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Abstract 

The time evolution of the age profile of a group of people, for instance the 

population of a certain country, can be described by a first-order partial differen- 

tial equation. A time optimal control problem arises when the population must be 

brought from a given age profile to another desired one as quickly as possible. The 

birth rate, i.e. the number of births per unit of time, is the control variable 

and it serves as a boundary condition for the partial differential equation. To 

prevent the age distribution to become undesirable from an economical point of view 

during the transient to the final situation we require the working population to 

exceed a given fraction of the total population at each instant of time. This in- 

troduces a state constraint to the problem. 

For the cases considered the following facts turn out. a) If age and time are dis- 

cretized properly, a linear programming problem results, the solution of which 

equals an optimal solution of the continuous version of the problem, b) The time 

optimal control is not necessarily unique. A complete characterization of the class 

of all optimal controls can be given, c) Under certain conditions the class of all 

optimal controls contains a unique non-increasing control. 

Two examples are solved analytically. 

i. Introduction, 

The evolution of a certain group of people, say for instance the population 

of a country, can be described by a partial differential equation in which the 

independent variables are time and age. If the initial age profile is given as 

well as the birth rate and the mortality function, then the evolution is com- 

pletely determined. The mortality function depends on time and age and is 

assumed to be known. Immigration and emigration are not considered in the model, 

though this could easily be built in. 
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Given a certain initial age profile the population must be "steered" as 

quickly as possible to another, prescribed, final age profile by means of a 

suitable chosen birth rate. In this way a time optimal control problem has 

been formulated. The problem is stated in terms of an overpopulation which 

should be reduced. The other way around can be dealt with equally well. 

The optimal birth rate may unbalance the age distribution during the time 

interval concerned, which could give rise to economic and social problems. 

Therefore it is assumed that the working population, which must support the 

non-working population, must exceed a given fraction of the total population 

at each instant of time. This becomes a state constraint in the mathematical 

formulation. It will turn out that the addition of this state constraint makes 

the control problem nontrivial. Another constraint which is considered is that 

the birth rate, obviously nonnegative, must be a nonincreasing function of 

time in order to avoid possible peaks. 

This paper is not concerned with the social and political problems involved 

in establishing the best mechanism for a program of population management. 

Instead of this, it focusses upon the mathematical solution of the time op- 

timal control problem. 

The mathematical problem has not quite been solved in its generality; the 

mortality function and the definition of the working population should satisfy 

certain restrictions. 

Related problems have been treated by for instance Langhaar [i3 and Falkenburg 

E23. Instead of time optimality Falkenburg considers a quadratic criterion and 

no state constraints are included. In [31 a similar control problem is con- 

sidered using the Leslie model, with demografic data of the Netherlands. 

2. The model describing the population dynamics. 

The quantity p will stand for population density and it depends on the in- 

dependent variables time t and age r. The number of people of ages in the age 

interval (r, r+dr] at a certain time t is given by p(t,r)dr. Suppose t in- 

creases with dt and hence the age of an individual increases with dr = dt as 

well. Now 

p(t+dt, r+dt)dr = p(tFr)dr - p(t,r)~(t,r)dr dt, (i) 

where ~(t,r) is the mortality function, i.e. ~(t,r)dt is the fraction of people 

of the age class (rrr+dr] who die in the time interval [t,t+dt). If dr = dt + 0, 
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eq, (i) yields 

~p(t,r) ~p(t,r) = _ 
~t ~r 

- ~(t,r)p(t,r) (2) 

which is a linear partial differential equation of the hyperbolic type. It 

is assumed that V and the boundary conditions are sufficiently smooth in 

order for ~p/~r and ~p/~t to exist almost everywhere. The following boundary 

and initial conditions will be used: 

p(0,r) = P0(r) , 0 < r ~ i, (3) 

p(t,0) = u(t) , 0 ~ t ~ T, (4) 

where P0(r) is the given initial age distribution; u(t) is the birth rate and 

T is the final time. It has been assumed that the age r has been scaled in 

such a way that nobody reaches an age of r > i. The time t will be measured 

with respect to the same scale. 

