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Abstract. We have developed a method for the automated segmenta-
tion of the internal limiting membrane and the pigment epithelium in
3-D OCT retinal images. Each surface was found as a minimum s-t cut
from a geometric graph constructed from edge/regional information and
a priori-determined surface constraints. Our approach was tested on 18
3-D data sets (9 from patients with normal optic discs and 9 from patients
with papilledema) obtained using a Stratus OCT-3 scanner. Qualitative
analysis of surface detection correctness indicates that our method con-
sistently found the correct surfaces and outperformed the proprietary
algorithm used in the Stratus OCT-3 scanner. For example, for the in-
ternal limiting membrane, 4% of the 2-D scans had minor failures with
no major failures using our approach, but 19% of the 2-D scans using
the Stratus OCT-3 scanner had minor or complete failures.

1 Introduction

Retinal thickness measurements obtained from optical coherence tomography
(OCT) provides clinically useful information for the diagnosis of diseases of the
optic nerve head, such as glaucoma [1]. However, to date, very little has been
reported on the automated analysis of such images [2]. Furthermore, although
“volumetric” data is often obtained by performing multiple circular scans (typi-
cally six), current methods rely on detecting the retinal boundaries in each 2-D
cross-sectional image individually [1,2]. To our knowledge, nothing has been re-
ported about the automated detection of the surfaces of the retinal layers. This
work presents a method for automatically detecting the surfaces of the retinal
layer in 3-D OCT images: the internal limiting membrane and the pigment ep-
ithelium, thereby allowing quantitative measurements of retinal thickness. In
particular, our method finds each surface by finding a minimum s-t cut in a
3-D geometric graph constructed from edge/regional information and a priori-
determined surface constraints. The internal limiting membrane is found first
and the pigment epithelium second, thereby allowing additional information to
be used in the construction of the graph for detecting the pigment epithelial
surface.
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The process of transforming a multiple surface segmentation problem into
that of finding a minimum s-t cut in a geometric graph has been previously
reported by Li et al. [3]. It extends a previously reported method for detect-
ing a single optimal surface by Wu and Chen [4] by adding additional edges to
model interactions between the surfaces. While our method does not find the sur-
faces simultaneously as in [3], it imposes similar surface interaction constraints.
One important advantage of using the minimum cost s-t cut surface detection
method [3, 4] when compared to other previously-reported 3-D based surface
segmentation methods [5–7] is that it guarantees to find the optimal solution
with respect to the cost function.

2 Methods

2.1 The Sequential Multiple Surface Segmentation Problem

As OCT images were acquired as a sequence of circular scans (Fig. 1), the images
naturally used a cylindrical coordinate system. Let I(r, θ, z) represent a 3-D OCT
image, with corresponding image sizes R, T , and Z. R reflects the number of
circular scans (typically 6), T reflects the number of angles used in each circular
scan (typically 128), and Z reflects the number of points sampled at each (r, θ)
point (typically 1024).

When using such a coordinate system, the surfaces of the retinal layer appear
terrain-like. In particular, for each column of z-values corresponding to a specific
(r, θ) pair, each surface intersects the column only once. Thus, each surface could
be defined with a function f(r, θ), mapping (r, θ) pairs to z-values. Let film(r, θ)
define the internal limiting membrane and frpe(r, θ) define the pigment epithelial
surface of the retina. It then became the goal of our multiple surface segmentation
method to determine film(r, θ) and frpe(r, θ).

Given a cost function c(r, θ, z) that specifies a surface unlikelihood measure-
ment for each voxel, the cost of each surface was defined as the total cost of all
voxels on the surface. An optimal surface was defined as the feasible surface for

Fig. 1. Each 3-D OCT image is composed of a number of 2-D circular scans, as schemat-
ically shown on the left. One example circular scan is shown on the right. The internal
limiting membrane is the “upper” surface of the retinal layer (smaller z-values) and
the pigment epithelium is the “lower” surface of the retinal layer (larger z-values).
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which the surface cost was minimal. With a careful transformation of the costs
of the voxels as described in [3] or [4] into the weights of a directed 3-D graph, an
optimal surface directly corresponded to the minimum-cost (nonempty) closed
set in the graph. Note that a closed set was a subset of the graph such that
no directed edges left the set. The minimum-cost closed set in the transformed
graph could be determined by finding the minimum s-t cut of the graph.

Our method used a sequential approach in detecting both surfaces. In par-
ticular, after finding the first surface using the single-surface detection method,
we used the information from the location of the first surface to aid in creating
the geometric graph used for finding the second surface (e.g., to define a more
appropriate cost function and to limit the search range of the second surface).

2.2 Surface Feasibility

It was the structure of each graph (vertices and edges) that guaranteed that a
feasible surface would be found. Two major types of surface constraints were
imposed: (1) smoothness constraints for each individual surface (i.e., how much
the radial and theta values were allowed to vary from column to column) and
(2) surface interaction constraints (i.e., the minimum and maximum allowed
distances between the surfaces). In detecting the internal limiting membrane,
only smoothness constraints were imposed since this surface was determined
first. Once the internal limiting membrane was found, the interaction constraints
could be added for detection of the pigment epithelial surface by limiting the
search range.

