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Abstract. The Semantic Web (SW) offers an opportunity to develop novel, so-
phisticated forms of question answering (QA). Specifically, the availability of 
distributed semantic markup on a large scale opens the way to QA systems 
which can make use of such semantic information to provide precise, formally 
derived answers to questions. At the same time the distributed, heterogeneous, 
large-scale nature of the semantic information introduces significant challenges. 
In this paper we describe the design of a QA system, PowerAqua, designed to 
exploit semantic markup on the web to provide answers to questions posed in 
natural language. PowerAqua does not assume that the user has any prior in-
formation about the semantic resources. The system takes as input a natural 
language query, translates it into a set of logical queries, which are then an-
swered by consulting and aggregating information derived from multiple het-
erogeneous semantic sources.   

1   Introduction 

The development of a semantic layer on top of web contents and services, the Seman-
tic Web [1], has been recognized as the next step in the evolution of the World Wide 
Web as a distributed knowledge resource. The Semantic Web brings to the web the 
idea of having data formally defined and linked in a way that they can be used for 
effective information discovery, integration, reuse across various applications, and for 
service automation.  

Ontologies play a crucial role on the SW: they provide the conceptual infrastruc-
ture supporting semantic interoperability, addressing data heterogeneity [2] and open-
ing up opportunities for automated information processing [3]. However, because of 
the SW’s distributed nature, data will inevitably be associated with different ontolo-
gies and therefore ontologies themselves will introduce heterogeneity. Different on-
tologies may describe similar domains, but using different terminologies, while others 
may have overlapping domains: i.e. given two ontologies, the same entity can be 
given different names or simply be defined in different ways.  

Our goal is to design and develop a Question Answering (QA) system, able to ex-
ploit the availability of distributed, ontology-based semantic markup on the web to 
answer questions posed in natural language (NL). A user must be able to pose NL 
queries without being aware of which information sources exist, the details associated 
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with interacting with each source, or the particular vocabulary used by the sources. 
We call this system PowerAqua.

PowerAqua follows from an earlier system, AquaLog [4], and addresses its main 
limitation, as discussed in the next section. 

2   The AquaLog Question Answering System 

AquaLog [4] is a fully implemented ontology-driven QA system, which takes an 
ontology and a NL query as an input and returns answers drawn from semantic 
markup compliant with the input ontology. In contrast with much existing work on 
ontology-driven QA, which tends to focus on the use of ontologies to support query 
expansion in information retrieval [5], AquaLog exploits the availability of semantic 
statements to provide precise answers to complex queries expressed in NL.  

An important feature of AquaLog is its ability to make use of generic lexical re-
sources, such as WordNet, as well as the structure of the input ontology, to make 
sense of the terms and relations expressed in the input query. Naturally, these terms 
and relations normally match the terminology and concepts familiar to the user rather 
than those used in the ontology.  

Another important feature of AquaLog is that it is portable with respect to ontolo-
gies. In other words, the time required to configure AquaLog for a particular ontology 
is negligible. The reason for this is that the architecture of the system and the reason-
ing methods are completely domain-independent,  relying on an understanding of 
general-purpose knowledge representation languages, such as OWL1, and the use of 
generic lexical resources, such as WordNet. AquaLog also includes a learning mecha-
nism, which ensures that, for a given ontology and community of users, its perform-
ance improves over time, as the users can easily correct mistakes and allow AquaLog 
to learn novel associations between the relations used by users, which are expressed 
in natural language, and the ontology structure. 

AquaLog uses a sequential process model (see Figure 1), in which NL input is first 
translated into a set of intermediate representations – these are called query triples, by 
the Linguistic Component. The Linguistic Component uses the GATE infrastructure 
and resources [6] to obtain a set of syntactic annotations associated with the input 
query. The set of annotations is extended by the use of JAPE grammars to identify 
terms, relations, question indicators (who, what, etc.), features (voice and tense) and 
to classify the query into a category. Knowing the category of the query and having 
the GATE annotations for the query, it becomes straight-forward for the Linguistic 
Component to automatically create the Query-Triples. Then, these query triples are 
further processed and interpreted by the Relation Similarity Service Component, 
which uses the available lexical resources and the structure and vocabulary of the 
ontology to map them to ontology-compliant semantic markup or triples.  

However AquaLog suffers from a key limitation: at any time it can only be used for 
one particular ontology. This of course works well in many scenarios, e.g. in company 

1 A plug-in mechanism and a generic API ensure that different Knowledge Representation 
languages can be used. 
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intranets where a shared organizational ontology is used to describe resources. How-
ever, if we consider the SW in the large, this assumption no longer holds. As already 
pointed out, the semantic web is heterogeneous in nature and it is not possible to de-
termine in advance which ontologies will be relevant to a particular query. Moreover, it 
is often the case that queries can only be solved by composing heterogeneous informa-
tion derived from multiple information sources that are autonomously created and 
maintained. Hence, to perform effective QA on the semantic web, we need a system 
which is able to locate and aggregate information, without any pre-formulated assump-
tion about the ontological structure of the relevant information.  