From now on it will be assumed that N(t,r) is independent of t and by abuse 

of notation we will now write ~(r), which is assumed to be known. The solution 

of eqs. (2)-(4) is 

r 

p(t,r) = P0(r-t)exp(- / ~(s)ds) , 0 ~< t < r, (5) 

r-t 

r 

p(t,r) = u(t-r)exp(- f 

0 

~(s)ds) , t >. r. (6) 

Because nobody reaches r = i +, the mortality function should satisfy 

1 + 

exp(- I ~(s)ds) = 0 

0 

However, this is not the case for the functions ~(r) considered in this paper. 

For these imperfect ~(r)-functions it will be assumed that those people who 

reach an age of r > i, simply leave the model and are not considered any longer. 

The age distribution is called stationary at t = t if 
s 

r 

p(ts,r) = c. exp(- / ~(s)ds), 0 ~< r ~< i (7) 

0 

where c is a positive constant. A stationary age distribution corresponds to 

a constant birth rate u(t) = c for t 1 ~ t < t . 
s s 
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In the remainder of the text the following abbreviations will be used 

r 

e(r) = exp(- / ]~(s)ds) 

0 

b 

ei(a;b) = / e(r]dr . 

a 

3. Statement of the problem. 

We will consider the following problem. Bring the population from a given 

initial age profile to another desired one as quickly as possible by properly 

choosing the birth rate. More precisely, given eqs, (2) and (3), the boundary 

condition (4) should be chosen in such a way that at time t = T the age dis- 

tribution p(T,r) equals a prescribed function PT(r) for all r £ (0,i]. More- 

over the final time T must have its minimal value. It is easily shown that 

p(T,r), 0 ( r Z i is completely determined by u(t) with t ~ [T-I,T] because 

the people who were born between t = 0 and t = T-I have all died at time T 

and hence do not show up in p(T,r). It is tacitly assumed here that T ~ I. 

From now on it will be assumed that both P0(r) and PT(r) are stationary. 

Apart from a multiplicative constant P0 and PT are equal; we assume that 

P0(r) > pT(r), 0 ~ r ~ i. 

The final time T must be minimized and it is clear from above that the minimal 

T, to be denoted by T , equals i; simply choose u(t) = u T on 0 ( t 6 i, where 

the constant u T corresponds to the stationary age distribution PT(r). 

The optimal control problem defined above is trivial. However, the solution 

may unbalance the age distribution and therefore the following state constraint 

will be added: 

b i 

/ p(t,r)dr ~ ~ / p(t,r)dr, 0 ~ t ~ T, 
a 0 

which can be rewritten as 

i 

h(t) ~ / y(r)p(t,r)dr ~ 0, 0 ~ t (8) T. 

0 

This ineq. can be thought of as an economic constraint; the working population, 

defined as all people aged between a and b, should be at least a given per- 

centage of the total population. 
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Quantities a and b are constants with 0 $ a < b ~ 1; 7(r) is a stepfunction; 

y(r) = -~ for 0 $ r < a and b $ r < 1 and y(r) = i-~ for a ~ r < b. The 

parameter ~ is a constant within the bounds 

0 < ~ < ~ A ei(a;b) 
ei(0;1) ' (9) 

where the second inequality has been obtained from the fact that ineq. 

should be valid for a stationary age distribution. 

We will also assume that 

(8) 

u(t) >~ 0, 0 < t .< T 

If we use eq, (6), the problem can be completely restated in terms of the 

birth rate u(t); 

minimize T subject to 

u(t) = u 0 >~ 0, -1 .< t < 0, 

u(t) = u >~ 0, T-1 6 t ~< T, 
T 

u(t) ~ 0 ~ , 0 ,< t < T-I, 

h(t) = / y(r)u(t-r)e(r)dr >~ 0, 0 .< t .< T. 

