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Abstract. The article presents a possible solution to a typical tomographic im-
ages generation problem from data of an industrial process located in a pipeline 
or vessel. These data are capacitance measurements obtained non-invasively 
according to the well known ECT technique (Electrical Capacitance Tomogra-
phy). Every 313 pixels image frame is derived from 66 capacitance measure-
ments sampled from the real time process. The neural nets have been trained  
using the backpropagation algorithm where training samples have been created 
synthetically from a computational model of the real ECT sensor. To create the 
image 313 neuronal nets, each with 66 inputs and one output, are used in paral-
lel. The resulting image is finally filtered and displayed. The different ECT sys-
tem stages along with the different tests performed with synthetic and real data 
are reported. We show that the image resulting from our method is a faster and 
more precise practical alternative to previously reported ones. 

1   Introduction 

Process tomography consists of obtaining images from the inside of pipelines, reac-
tors or other type of containers that are part of industrial processes [1] [4]. Such visu-
alization is performed non-invasively. There are several techniques for obtaining 
images, depending on the type of measurement used (acoustic, magnetic resonance, 
electrical, etc.). One way is to obtain capacitance measurements according to the ECT 
technique [1] [3]. 

Image reconstruction techniques from Artificial Neural Nets (ANN) trained by 
means of a supervised learning algorithm, require large number of samples (capaci-
tance measurements for several known permittivity distributions) to be trained.  
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Because of the difficulty in obtaining such examples experimentally, we need to de-
velop a methodology which allows us to generate synthetic examples from a real-
sensor model.  

From the set of generated samples the ANN is trained assuming the capacitance in-
formation as the input and the permittivity distribution information as the output. The 
ANN thusly trained has the capability to respond to new sensor data, giving adequate 
permittivity distribution which allows us to reconstruct a tomographic image. 

1.1   Electrical Capacitance Tomography 

ECT is an innovating technique (late 80s) [1] [10] for industrial multiphase process 
visualization, suitable for electrically insulating materials. Its potential applications in 
the petroleum industry [4] range from multiphase flow measurement and monitoring 
in producing wells to separator and fluidized bed optimization [2]. 

The ECT technique consists in placing an electrode array around a pipeline or ves-
sel made of an insulating material that contains the process to be visualized. By using 
the adequate tools, the capacitances between all possible electrode pairs needs to be 
measured [6]. The obtained readings depend on the dielectric constant value (electri-
cal permittivity) of the different phases or components of the mixture and the way 
they are distributed inside the pipeline or vessel.  The next step is to obtain an image 
of such distribution from the measured capacitance data by means of an adequate 
image reconstruction algorithm. Figure 1 shows a schematic diagram of an ECT sys-
tem with its main components. Besides the capacitance sensor, a basic ECT system is 
made up with a data acquisition system and a computer for image reconstruction [10]. 

 

Fig. 1. ECT system components 

2   ECT Sensor Used 

The number and the size of electrodes depend on the specific application. Most of the 
applications developed until now make use of sensors with 8, 12, or 16 electrodes [1] 
[3] [6], they must be inside a grounded screen to cut down noise and the influence of 
external fields (see Fig 2). Besides, the sensor used has two grounded cylindrical end 
guards to eliminate the changes on the electric field borders. 
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Fig. 2. ECT Sensor Schematic Diagram 

The sensor from the Mexican Petroleum Institute used in this research has 12 elec-
trodes (see Fig. 3a), so it is possible to measure 66 capacitance values between them 
(see Figure 3b). These capacitances are extremely small and, due to this, very sensi-
tive measurement circuits are needed. Such values are in the 0.1 to 500 femtofarads 
range (1 femtofarad = 10 e-15 farads). 

 

Fig. 3. Mexican Institute of Petroleum ECT Sensor. a) Dimensions, b) 66 electrode-pair combi-
nations 

2.1   Numeric ECT Sensor Model 

Although the sensor is a three-dimensional device, it is possible to use a two dimen-
sion model due to the fact that it is representative of a central transversal section. The 
natural deformation of the electric field at the edges of the pipe formed by the meas-
urement electrodes is controlled by means of the grounded electrodes placed in both 
edges (see Figure 2). Apart from the insulating pipe, measurement electrodes, guard 
electrodes and shielded screen dimensions, the model geometry includes the spatial 
discretization of the inner part of the sensor (R1 in Figure 3). It has been discretizated 
into 313 uniform size zones, as shown in Figure 4. 

