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Abstract. Fisher’s Linear Discriminant Analysis (LDA) is a traditional
dimensionality reduction method that has been proven to be successful
for decades. Numerous variants, such as the Kernel-based Fisher Dis-
criminant Analysis (KFDA) have been proposed to enhance the LDA’s
power for nonlinear discriminants. Though effective, the KFDA is com-
putationally expensive, since the complexity increases with the size of
the data set. In this paper, we suggest a novel strategy to enhance the
computation for an entire family of KFDA’s. Rather than invoke the
KFDA for the entire data set, we advocate that the data be first re-
duced into a smaller representative subset using a Prototype Reduction
Scheme (PRS), and that dimensionality reduction be achieved by invok-
ing a KFDA on this reduced data set. In this way data points which
are ineffective in the dimension reduction and classification can be elim-
inated to obtain a significantly reduced kernel matrix, K, without de-
grading the performance. Our experimental results demonstrate that the
proposed mechanism dramatically reduces the computation time without
sacrificing the classification accuracy for artificial and real-life data sets.

1 Introduction

The “Curse of Dimensionality”: Even from the infancy of the field of sta-
tistical Pattern Recognition (PR), researchers and practitioners have had to
wrestle with the so-called “curse of dimensionality”. The situation is actually
quite ironic : If the patterns to be recognized are represented in a feature space
of small dimensions, it is likely that many crucial discriminating characteristics
of the classes are ignored. However, if on the other hand, the dimensions of the
feature space are large, we encounter this “curse”, which brings along the excess
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baggage of all the related problems associated with learning, training, represen-
tation, computation and classification [I], [2]. The “dimensionality reduction”
problem involves reducing the dimension of the input patterns and yields the
advantages clearly explained in [I] and [2].

The literature reports numerous strategies that have been used to tackle this
problem. The most well-known of these is the Principal Components Analysis
(PCA) (the details of which are omitted here) to compute the basis (eigen) vec-
tors by which the class subspaces are spanned, thus retaining the most significant
aspects of the structure in the data [I]. While the PCA finds components that
are efficient for representation, the class of Linear Discriminant Analysis (LDA)
strategies seek features that are efficient for discrimination [1]. LDA methods ef-
fectively use the concept of a within-class scatter matrix, S,,, and a between-class
scatter matrix, Sp, to maximize a separation criterion, such as J = tr(S;*S).
The advantage of an LDA is that it is non-recursive. Being essentially linear
algorithms, neither the PCA nor LDA can effectively classify data which is in-
herently nonlinear. Consequently, a vast body of research has gone into resolving
this limitation, and a detailed review of this is found in [2]. This is exactly the
focus of this paper. In this paper, we suggest a novel strategy to enhance the
computation for an entire family of KFDA’s. Rather than invoke the KFDA for
the entire data set, we advocate that the data be first reduced into a smaller
representative subset using a Prototype Reduction Scheme (PRS) (explained
and briefly surveyed presently), and that dimensionality reduction be achieved
by invoking a KFDA on this reduced data set.

The state-of-the-art in dealing with nonlinear methods include an adaptive
method utilizing a rigorous Gaussian distribution assumption [3], a complete
PCA plus LDA algorithm [4], two variations on Fisher’s linear discriminant [5],
Kernel-based PCA (KPCA) [6], Kernel-based FDA (KFDA) (for two classes by
Mika et al. [7] and for multi-classes by Baudat and Anouar in [8]), Kernel-based
PCA plus Fisher LDA (KPCA+LDA) [9], and LDA extensions which use the
Weighted Pairwise Fisher Criteria and the Chernoff Criterion [10].

Methods for Handling Nonlinearity: The KPCA (or KFDA) provides an
elegant way of dealing with nonlinear problems in an input space R? by mapping
them to linear ones in a feature space, F. That is, a dot product in space R?
corresponds to mapping the data into a possibly high-dimensional dot product
space I by a nonlinear map @ : R* — F, and taking the dot product in the
latter space [6]. All of them utilize the kernel trick to obtain the kernel PCA
components by solving a linear eigenvalue problem similar to that done for the
linear PCA. The only difference is that the size of the problem is decided by the
number of data points, and not by the dimension. In both the KPCA and KFDA,
to map the data set {1, x2, -+, 2, }, (where each z; € R?) into a feature space
F', we have to define an nxn matrix, K, the so-called kernel matrix, (of dimension
n) which is analogous to the d x d covariance matrix of the linear PCA (or LDA).