0 

Here u 0 and u T are the constant birth rates, corresponding to P0(r) and PT(r) 

respectively. Without loss of generality we will take u 0 = i. In a later stage 

sometimes the condition that the optimal birth rate must be nonincreasing 

will be added. 

The problem will be approached in a slightly different manner. The roles 

played by the quantities T and u T are interchanged, i.e. in obtaining a 

solution we assume that T is fixed and that u must be minimized. This trick 
T 

is justified by the fact that the mapping T ÷ u T is nonincreasing and con- 

tinuous which can be proved for the problems treated. Our problem now reads 

minimize u T subject to 

u(t) = 1 , -i .< t < 0, 

u(t) = u T , T-1 .< t .< T, 

u(t) >~ 0 , 0 ~< t < T-l, 

1 

h(t) = I y(r)u(t-r)e(r)dr >~ 0 
0 

,0(t(T. 

lO) 

11) 

12) 

13) 
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4. Elucidation of the constructive solution scheme. 

Because the function to be minimized and the constraints (10)-(13) are all 

linear in u T and u(t), the problem just stated can considered to be a Linear 

Programming problem in an abstract space. So a saddlepoint theorem can be 

applied which gives necessary and sufficient conditions for the optimal solutions 

UT, u (t). A start in this direction has already been made [4]. 

In this paper however we want to follow a more direct approach, although the 

class of problems to which it can be applied is not as wide as the class for 

which the attack in [4] is valid, 

We want to make clear certain features of the proposed method by treating two 

examples. The first example, though not very realistic, serves well to illustrate 

the method. 

Example I. 

1 1 
in this example we take B(r) = 0 for 0 ( r < i, a = 0, b = ~ , ~ = ~ , T = 2. 

The problem now is to minimize u T subject to 

u(t) = i ~ -[ ~ t < 0, (14) 

u(t) = u T , 1 $ t < 2, (15) 

u(t) ~ 0 , 0 g t < i, (16) 
i 

7 I 
i 

h(t) = f u(t-r)dr - ~ f u(t-r)dr k 0, 0 ~ t g 2 (17) 

0 0 

1 2 
Consider ineq. (17) only for t = ~, i and ~ respectively; 

1 
7 

I 
f u(t)dt >~ ~ , 

0 

i 
I 

f u(t)dt g 
I 
? 

1 
g 

f u (t) dt, 

0 

(18) 

(19) 

1 
1 1 
g uT >" 7 f u(t)dt, 

1 

2 

(20) 

* 1 * i 
from which it follows that u T >. ~. However, u T = ~, because the piecewise con- 

stant control deduced from ineqs, (18)-(20) by imposing the equality-sign 
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i 1 
u(t) = [ , 0 ~< t < 

i 1 
u(t) = ~ , ~.< t < i 

i 
u(t) = u T = ~ , i .< t .< 2 

satisfies all the conditions (14)-(17) and hence is optimal (see figure i). 

* h* u (t) (t) 

1/2 t 
I 

i J 

; 

2 Dt 

1 

6 

Figure i, An optimal solution for the first example. 

However, the optimal solution is not unique, Another possible solution is for 

instance 

5 1 
U (t) = I-~ , 0 ~< t < ~ , 

* 7 i 1 
u (t) = i-T ' ~ "< t < y, 

* 1 1 3 
(t) = ~ , ~.<t <~, 

* i 3 
u (t) = -- 3 4 - t < ' i 

* * i 
U (t) = U T = ~ , I ~< t ~< 2, 

This optimal solution is sketched in figure 2. 
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u (t) h* (t) 

-1  

1 

L. 

1 

Figure 2. Another optimal solution for the first example. 

In order to give a complete characterization of the class of all optimal solutions 

we define 

t 

f(t) = / u(t)dt, t >. 0 

0 

and 

1_ 1 
x.~.(T) = f(T+(i-l) )~ i = 1,2, 0 ~< T ~< ~ . 