The model allows us to have a method from which numerical calculation can be 
carried out for the electric potential φ in the space of the sensor. This is necessary as 
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an intermediate step towards the capacitance calculation. An ECT sensor can be  
considered as an electrostatic field problem. The electric potential φ within the sensor 
[3] is calculated by solving the following second order partial differential equation 

( ) ( )[ ] 0,, =∇⋅∇ yxyx φε      (1) 

where φ (x,y) is the potential distribution in two dimensions, and ε (x,y) is the relative 
permittivity distribution in two dimensions. 

To complete the model, the boundary conditions (Dirichlet boundary conditions) 
related to the measurement technique are shown in (2). When electrode i is the excita-
tion electrode, such conditions are: 
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where Γi is the spatial location of the measurement (excitation) electrode; Γj is the 
spatial location of the 11 detecting electrodes; Γs the one of the sensor screen; and Γg 
the one of the 12 grounded guard electrodes placed between the 12 measurement 
electrodes. 

The sensor model will be used to simulate a real sensor. This means that it will be 
able to solve the ECT forward problem calculating capacitances between all possible 
electrode pairs. To achieve this, equation (1) has to be solved first such that the poten-
tial distribution φ (x,y) is obtained within the sensor.  

One way to calculate φ (x,y) is through the finite element method (FEM) [7]. Using 
this method, an approximation to the potential φ will be obtained in the sensor at a 
finite set of points corresponding to the nodes of the triangular mesh that is normally 
used in the finite element method. 

Once the potential distribution is found within the sensor, the electric charge Qj on 
each detector electrode is calculated by using Gauss law 
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where Γj is a closed curve surrounding the detector electrode and n is the normal 
vector along the Γj. 

Finally the capacitance can be computed by an energy method, the energy re-
quired to charge a capacitor is given by the expression 
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which is equal to the energy of the electrostatic field. So the capacitance is easily 
obtained from (5). 
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3   ANN Solution’s Description 

The tomography problem is, mathematically speaking, an inverse problem, since from 
the observed effects (the change in magnitude of capacitances) our aim is to obtain 
the causes which originate them (material distribution in the inner part of the sensor). 
The solution of an inverse problem, for our ECT case, consists on obtaining the dis-
cretized permittivity distribution ε (ε = {ε1, ε2, .. , ε313}) starting from the set of ca-
pacitance measurements, represented by the c vector (c = {c1, c2, .. , c66}). 
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As mentioned before, an ECT process consists of two stages: 1) capacitances ob-
tained in a specific moment; 2) image construction (see Fig. 4). This last stage has 
been implemented by using an ANN.  
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Fig. 4. Pixels distribution that forms the tomographic image 

Multilayer Perceptron is the ANN selected type as they are universal function 
aproximators for a nonlinear input-output mapping [5]. An MLP is used to solve each 
of the 313 fp functions (with p= 1, … , 313) obtaining ε. 

In the image creation stage, c is input by several ANNs (see Fig. 5) calculating in-
dividually the εp pixel values. As a result each pixel is assigned a 1-3 permittivity 
value corresponding to a substances mixture (For instance, petroleum will have a 
permittivity close to 3; gas will have a value close to 1; while in the case of a mixture, 



376 N. Flores, Á. Kuri-Morales, and C. Gamio 

an intermediate value will be observed). Afterwards, the pixel value will be mapped 
to the range [0-255] that corresponds to its final gray level (represented with 8 bits). 

3.1   Use of Neural Networks in the Image Reconstruction Stage  

The ANNs are now grouped in a module: Its full architecture consists of 313 ANNs in 
parallel (see Fig. 5). Vector c is fed and the module outputs the corresponding ε vec-
tor. Therefore, ε represents permittivity distribution in the sensor transversal section. 
The image is made up according to the pixel numbers as shown in Figure 4. 

 

Fig. 5. RNA module for solving the TCE problem 

For each εp pixel calculation identical ANNs are used: one per pixel. Its architec-
ture is 66-4-7-1 (see Fig. 6), meaning 66 inputs; a first hidden 4 neuron layer, a sec-
ond 7 neuron one, and a unique neuron in the output layer supplying the permittivity 
value for εp. 

 

Fig. 6. ANN Architecture 
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These ANNs have been trained by using the traditional backpropagation algorithm. 
1000 training and 150 test examples have been created to achieve such training.  Ex-
amples are created in the following manner: a p pixel discretized permittivity distribu-
tion is chosen. Such distribution makes up vector ε which is then fed to the computa-
tional sensor model to get n capacitances making up c vector. Later on, both are 
merged resulting into a training or test example as shown in Figure 7. These items of 
the sample have 379 elements for p=313 and n=66. 