To solve the KPCA-associated computational problem, a number of meth-
ods, such as the techniques proposed by Achlioptas and his co-authors [IT],
[12], the power method with deflation [6], the method of estimating K with a
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subset of the data [6], the Sparse Greedy matrix Approximation (SGA) [13], the
Nystom method [14], and the sparse kernel PCA method based on the proba-
bilistic feature-space PCA concept [15], have been proposed. In [6], a method of
estimating the matrix K from a subset of n’(< n) data points, while still ex-
tracting principal components from all the n data points, was considered. Also,
in [13], an approximation technique to construct a compressed kernel matrix K’
such that the norm of the residual matrix K — K’ is minimized, was proposed.
Indeed, pioneering to the area of reducing the complexity of kernel-based PCA
methods are the works of Achlioptas [12] and his co-authors. Their first category
includes the strategy of artificially introducing sparseness into the kernel matrix,
which, in turn, is achieved by physically setting some randomly-chosen values to
zero. The other alternative, as suggested in [I1], proposes the elimination of the
underlying data points themselves. This is the spirit of the strategy we advocate.

Optimizing KFDA: To solve the computational problem for KFDA methods,
a number of schemes, such as the efficient leave-one-out cross-validation method
[16], the techniques proposed by Xu and his co-authors [I7], [I8], and the method
of using a minimum squared-error cost function and the orthogonal least squares
algorithm [I9], have been proposed. They are briefly (for space limitations) de-
scribed below, but the details can be found in [26].

Cawley and Talbot [I6] showed that the leave-one-out cross-validation of
kernel Fisher discriminant classifiers, namely, f(z;) = w - ®(x;) + b, (where
w =Y a;d(x;)), can be implemented with a computational complexity of
only O(n?) operations rather than the O(n*) complexity of a naive implementa-
tion, where n is the number of training samples. Xu and his co-authors [17], [I§]
proposed a reformative kernel Fisher discriminant method (for two and multiple
classes respectively) which only computes the kernel matrix, K, between the
test pattern and a part of the training samples, called the “significant nodes”
(assuming that the eigenvectors for larger nonzero eigenvalues led to superior
discriminant vectors) which are a few training samples selected from the entire
data set. In [19], Billings and Lee suggested that after selecting ns important
terms, {@}},, from all the training patterns, {z;}}_,, using the orthogonal
least squared (OLS) algorithm when one has to test the sample z, the authors
classified it as class wy if ) alk(z,®]) > ¢, where o are the estimated coef-
ficients; Otherwise it is classified as belonging to class ws.

Unlike the results mentioned above in [16], [17], [I8] and [19], we propose
an alternate strategy, akin to the one suggested in [I1] for the KPCA family
of algorithms — which is a fairly straightforward concept, yielding a significant
computational advantage. Quite simply put, we propose to solve the computa-
tional problem in KFDA by reducing the size of the design set without sacrificing
the performance, where the latter is achieved by using a Prototype Reduction
Scheme (PRS). Thus, the contribution of this paper is that we show that the
computational burden of a KFDA can be reduced significantly by not consider-
ing the “original” kernel matrix at all. Instead, we rather define a reduced-kernel
matrix by first preprocessing the training points with a PRS scheme. Further,
the PRS scheme does not necessarily have to select a reduced set of data points.



On Optimizing Kernel-Based Fisher Discriminant Analysis 829

Indeed, it can rather create a reduced set of prototypes from which, in turn,
the reduced-kernel matrix is determined. All of these concepts are novel to the
field of designing Kernel-based FDA methods and have been rigorously tested
for artificial and real-life data sets.