More specifically, both surfaces were defined to be feasible if they satisfied the
following properties:

– Smoothness constraint: The difference in the z-value between the points on
the surface in adjacent columns did not exceed a constant value. In particu-
lar, |f(r, θ + 1) − f(r, θ)| was required to be less than or equal to Δθ for all
(r, θ) and |f(r+1, θ)−f(r, θ)| was required to be less than or equal to Δr for
all (r, θ). Furthermore, since a larger physical distance was associated with
each unit change of r, Δr was set to be greater than Δθ. Note that because
we were using cylindrical coordinates, columns with θ = T − 1 were defined
as being adjacent to columns with θ = 0 (circularity constraint).

– Interaction constraint: The distance between the two surfaces was at least
δl voxels and at most δu voxels (i.e., δl ≤ frpe(r, θ) − film(r, θ) ≤ δu for all
(r, θ)).

2.3 Cost Function

Whereas the structure of the graph defined the set of feasible surfaces, it was
the cost function itself that was integral in defining which surfaces were finally
identified. Intuitively, the cost functions in this work were based on the following
a priori observable properties about the retinal layer: a strong dark-to-light
transition occurred at the internal limiting membrane, a dark-to-light transition
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occurred at the pigment epithelial surface, very few voxels above the internal
limiting membrane were bright, and the voxels immediately following (larger z-
value) each surface had a higher intensity, on average, than the voxels preceding
each surface. Reflecting these properties, the cost functions c(r, θ, z) used in this
work had two major components: an edge-based term e(r, θ, z) and a region-
based term v(r, θ, z):

c(r, θ, z) = αe(r, θ, z) + βv(r, θ, z), (1)

where α and β were constant normalizing terms. Furthermore, as the two surfaces
were expected to have somewhat different properties, a different cost function
was used for each.

Image pre-processing. Like ultrasound images, OCT images contain speckle
noise. Thus, as a pre-processing step, a speckle-reducing anisotropic diffusion
(SRAD) method [8] was first applied to each circular scan image before com-
puting each cost function. This was in an attempt to reduce the effects of the
speckle noise, while maintaining edge information.

Edge information. A 3x3 Sobel kernel was convolved with each pre-processed
image, resulting in an estimate the strength of the edge in the z-direction for
each voxel (giving positive values for light-to-dark transitions and negative values
for dark-to-light transitions). Because we expected a dark-to-light transition to
occur at both surfaces, we maintained the signed edge values in the cost function,
thus favoring dark-to-light transitions and discouraging light-to-dark transitions.

Regional information. The regional cost terms were added to help aid in the
detection of the correct surface even when edge-information was lacking. For
the internal limiting membrane, we used a normalized cumulative image as our
regional cost term. This was based on the observation that very few bright voxels
exist above (have a lower z-value than) the internal limiting membrane in each
column. Incorporating a cumulative image into the cost also had the effect of
discouraging the selection of voxels in the pigment epithelial surface, a necessity
since we were finding the internal limiting membrane first.

For the pigment epithelial surface, we incorporated a region-based term into
the cost function that attempted to minimize the regional variances above and
below the surface. As an example, suppose there are only two relatively-
homogeneous regions in a 3-D image separated by a surface S with average
intensities a1 (from voxel locations (x, y, z) inside S) and a2 (from voxel loca-
tions (x, y, z) outside S). Then a regional cost function term as presented by
Chan and Vese [9] can be defined as

F (S, a1, a2) =
∫

inside(S)
|I(x, y, z) − a1)|2 dx dy dz (2)

+
∫

outside(S)
|I(x, y, z) − a2|2 dx dy dz.
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In our work, we maintained the idea of minimizing the variance on either side
of the surface, but we limited the computation to a region of limited size. This
was because the assumption of having only two homogeneous regions in OCT
images was only applicable to a limited area around each surface. Furthermore,
because our cost function was voxel-based and not surface-based (the cost of a
surface in this work was computed from a summation of voxel-based costs and
thus could not include terms that depended on the overall surface properties),
we added the variances of the voxels above and below each voxel for which we
were computing the cost:

v̂(r, θ, z) =
z−1∑

k=z−γ

(I(r, θ, k) − Ī−)2 +
z+γ∑

k=z+1

(I(r, θ, k) − Ī+)2, (3)

where γ was a constant defining how far above and below the voxel we computed
the variance, Ī− was the average intensity of voxels with smaller z-values than
the voxel at position (r, θ, z), and Ī+ was the average intensity of voxels with
larger z-values than the voxel at position (r, θ, z). However, since Eq. (3) would
also favor voxels that were not of interest (e.g., background voxels), the actual
regional cost term v(r, θ, z) would use the cost defined by Eq. (3) only if Ī+ were
greater than Ī−:

v(r, θ, z) =

{
v̂(r, θ, z) if Ī+ + ε > Ī−
c otherwise,

(4)

where c was a relatively large constant, thereby giving a large cost to poten-
tial surface voxels that do not separate a high intensity region “below” (larger
z-values) from a low intensity region “above” (smaller z-values) the voxel.