ε

ε 1 ε 2 ε 3 ε 4 … ε p

c 

c 1 c 2 c 3 c 4 … c n

 

Fig. 7. Examples structure for training and test 

A large majority of these examples were randomly generated. 100 training exam-
ples were created by using known distribution patterns of materials in the flow, such 
as: stratified, annular and with bubbles. Training was performed for 1500 epochs, 
reaching a 0.19 training error, and a 0.24 testing error. A 0.1 learning rate has been 
used for the three computational layers. Also, a 0.1 momentum constant has been 
used in them. 

4   ANN Recall and Digital Image Processing Module 

The general method’s performance is now described. As mentioned before capaci-
tance values are in order of femtofarads. Vector c is normalized in the [0, 1] interval, 
and input the trained ANN module. A normalized permittivity value is obtained in [0, 
1] at the module output. Such a value is now denormalized and a grey level value 
(from 0 to 255) is displayed as the output value in the corresponding pixel.  

 

 

Fig. 8. Digital Image Processing steps 

Finally the image made up with the 313 pixel aggregate is passed through a 
Digital Image Processing (DIP) module mainly to get dissemination among the 
pixels to present a tomographic aspect image. The DIP module is made up by  
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applying a ten step sequence (see Figure 8) as follows: 1) Circular mask to elimi-
nate the four black corners, outside the circle, from the treatment; 2) Median filter 
to add blur (slight fading at the edges between the pixels); 3) A lookup table 
(LUT) 1/x type, with x= 0.4, for a better brightness, turning the darker zones into 
even darker ones; 4) Dilation of the light zones; 5) Decreasing brightness; 6) Low 
pass FFT Filter (Consisting of three steps: a) Finding the FFT, b) Filtering low 
frequencies from the resulting images and, c) Going back to the image dominium 
by means of the inverse FFT); 7) Noise elimination from the saturation zones in 
the former step (The noise is inverted and then subtracted from itself); 8) The im-
age is added to itself to double the gray level from the light parts to recover the 
brightness withdrawn in 3 and 5 steps; 9) Brightness and contrast are adjusted; 10) 
A circular mask (as in step one) is applied again.  

5   Test Using Synthetic Data for Validation  

The process for 4 synthetic images is described in what follows. Both the ANN and 
the DIP module results are shown. First the desired image (original image) is defined 
and put in ε form. Later the ECT sensor model is used to get the corresponding c 
vector. Then c and ε are merged and RNA module is used to simulate ECT system 
performance. Finally, the resulting images are passed by the DIP module. The results 
can be easily validated. Figure 9 displays the ANN module’s output and results after 
applying DIP. 

 

Fig. 9. Original Synthetic Images versus generated ones by using the ECT system 
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These results show that the ANN method effectively yields satisfactory results for 
tomographic images reconstruction from capacitance measurements. The light zones 
represent gas zones (permittivity close to 1), while the dark zones represent oil (permit-
tivity close to 3). All the examples were integrated with different permittivity values; 
examples 3 and 4 have three different levels, representing oil, foam and gas. The first 
two examples represent a pipeline filled with oil with 1 and 4 gas bubbles respectively. 

6   Experiments Using Real Data 

Results from tests performed with real data from a petroleum reservoir simulator are 
now shown. Real gas and oil at different pressures and amounts were passed through 
the sensor.  

 

Fig. 10. Experiment using gas and oil. Frames were acquired at 10 ms intervals 

 

Fig. 11. Experiment using gas and oil. Frames were acquired at 10 ms intervals 

Figures 10 and 11 show tomographic images obtained from two experiments. Fig-
ure 10 shows an experiment with 0.246 million scfd (standard cubic feet per day) for 
gas and 182.37 bpd (barrels per day) for oil, having a mixture pressure of 5.5 barbg 
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(barg gauge). Experiment in Figure 11 was carried out with 0.248 million scfd and 
2,263.33 bpd, making a 5.7 barbg pressure. 

7   Conclusions 

The ANN is a proven functional method for ECT image reconstruction. Several 
worldwide researchers have already reported promissory results by using this tech-
nique [8] [9] [11]. Experiments displayed in this paper have reached 0.24 maximum 
error image results. This can be measured only when testing known synthetic patterns. 
Error measurements from real data cannot be supplied because the transversal distri-
bution reference from different flow phases going through a pipe is unknown. And it 
is precisely here where our method is most useful. The proven effectiveness of the 
ANN model capabilities allows us to extrapolate the observed and known results to 
unknown areas of operation, thus fulfilling the original aim of accurately modeling 
the phenomenon under study. 
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