Prototype Reduction Schemes: Various PRS7 which are useful in nearest-
neighbour-like classification, have been reported in the literature - two excel-
lent surveys are found in [20], [2I]. Bezdek et al [20], who composed the sec-
ond and more recent survey of the field, reported that there are “zillions!” of
methods for finding prototypes (see page 1459 of [20]). One of the first of its
kind, was a method that led to a smaller prototype set, the Condensed Nearest
Neighbor (CNN) rule [22]. Since the development of the CNN, other methods
[23] - [25] have been proposed successively, such as the Prototypes for Nearest
Neighbor (PNN) classifiers [23] (including a modified Chang’s method proposed
by Bezdek), Vector Quantization etc. Apart from the above methods, we men-
tion the following: Support Vector Machines (SVM) [24] can also be used as
a means of selecting prototype vectors. Observe that these new vectors can be
subsequently adjusted by means of an LVQ3-type algorithm. Based on this idea,
a new PRS (referred to here as HYB) of hybridizing the SVM and the LVQ3
was introduced in [25]. Based on the philosophy that points near the separat-
ing boundary between the classes play more important roles than those which
are more interior in the feature space, and that of selecting and adjusting the
reduced prototypes, a new hybrid approach that involved two distinct phases
was proposed in [25]. Due to space limitations, the details of other schemes are
omitted, but can be found in [26].

2 Optimizing the KFDA with PRSs

The fundamental problem that we encounter when optimizing any KFDA is that
of reducing the dimensionality of the training samples. This, in turn, involves
four essential phases, namely that of computing the kernel matrix, computing its
eigenvalues and eigenvectors, extracting the principal components of the kernel
matrix from among these eigenvectors, and finally, projecting the samples to be
processed onto the reduced basis vectors. We observe, first of all, that all of these
phases depend on the size of the data set. In particular, the most time consuming
phase involves computing the eigenvalues and eigenvectors of the kernel matrix.

There are a few ways by which the computational burden of the kernel method
can be reduced. Most of the reported schemes [I1], [12], [13], [14], [I5] resort to
using the specific properties of the underlying kernel matrix, for example, its
sparseness. Our technique is different. The method we propose is by reducing
the size of the training set. However, we do this, by not significantly reducing
the accuracy of the resultant training samples. This is achieved by using a PRS.

The rationale for the proposed method can be conceptually explained using
Fig. [l Fig. [dla) represents the original training samples presented to the clas-

Y Our overview is necessarily brief, but additional details can be found in [26].
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Fig. 1. The rationale for the proposed method. (a) The training samples, where n and
d are the number of samples and the dimensionality, respectively. (b) The condensed
prototypes extracted from the training samples using a PRS, where n’ < n. (¢) The
prototype vectors whose dimensionality has been reduced with a KFDA, where d’ < d.

sifier system, where n and d are the number of samples and the dimensionality,
respectively. Fig. [[I(b) represents the condensed prototypes which are extracted
from the training samples using a PRS, where n’ < n. Using the latter data,
Fig.[l(c) represents the resultant prototype vectors in which the dimensionality
has been reduced by invoking a KFDA, where d’ < d. Observe that since the
fundamental problem with any kernel-based scheme is that it increases the time
complexity from O(d?) to O(n?), we can see that the time complexity for the
dimensionality reduction from d to d’ is sharply decreased from O(n?) to O(n’?).

The question now is essentially one of determining which of the training points
we should retain. Rather than deciding to discard or retain the training points,
we permit the user the choice of either selecting some of the training samples
using methods such as the CNN, or creating a smaller set of samples using the
methods such as those advocated in the PNN, VQ, and HYB. This reduced set
effectively represents the new “training” set. Additionally, we also permit the
user to migrate the resultant set by an LVQ3-type method to further enhance
the quality of the reduced samples.

The PRS serves as a preprocessor to the n d-dimensional training samples to
yield a subset of n’ potentially new points, where n’ << n. The “kernel” is now
computed using this reduced set of points to yield the so-called reduced-kernel
matrix. The eigenvalues and eigenvectors of this matrix are now computed, and
the principal components of the kernel matrix are extracted from among these
eigenvectors of smaller dimension. Notice now that the samples to be tested are
projected onto the reduced basis directions represented by these vectors.

