E (X) = x 

~e, e (~) >I o E (e) = e 

such that : a.s. ~ (~) is solution of ~ [~) 

Proof : According to the definition of the 8-subdifferential, we have : 

{~J s o l u t i o n  o f  C ~ a  ) < -\ 0 C ~ f (~  C~), mJ ~, / \ "X (~) ~ ~ f~(O,m) 
w fi~ 

L ikew ise  : ~ s o l u t i o n  o f  ( @ e )  4___> ~e30 E [ f~ )  (0) because F ~ = E ( f ~ ) .  I t  i s  

enough t o  app ly  Theorem I I . 4 . 1 .  t o  de te rm ine  ~e E (%~) [0) 



786 

8 - Minimization o# a normal convex inte~rand on a random closed convex set. 

Let f be a normal convex integrand and C a measurable multivelued mapping such 

That C [e) is a nonempty closed convex set [in a stochastic linear program, 

C [~] may be ~ (~) = ~x / A [~) x ~ b [w)} where A and b are measurable]. Let : 

(x, ~] = $ (x, ~] + ×C[~] Ix] 

8 .1 ,  Theorem ~ Let f be a normal convex integrand such that for every x' 

f (xt ,  °) i s  integrable~ C a n~r~mpty closed convex valued me~urable mc~ping. 

Moreover, assume that ~= ~a ~ ('" ~) dP (~) is not identically equal to + ~. Then 

1 the se t  o f  integrable se lec tors  is a normal convex integrand and if we denote by S C 

of C, we have : 

1 
XES C 

Proof : The assumption F ¢ + ~ implies that : ~x such that F ix ) < + ~. Then, 
0 0 

there exists × C ~ 1 such that f (X [,], .)+ is integreble, 
O 0 

1 is a nonempty set. Necessarily : a.s. X ° (~] C C [~], So, S C 

Let f~o = {~ E O/ ~ x E ~n q [x,w) + XC[~)[x] < ÷ ~} . We have shown that P [0 o) = I. 

Thus, ~ a normal convex integrand ([7] Corollary 4.2). 

Moreover : 

f~ 

V x '  f x  Cx ' ,  ~] ~ < X C~], x '  > - ~ [X Ca], ~] 
0 0 

O 0 
% 

These inequalities imply that for every x ~ , fx ix', .) is integrable, According to 

results of Theorem 7.1,, we obtain : 
% 

M = i n f  {F I x ]  / x ~ ~n}  = /a  I n f  f I x ,  w) / x C C [~ ) }  dP [~) 

On the other hand, it arises ~rom the definition o~ F that : 

% 

M = Inq f~ f (X (m], ~] dP (m) 
1 

x E S C 

[ ~ n ) .  Moreover ,  8.2, Remark : The required assumptions for ~ and C imply that F E t o 

it is obvious that dom ~ E (C], The problem we have dealt with is quite dif<erent 

from the minimization of F = ~ f (., ~] dR (w) on E (C). 
0 
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9 - Minimization of the continuous infimal convolution on compact convex set 0 

9 .1 ,  Theorem : Let f be a normal convex integrand such that f ~ (x', .) is integrable 

for every x' and C a CK-valued mapping P-integrabl~. We set : 

For every 

Then : 

u C c~ 1 (0) ,  a u (o~) = I n f { f  (x+u (~) ,  ~) / x e  C (~)} .  

~ = Min { /9 au (~) c~ (~ ) / u ~ ~1 (0)} 

Proo_.__~f : Denote f t . ,  w) ? X_C(~ ) by g [ ' z  w)" g i s  o b v i o u s l y  a normal  convex i n t o -  

grand.  For each u £ ~ 1  [ 0 ) ,  ~ (w) may be w r i t t e n  : a (~) = g (u t ~ ) ,  ~ ) .  L i k e -  
U U 

wise : 

-- ~ ~ [x') are integrable for = ~F V X_E[ C tO). The functions f~ (x', .) and XC[.) 

every x', thus F V X E(C ) = ~ g (., ~) dP (~) and the continuous In~imal convo- 

lution is exact. That is to say : 

F V X_E(C) tO) : Min jQ g tu Cw),~ ) dP (~) 

u ~ 1 ( o )  

So, these exists ~ ¢~I (0) such that : = ~ ~ { w )  dP (w ] ,  Hence, the r e s u l t  : 

I~ previously we take C (~) = ~ where Q is e nonempty convex set, the previous 

theorem takes the ~ollowlng form : 

9,2. Corollary : Let g be a normal convex integrand such that for every x' 

is integrable. @ is a nonempty compact convex set. Let : 

t~P~ 7 = znr  { F Cx~ / x ~ Q } 

(~s) the perturbed problems : 

Then : ~ s £ ~ 1  tO) such t h a t  ~ = f£  as (<) dP t~)  

Proof : We take in the previous theorem s (w) = - ~ [w). 

f~ [X p , .) 
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