Fig. 1. The AquaLog Data Model 

3   QA for the Semantic Web: Multiple-Ontology Scenario 

In the previous sections we have sketched our vision for a QA system suitable for the 
semantic web, PowerAqua, and we have also explained why AquaLog does not quite 
fit the bill. In this section we address the problem in more detail and we examine the 
specific issues which need to be tackled in order to develop PowerAqua.  It should be 
noted that here we only focus on the issues which are specific to PowerAqua and are 
not tackled already by AquaLog. For instance, we will not be looking at the problem 
of translating from NL into triples: the AquaLog solution, which is based on GATE, 
can be simply reused for PowerAqua. 

Resource discovery and information focusing 
PowerAqua aims to support QA on the open, heterogeneous Semantic Web. In princi-
ple, any markup associated with any ontology can be potentially relevant. Hence, in 
contrast with AquaLog, which simply needs to retrieve all semantic resources which 
are based on a given ontology, PowerAqua has to automatically identify the relevant 
semantic markup from a large and heterogeneous semantic web2. In this paper we do 

2  Here we do not need to worry about the precise mechanism used to index and locate an ontol-
ogy and the relevant semantic markup. Various solutions are in principle possible depending 
on the SW evolution, here we can simply assume that the semantic web will provide the ap-
propriate indexing mechanisms, much like the cluster architecture used by Google provides 
indexing mechanisms for the web as a whole. 
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not address the problem of scalability or efficiency in determining the relevance of the 
ontologies, in respect to a query. Currently, there are ontology search engines, such as 
Swoogle [7] and different RDF ontology storage technologies suitable for processing 
SW information [8], e.g. 3store and Sesame servers. 
Mapping user terminology into ontology terminology 
A key design criterion for both AquaLog and PowerAqua is that the user is free to use 
his / her own terminology when posing a query. So, while this is an issue also for 
AquaLog, a critical problem for PowerAqua, not applicable to AquaLog, is that of 
different vocabularies used by different ontologies to describe similar information 
across domains [9].  
Integrating information from different semantic sources 
Queries posed by end-users may need to be answered not by a single knowledge 
source but by consulting multiple sources, and therefore, combining the relevant in-
formation from different repositories. On other occasions more than one source con-
tains a satisfactory answer to the same query. Thus, if there is a complete translation 
into one or more ontologies or if the current partial translation, in conjunction with 
previously generated partial translations, is equivalent to the original query, the data 
must be retrieved from the relevant ontologies and appropriately combined to give the 
final answer. Interestingly, the problem of integrating information from multiple 
sources in the first instance can be reduced to the problem of identifying multiple 
occurrences of individuals in the sources in question. 

4   Methodology: Query-Driven Semantic Mapping Algorithm Step 
by Step 

The algorithm presented here covers the design of the whole PowerAqua system. 
However the AquaLog components reusable for PowerAqua have already been de-
scribed in detail in [4], so here they will be described  only briefly. In this paper, we 
focus primarily on the issues of mapping user terminology into ontology terminology 
in a semantic web multi-ontology scenario, and the information integration problem.  
To help the reader make sense of the algorithm shown in Figure 2, we will use the 
query “What is the capital of Spain?” as a running example throughout. This query is 
particularly useful to present the issues introduced in section 3, especially when de-
scribing the different ways in which the PowerAqua algorithm interprets the above 
query and the query “Was Capital3 written in Spain?”.

4.1   Step 1: Linguistic and Query Classification Analysis 

The Linguistic Component’s task is to map the NL input query into Query-Triples. 
The role of the Query-Triples is simply to provide an easy way to manipulate the 
input. AquaLog linguistic component [4] is appropriate for the linguistic analysis 
thanks to its ontology portable and independent nature, and therefore, it is reused for 
PowerAqua.  

3 Book written by Karl Marx (1867). 
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4.1.1   Running Example 
The example query “What is the capital of Spain?” is classified as a wh-query4 that 
represents a binary relationship where there is not any information about the type of 
the query term (focus), and generates the linguistic triple: <?, capital, Spain>. How-
ever, the relation “is the capital of” contains the noun “capital”, therefore, we need to 
take into account that the triple may be restructured as a triple with an implicit rela-
tion between the term “capital” and “Spain”.  