To investigate the computational advantage gained by resorting to such a
PRS preprocessing phase, we observe, first of all, that the time used in deter-
mining the reduced prototypes is fractional compared to the time required for
the expensive matrix-related operations. Once the reduced prototypes are ob-
tained, the eigenvalue/eigenvector computations are significantly smaller since
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these computations are now done for a much smaller set, and thus for an n’ x n’
matrix. The net result of these two reductions is reflected in the time savings we
report in a later section in which we discuss the experimental results obtained
for artificial and real-life data sets.

3 Experimental Results: Artificial/Real-Life Data Sets

Experimental Data: The proposed method has been rigorously tested and
compared with many conventional ones. This was done by performing experi-
ments on both “artificial” and “real-life” data sets.

The data set described as “Random”is generated randomly with a uniform
distribution but with irregular decision boundaries. In this case, the points are
generated uniformly, and the assignment of the points to the respective classes is
achieved by artificially assigning them to the region they fall into, as per the man-
ually created “irregular decision boundary”. The data set named “Non normal
2”7, which has also been employed as a benchmark experimental data set [I],
and [25] for numerous experimental set-ups was generated from a mixture of
four 8-dimensional Gaussian distributions. The data sets “Iris2”, “Ionosphere”
(in short, “TIono”), “Sonar”, “Arrhythmia” (in short, “Arrhy”) and “Adult4”,
which are real benchmark data sets, are cited from the UCI Machine Learning
Repository]. Their details can be found in the latter site, and also in [26] and
omitted here in the interest of compactness. In the above data sets, the data
set for class w; was randomly split into two subsets, T; 7 and T} v, of equal
size. One of them was used for choosing the initial prototypes and training the
classifiers, and the other one was used in their validation (or testing). Later, the
role of these sets were interchanged.

As in all learning algorithms, choosing the parameters of the PRS and KFDA
play an important role in determining the quality of the solution. The parameters
for the PRS, the KPCA and the KFDA, are summarized as follows:

1. The kernel function employed is the polynomial k(x;, z;) = (1 + x}z;)>.

2. The number of features to be selected is 2 for all the KFDAs.

3. The constant p is chosen as pu = 0.001 for regularization in KFD, and the
fusion coefficient § in CKFDA is chosen as 6 = 1.4.

Selecting Prototype Vectors: In order to evaluate the proposed dimension-
ality reduction mechanisms, we first selected the prototype vectors from the
experimental data sets using the CNN, the PNN and the HYB algorithms. In
the HYB, we selected initial prototypes using a SVM algorithm. After this se-
lection, we invoked a phase in which the optimal positions (i.e., with regard to
classification) were learned with an LVQ3-type scheme [25]. For the SVM and
LVQ3 programs, we utilized two publicly-available software packagesﬁ.

2 http://www.ics.uci.edu/mlearn/MLRepository.html

3 These packages can be available from http://www-ai.cs.uni-dortmund.de/
SOFTWARE/SVM LIGHT/svm light.eng.html and http://cochlea.hut.fi/research/
som lvq pak.shtml, respectively.
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Table 1. The classification accuracies of the proposed computational mechanisms for

the artificial and real-life data sets. The details of the entries and how the values were
obtained are explained in the text.

Type Dataset PRSs WHL KPCA KFD GDA KPCA+LDA CKFDA

WHL 96.50 79.50 88.50 88.50 88.50 91.75

Rand CNN 96.25 59.75 80.50 80.50 80.50 85.25
Artificial PNN 95.75 61.25 83.00 83.00 83.00 89.25
Data HYB 89.50 70.50 85.75 85.75 85.75 85.75
WHL 92.50 92.50 92.50 92.50 92.50 92.50