3 Experimental Methods

The method was tested on 18 3-D OCT data sets obtained from a Stratus OCT-3
scanner: 9 were from patients with normal optic discs and 9 were from patients
with papilledema (optic nerve swelling). The dimensions of each data set were
6x128x1024 (R = 6, T = 128, Z = 1024). The axial scan length was 2 mm,
resulting in a voxel size of approximately 2 μm in the z-direction. The size of
the voxels in the r and θ varied due to the radial nature of the scans. The
following surface constraints were used:

– Δθ = 10 pixels for both surfaces,
– Δr = 150 pixels for the internal limiting membrane, Δr = 100 pixels for the

pigment epithelial surface,
– δl = 60 pixels (minimum distance between surfaces), and
– δu = 600 pixels (maximum distance between surfaces).

Each resulting surface was plotted on the six corresponding circular scans and
its correctness assessed by an expert observer. In addition, the internal limiting
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membrane resulting from our method was compared to that of the method used
by Stratus OCT-3 system (Stratus OCT-3 results for the pigment epithelium
were not available).

4 Results

Expert analysis of all the data sets indicated that our method found the cor-
rect surfaces. Fig. 2 displays an example of typical segmentation results. The
corresponding retinal thickness plots are shown in Fig. 3.

Fig. 2. Typical results for one 3-D data set. The results are shown in increasing circular
scan order such that the results for the inner circular scan are shown in (a), while the
results for the outer circular scan are shown in (f). Note that for easier visualization
of the borders, the top and bottom of the images have been cropped.

Table 1 shows a comparison of the “failures” of our method versus that of
the Stratus OCT-3 for the internal limiting membrane. The counts given in the
table refer to the number of 2-D circular scans on which some type of failure
was found out of all of the circular scans for each scan group (54 normal scans,
54 papilledema scans, 108 total scans). A circular scan was considered to have
a “minor failure” if the visible deviation of the result from the correct surface
was small enough not to require correction in a clinical setting. A scan was
considered to have a “complete failure” if the result had a large deviation that
would require correction in order for the segmentation to be clinically useful.
The Stratus OCT-3 system had two such failures, as shown in Fig. 4 (our re-
sults are also shown in the figure for comparison). Minor failures (4/108) of
our method occurred in cases in which the image data did not satisfy our cir-
cularity assumption. Note that we consider our result in Fig. 4 (c) our worst
“minor failure.” Each example is from an inner circular scan from a patient with
papilledema.
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Fig. 3. Color-coded retinal thickness plots corresponding to results shown in Fig. 2.
(a) 3-D view of the internal limiting membrane with colors reflecting retinal thickness
(in pixels). (b) 2-D view of retinal thickness values (in pixels).

Table 1. Count of circular scan failures in our method and the Stratus OCT-3 method
for the internal limiting membrane

Scan group Method Minor failures Complete failures Total failures

Normal scans 3-D Graph Search 0 (0.0%) 0 (0.0%) 0 (0.0%)
Normal scans Stratus OCT-3 4 (7.4%) 0 (0.0%) 4 (7.4%)

Papilledema scans 3-D Graph Search 4 (7.4%) 0 (0.0%) 4 (7.4%)
Papilledema scans Stratus OCT-3 15 (27.8%) 2 (3.7%) 17 (31.5%)

All scans 3-D Graph Search 4 (3.7%) 0 (0.0%) 4 (3.7%)
All scans Stratus OCT-3 19 (17.6%) 2 (1.8%) 21 (19.4%)

Fig. 4. Examples of “complete failures” (arrows) for the Stratus OCT-3 method and
our corresponding results for the internal limiting membrane. (a)–(b) Our method ver-
sus the Stratus OCT-3 method for an inner circular scan on a patient with papilledema,
(b) is considered a “complete failure.” (c)–(d) Our method versus the Stratus OCT-
3 method for an inner circular scan on a different patient with papilledema, (c) is
considered a “minor failure” and (d) is considered a “complete failure.”

5 Discussion and Conclusion

The presented qualitative analysis of the results from all 18 3-D OCT data
sets (108 total circular scans) indicates that our method identified the correct
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border for the internal limiting membrane in 96% of the circular scans (93%
in papilledema scans). This offers a substantial improvement over the Stratus
OCT-3 system which only found the correct border 81% of the time (69% in
papilledema scans). The 4/108 minor failures of our method (e.g., see Fig. 4 (c))
can be attributed to the invalidity of the circularity constraint in these cases.

We have presented a fully automated 3-D method for detecting the internal
limiting membrane and pigment epithelial surface of the retina from OCT images
that we hope to evaluate on clinical datasets.
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