The second example query “Was Capital written in Spain?” is translated into a ba-
sic affirmative/negative query that generates the triple: <capital, written, Spain>.  

Fig. 2. Algorithm step by step 

4.2   Step 2: Syntactic Term Mapping and Resource Discovery 

The initial selection of candidate ontologies, which may have the potential to an-
swer the query, is entirely done by syntax driven techniques (SDT). Note that  
we use the same terminology as [10] referring to syntactic matching when the 
matching between two nodes is computed using the labels of the nodes. SDT looks 

4 The set of “wh-queries” are the ones starting with: what, when, where, are there any, does 
anybody, how many, and also imperative commands like list, give, tell, name, show. “wh-
queries” like “who” can be interchanged into “which person/organization”, “where” into 
“which location” and so on. 
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for similarities between labels by means of string-based metrics5, taking into ac-
count abbreviations, acronyms and domain and lexical knowledge.  

4.2.1   Phase a: Extending the Query Vocabulary with Lexical and Domain 
Knowledge 

To maximize recall, with respect to other ontology search systems that only looks for 
classes or instances that have labels matching a search term either exactly or partially 
[11], each term in the query, or noun in the relation if any (relations may be formed 
by a noun plus verbs and prepositions) is extended with its synonyms, hypernyms and 
hyponyms.  

The current version of WordNet provides a priori lexical and domain knowledge. 
As Ide and Veronis state [12], WordNet is the most used lexical resource at present 
for disambiguation in English. Most of the research methods in the literature are lim-
ited to WordNet [13]. Nouns, verbs, adjectives, and adverbs are each organized into 
networks of synonyms sets (synsets). Each synset has a gloss to define it. There are 
nine types of semantic relations defined on the noun subnetwork: hyponymy (IS-A) 
relation, and its inverse hypernymy; six meronymic (PART-OF) relations – 
COMPONENT-OF, MEMBER-OF, SUBSTANCE-OF and their inverses; and the 
COMPLEMENT-OF relation. 

4.2.2   Phase b: Syntactic Matching of Ontology Terms 
Depending on the query category, the system will look for ontology instances, classes 
or both to map a term or its lexical variations. The system looks for ontology classes, 
which can be handled in the client memory, through the use of string distance metrics, 
also used in AquaLog.   

SDT are used in AquaLog, however, the weakness of these techniques becomes 
more evident when applied to PowerAqua (see example in section 4.2.4). Firstly, the 
discovery of user terms in the ontology by the use of SDT becomes increasingly com-
putationally expensive as the number of ontologies increases. Secondly, many of the 
discovered ontology terms syntactically related with the query terms, obtained as a 
result of applying SDT, may be similarly spelled words (labels) that do not have pre-
cisely matched meanings. As already indicated in section 3, in this paper we will not 
address the issues to do with the efficiency and scalability of the algorithm in deter-
mining the relevance of the ontology and terms by use of SDT, but we will focus on 
the issue of disambiguating among the possible interpretations of a query.  

4.2.3   Phase c: Complete Coverage of the Triple by Candidate Ontologies 
A criterion for filtering candidate ontologies is to select the ones that present potential 
candidates mappings for all the terms within a triple, if any. In other words, if ontol-
ogy 1 presents a possible complete translation of a query triple, while ontology 2 only 
presents a partial translation of the same triple, the later will be discarded. Similarly, 
the coverage of an ontology given the search terms is used as a measure in the ontol-
ogy ranking approach on AKTiveRank [11]. 

Consider the query “Which wine is appropriate with chicken?”. The term “wine” 
has a syntactic mapping with the term “wine” belonging to an ontology of colors, and 

5 http://secondstring.sourceforge.net/ 
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with the term “wines” related to an ontology of food and wines. Similarly, the term 
“chicken” maps to an ontology of farming and to the same food and wine ontology. 
Since the food and wine ontology presents a complete potential translation for the 
triple we retain it, and we discard both the farming and color ontologies, which only 
present partial translations.  

However, we may find the case in which none of the available ontologies con-
tains a whole translation of the triple. Consider the query “Which researchers play 
football?”, where we can find an ontology about researchers and an ontology about 
footballers. In this case, the linguistic triple <researchers, play, football> should be 
restructured and translated into two triples solved by different ontologies: <?, is-a, 
researcher> and <?, is-a, footballer>. 

In some cases, it may happen that no candidate terms are found due to the vocabu-
lary used in some ontologies, e.g. labels with multiple words. In this case, if there is a 
possible mapping for one of the two query terms on the triple, we can identify a set of 
possible candidate terms that can complete the triple through the ontology relation-
ships valid for this mapped term. 