3 
It follows from (18)-(20) with equality-signs that x2(~) = f(1) = : . 

1 , 1. 
intervals ~(i-lj Z T ~ ~l, i = 1,2,3,4 ineq. (17) becomes: 

i 
x I (~) ~ • - 

1 
2x2(T) - 3Xl(T) ~ ~ - T 

1 3 
-3x2(T) + Xl(m) ~ - ~ T - 

1 1 
x2(~) ~ ~ ~ + 

On the 

i 
0 .< T $ ~- , (21) 

. i ½ 3 
where u T = ~ and x2( ) = ~ have been substituted. 
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In the three dimensional space~ spanned by xl-, x 2- and Y-axes, the points 

(Xl, x2, T) satisfying ineqs. (21) form a bounded set; this set is a tetrahedron 

and has been drawn in figure 3. For T = 0 only one point (xl, x2) satisfies 
1 1 

ineqs. (21), viz,l xl = 0~ x 2 = ~ , For T = ~ again only one point satisfies ineqs. 

(21), viz. x I = ~, x 2 = ~ , For intermediate T t however, infinitely many points 

(xl,x2) satisfy ineq. (21). For each T, 0 ~ T ~ 3' we choose a point (Xl,X2) sub- 

ject to the ineqs. (21) in such a way that xi(Tl) Z xi(Y) for all r I ~ y and 

i = 1,2 in order for ineq. (16) to be satisfied; then the points constitute an 

optimalsolution, Because the optimal xi(T) may have jumps, even optimal birth 

rates are possible which possess delta-functions. 

1 

/ 
/ 

/ 

i II 

x 2 

Figure 3, Set of all optimal solutions. 

/ 
/ 

/ 

111 

/ 
/ 

/ 

It is easily seen that, if only non-increasing u(t) functions are allowed, the 

solution is unique and equals the one of fig.l.ln fact, if u(t) is nonincreasing, 

then xi(T) is concave (a connecting bar lies below or on the curve) and the only 
1 possibility then is the straight line connecting (T=0, xl=0, x2= ~) and 

(T~, _i 3 
Xl- ~, x2=~); see also figure 3. 

We conclude this example by summarizing the facts proved. 

(i) An optimal solution (piecewise constant) can be found by considering the 

ineq. h(t) ~ 0 only at a finite number of characteristic points (t = 5'i i, 5) .3 

(ii) The class of all optimal solutions can be completely characterized with 

the help of the x. (T)-functions. 
i 

(iii) This class contains a unique non-increasing control. 
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The above analysis can be extended to more realistic situations. For example 

the mortality function may be taken constant and the final time T arbitrary. 

Instead of going through this problem in quite its generality, only a rough 

sketch of the solution method and the results for a specific example will be 

given. For a more detailed discussion and other generalizations one is referred 

to [4], 

Example II. 

1 2 
In this example we take z(r) = ~ = constant for 0 @ r < I, a = ~ and b = ~ . 

The parameter ~ is a constant satisfying the ineq. (9). The final time T is 

taken arbitrarily. In this case the problem reads 

minimize u T subject to 

u(t) = 1 , -i ~< t < 0 , (22) 

u(t) = u T ~ T-I .< t < T, (23) 

u(t) >~ 0 ~ 0 ,< t < T-I (24) 

2 

3 
h(t) = f u(t-r)e(r)dr - ~ f u(t-r)e(r)dr >. 0 , 0 ~< t ~< T. (25) 

1 0 
7 

It turns out that the critical points on the time axis, which play a crucial role 

in the analysis, are the points given by 

and 

t k = k.u ~ k = i, .... , N+I , 

tk = (k-l).~ + o, k = 1 ...... N+I, 

¢ 

~, N = IT/v] and d = T-N.V, where IT/v] is the largest natural number with v 

less then or equal to T/~. 