Non n2 CNN 91.90 91.90 91.90 91.90 91.90 91.90

PNN 92.10 92.10 92.10 92.10 92.10 92.20

HYB 94.00 94.00 94.00 94.00 94.00 94.10

WHL 92.00 71.00 94.00 94.00 94.00 92.00

Iris2 CNN 89.00 63.00 93.00 93.00 93.00 95.00

PNN 94.00 56.00 89.00 91.00 91.00 89.00

HYB 94.00 72.00 95.00 92.00 92.00 93.00

WHL 78.65 75.85 76.14 88.64 88.64 83.52

Ionos CNN 81.82 45.17 69.89 88.07 88.07 75.85
Real-life PNN 82.68 43.19 80.11 84.09 84.09 84.94
Data HYB 83.24 48.01 80.68 84.94 84.94 83.24
WHL 82.22 52.89 84.14 83.18 83.18 82.21

Sonar CNN 79.81 53.37 77.89 79.81 79.81 77.41

PNN 82.69 48.56 79.33 81.73 81.73 82.69

HYB 80.77 50.97 82.21 79.81 79.81 81.73

WHL 97.57 79.87 99.78 99.78 99.78 99.78

Arrhy CNN 96.47 49.78 99.12 99.78 99.99 99.78

PNN 99.12 53.54 97.57 99.78 99.78 99.33

HYB 99.12 84.07 99.78 99.33 99.33 99.11

WHL 93.40 91.85 92.97 92.07 92.07 92.73

Adult4 CNN 91.58 81.85 83.67 84.40 84.40 85.87

PNN 89.36 79.35 80.82 81.04 81.04 83.58

HYB 92.78 59.41 86.41 82.39 82.39 87.32

From the experiments, we can see that the kernel matrix dimensions to be
processed in the KFDA computations can be reduced significantly by first em-
ploying a PRS. Thus, for the artificial data set “Non n2” data set, the dimen-
sionality reduced from 500 x 500 to 63 x 63 when the HYB method was used
as the PRS, and for the real data set “Arrhy”, the dimensionality reduced from
226 x 226 to 8 x 8 when the PNN method was used as the PRS. Both of thesd]
are truly significant by any metric of measurement. It should also be mentioned
that the reduction rate increased dramatically when the size of the data sets was
increased. The reduction in the resultant KFDA processing time follows as a
natural consequence!

Experimental Results: Table [I] shows the classification accuracies of the pro-
posed computational mechanisms for the data sets. In WHL, the test data sets

4 The results of the other data sets are omitted here, but can be found in [28].
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were classified with the NN rule by utilizing the entire training sets as the code-
book vectors. On the other hand, for KPCA, KFD, GDA, KPCA+LDA, and
CKFDA classifications, we first chose prototype samples from the training data
sets with the CNN, PNN and HYB methods respectively. After selecting the pro-
totype vectors, we reduced their dimensionality using the KPCA, KFD, GDA,
KPCA+LDA, and CKFDA methods. Finally, the test data sets were classified
with the respective decision rules, where the prototype vectors of reduced dimen-
sionality were utilized as the code-book vectors. The experiments were repeated
by exchanging the roles of the data sets, and the two results were then averaged.

Consider the processing times for the “Non n2” data set. If the entire set of size
500 was processed, the times taken for the KPCA, KFD, GDA, KPCA+LDA and
CKFDA are 32.02, 78.44, 138.21, 30.20 and 30.36 seconds, respectively. However,
if the same sets were first preprocessed by the CNN; to yield the CNN-KPCA,
CNN-KFD, CNN-GDA, CNN-KPCA+LDA and CNN-CKFDA proceduresﬁ, the
processing times are 2.54, 3.28, 7.51, 2.53 and 2.55 seconds respectively - which
represent a 10-fold to 20-fold reduction ! Notice that the classification accuracies
of the method are almost the same as shown in Table[Il Identical comments can
also be made about the PNN and HYB schemesd. The results of the other data
sets are omitted here in the interest of brevity, but is in [26].

4 Conclusions

In this paper, we suggest a computationally superior mechanism to solve the
computational problem for KFDA methods. Rather than define the kernel matrix
and compute the principal components using the entire data set, we propose
that the size of the data be reduced into a smaller prototype subset using a PRS
Since the PRS yields a smaller subset of data points that effectively samples
the entire space to yield subsets of prototypes, this alleviates the computational
burden significantly. The experimental results demonstrate that the proposed
schemes can improve the extracting speed of the proposed methods by an order
of magnitude, while yielding almost the same classification accuracy.
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