Now define 

t 

f(t} : f u(t-r)exp[-~r]dr 

0 

xi(T) = f[ti_ I + T(t i - ti_ 1 

x. (T) = fit + T(t. - t.) 
l 1 1 l 

X = XN_2(1) ~ t o = 0 

, 0 ( t .< T , (26) 

)], i = i, . . . .  , N-2; 0 ,< T ,< 1, (27) 

i = is .... ~ N-3; 0 ~< T ~< I, (28)  

(29)  
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The ineq, (25) can be transformed into restrictions on the functions x.(T) and 
l 

x . ( T ) .  I n  a c o m p a c t  w a y  t h e  r e s t r i c t i o n s  a r e  g i v e n  b y  t h e  f o l l o w i n g  m a t r i x  
1 

inequality 

A(~) x (T) >. b(~) , 0 .< • .< 1 (30) 

with 

q, 'b 
x(T) = (x I(T),x l(~),x2(r) ........ XN_ 3 ( T ) ,  XN_2(T), x, UT)' (31) 

Matrix A(7) has size (2N+I) x (2N-3) and its elements, as well as the components 

of b(T), are given in the appendix. 

An optimal solution can be obtained in the following way 

1) Minimize u T subject to the economic constraint (30) at the characteristic 

points only, i.e. subject to the constraint 

A(0)x(0) >. b(0). (32) 

Note that x1(0) = 0. This is a finite-dimensional linear programming problem which 

can be solved by standard techniques, Call the solution of this LP-problem 

x* (0) (x I (0) XN 2 (0) --* u~) = * , ~i*(0), .... .., _ * , X , ' (33) 

2) NOW choose u(t), 0 ( t < T-I, to be piecewise constant, i.e., 

u(t) = u.l ' ti-I ~ t < t i , i = 1,2, .... ,N-2 

u ( t )  = u .  , t .  ~ t < t .  , i = 1 , 2 ,  . . . .  , N - 3  
1 1 1 

The quantities u. and u. are uniquely determined by eq, (33) and the formulas 
1 1 

(27)-(28). For p = 0 the calculations have been carried out analytically and 

the result is 

V(I-~N)(I+~)~ N-2 + O(I+~N-I)(~2-1)~ N-2 

u T = V(I_~N)(I+~2N-3) + o(I+~N-I){~2-i)$ N-2 
(34) 

(V-o)~N-2(I-62)(1+~ N-I) + ~({i+$2N-l-i)(1-~N-2 ) 
u. = . . . .  , (35) 
1 (~_O) (I_~N) (I+~2N-3) + O(I+~2N-I) (I_~N-2) 

i = 1,2,...,N-2 
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^~ v(I_~N) (~i+~2N-3-i) + j(I+~N-I) (~2_I)[N-2 
u. = - . . . .  
1 u(l-~ N) (i+~ 2N-3) + ~(I+~ N-I) (~2-I)~N-2 ' 

(36) 

i = 1,2, .... ,N-3 

where ~ is defined as the largest root of 

- a~ 2 + (i-~)~ - ~ = 0 

3) It can be easily shown that 

% > 0 
u I > u I > u 2 > ..... > UN_ 3 > UN_ 2 > u T 

So the constraint (24) is satisfied. Moreover it can be proved that the solution 

(34)-(36) satisfies the economic constraint (30) for all T £ [0,1], and hence 

the solution (34)-(36) is an optimal solution. 

Some remarks will be made on the uniqueness for the piecewise constant solution 

u*(t) found. Because ~ and UT are not time dependent and are known from (34)-(36) 

they will be substituted in (30) with as result: 

A ~(T) >. b(T) , 0 .< T .< I, (37) 

where ~(T) = (xl(Y)~ Xl(T) . . . . . .  XN+ 2 (Y))' and the size of, the constant matrix 

is (2N+I) x (2N-5); b(s) is reconstructed from b, x and u T. 

In the 2(N-2)-dimensional space spanned by the components of i and the parameter 

T an admissible region for i and T exists with 0 Z T ~ i; one can imagine a 

figure similar to figure 3. Such a region of admissible i,T points, i.e. those 

and T which satisfy (37), will now be bounded by curved hypersurfaces because 

in general ~ ~ 0. $o the admissible region will be banana-shaped. For each 

T £ [0,i] all the admissible i of course constitute a convex set. 

As was shown in the first example, the optimal control is unique if only non- 

increasing solutions are allowed. Is this also true in this example? The answer 

is affirmative. One has to investigate a matrix D, which can be constructed from 

the matrix A, on inverse-monotonicity [4]. 
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We conclude this example by sketching the function UT(T ) for different values of 

and ~. For ~ ~ 0 the function values has been obtain numerically. 

% 
1 1 ~  ~ ~ ' =  1 / 3 ,  ~ = 0 

3'~ 

.75 

.50 

.25 

==. 99~ 
2 ~ ~ 
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Figure 4, The values of UT(T ) for 

= 0 and several values of e, 

Figure 5. The values of UT(T) for 

= I and 2 respectively and 

= ,99~. 

Note that for e = e the working population can just support the non-working 

population, There is no freedom left to reduce u T, 

5. Conclusion, 

In this paper some mathematical features of a population!planning problem have 

been investigated, An open loop control has been found which decreases (or in- 

creases) the number of people to a desired level and distribution as quickly as 

possible subject to the condition that the working population must be at least 

a given percentage of the total population at each instant of time. Remarkably, 

the optimal solution to this dynamic problem can be obtained by linear programming 

provided the working population and mortality function satisfy suitable pre- 

requisities. 

A constraint, which has not been considered in thfs research, is a minimum level 

of fertility (or maternity functions), i.e. u(t) should satisfy 
1 

u(t) ~ ; d(t,r)p(t,r)dr, 0 Z t ~ T, for some function d(t,r). 

0 
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Only constant mortality functions have been considered. Some 

zr m o r t a l i t y  f u n c t i o n s  somewhat c l o s e r  to  r e a l i t y  maYgrbe ~( r )  = ~ i t g  ~ , w i th  

corresponding stationary population p(r) = e. cos -~ , or ~ =]~_r with corre- 

sponding p(r) = c(l-r). 

The first mortality-function may be considered as a crude approximation of a 

mortality-function of a developed country~ whereas the second one may approximate 

the situation for a developing country. No analytic solutions are known for 

these cases at this time. 

6, Appendix. 

Matrix A(r) and vector b(Y)~ as defined in ineq. (30) will be given here. Matrix 

A(T) has size (2N+I) x (2N-3) and b(T) has (2N+I) components. All elements a.. of 
l] 

A(T) are zero except for 

a. = -~, = e(~) = -e(v) 2 = ~e(~)3; 
li ai+2,i ' ai+4,i ' ai+6, i 

i = 1,2, .... ,2N-5; 

a = -e.e(0(T-l) + ~(i-N+3)); a = -e.ei(0;d(T-1) + 9(i-N+3)); 
i~2N-4 i,2N-3 

i = 2N-3;2N+I; 

ait2N_4 = (1-a).e(~(T-l) + ~(i-N+3)); ai,2N_3 = 

+ ~ (i-N+3)) ; 

l-e).ei(0;0(T-l) + 

i = 2N-I; 

ai~2N-4 = -~.e(T(~-o) + o(i-N+2)); ai,2N_3 = -~.ei(0;T(o-d) + o(i-N+3)); 

i = 2N-4; 2N; 

ai~2N_4 = (l-~).e(T(~-0) + v(i-N+2)); ai,2N_3 : (l-~).ei(0;T(~-~) + 

+ ~(i-N+2)); i = 2N-2; 

The components b. of the vector b are zero except for l 

b I = ~.ei(T0;v) - (i-~), ei(v;29) + e.ei(2~;l) ; 

b 2 = ~.ei(T(~-d) + d;U) - (l-~),ei(v; 2~) +~ ei(2~;l) ; 
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b 3 = -(l-e).ei(To+9;29) + ~.ei(29;i) ; 

b 4 = -(l-~],ei(T(9-o) + ~ + ~;2~) + e.ei(29;l) ; 

b 5 = e.ei(To + 2~;I) ; 

b 6 = ~.ei(T(v-~) + g + 2~;i), 
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