4.2.4   Running Example 
Through WordNet we get the synonyms, hypernyms and hyponyms presented in 
Table 1.  

Table 1. Lexical related Words obtained in WordNet 

Capital (glosses) Synonyms Hypernyms Hyponyms 
#1: assets available for use in the 
production of further assets 

working capital assets stock, venture capital, risk 
capital, operating capital 

#2: wealth in the form of money or 
property 

- assets endowment, endowment 
fund, means, substance, 
principal, corpus, sum 

#3: a seat of government - seat Camelot, national / provin-
cial / state capital 

#4: one of the large alphabetic char-
acters used as the first letter 

capital letter, upper-
case,  majuscule 

character, grapheme, 
graphic symbol 

small capital, small cap 

#5: a book written by Karl Marx  Das Kapital, Capital book (instance-of) -
#6: the upper part of a column that 
supports the entablature 

capital, chapiter, cap top -

As said in 4.1.1, the relation in the query example “What is the capital of Spain?” 
is the noun “capital”, and therefore it can be understood  as a) an ontology relation or 
as a b) query term that should be mapped into an ontology class. After running phases 
b and c, the system obtains the following ontologies:  

• Ontology 1: Geographical information. Contains the terms “capital-city” as a can-
didate mapping for “capital” and “Spain” as an instance of “country”. There is a 
direct relation that connects “capital-city” and “country”. 

• Ontology 2: Financial ontology. Contains the terms “capital” and “Spain” as an 
instance of “country”. The classes “capital” and “country” are related through the 
concept “company”.

• Ontology 3: Country statistics. Contains the term “Spain”. 
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• Ontology 4: flights information. Contains the term “Logrono” (a Spanish city), 
where “Logrono” is a WordNet hyponym of the only synset of “Spain”.   

In Ontology 1 and 2, the query triple “capital” is understood as an ontology class, 
and therefore, the resultant triple will be an unknown relation between “capital-city / 
capital” and “Spain”. For the ontology 3 and 4 “capital” is understood as an ontology 
relation, therefore the ontologies contains only a mapping for the term “Spain”, as 
relations are not addressed until the step in section 4.4. 

At this stage we have selected the candidate ontology terms that potentially will be 
part of the equivalent ontology semantic query by a simple lexical analysis of the 
labels (SDT). In the next phase the system performs sense disambiguation using the 
ontology semantics and WordNet to analyze the meaning and discard non-related 
ontology terms mapped in this phase.  

Also, it is worth mentioning that in the question “Was Capital written in Spain?”, 
where the triple is <capital, written, Spain>, the system should only obtain the fol-
lowing ontology: 

• Ontology 5: Bibliographic information. Contains the terms “Das-Kapital” as an 
instance of  “book”, also “Spain”  as an instance of a “country” (e.g. where a book 
is published, at this stage we do not know if “published” is the same as “written”). 

This is because the category of the query (affirmative-negative) is telling us that 
the term ”capital” should be mapped into the instance “Das-Kapital”, while in “What 
is the capital of Spain?” “capital” should be mapped into a class, and thanks to 
WordNet we know that “book” is related to “capital” by an “instance-of” kind of 
relationship not by an “hypernym”. 

4.3   Step 3: Semantic Mapping from User Terminology into Ontology 
Terminology 

The mapping between user and ontology terms becomes increasingly complicated as 
the number of ontologies increases. SDT (string metrics, lexicon, synonyms) used to 
select the candidate terms and ontologies are obviously not enough to identify rele-
vant terms in the heterogeneous scenario introduced by multiple ontologies. A seman-
tic mapping component that considers the content of an information item and its in-
tended meaning is needed because: 

− Calling the user to disambiguate between possible ontology candidate terms is not 
feasible because of the broad space of syntactically obtained distributed terms6:
spelled words (labels) may have not precisely matched meanings. Relationships 
between word senses, not words, are needed. If we know the possible senses for 
the user’s query we can filter the candidate results without the user’s feedback. 

− To answer a query the system may need to combine partial answers from more 
than one ontology, or two ontologies may provide compatible answers, e.g. an-
swers which can be merged, to the same query. Semantic interoperability between 

6 Interactivity should be the last resort for the Similarity Services (section 4.4) where, after a 
deep analysis of the ontology, domain knowledge does not further help to automatically per-
form disambiguation.  
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two concepts is only possible if they are semantically equivalent, or in other words, 
instance information from different ontology classes can be correlated / integrated 
only if the ontology classes are semantically equivalent. We make the assumption 
that two ontology classes may be semantically equivalent, and denote compatible 
information, if the WordNet senses associated with the labels of the classes, in the 
context of their position in the ontology taxonomy, share some similarity. Other-
wise they are just classes that share lexically-related labels but they refer to differ-
ent domains and therefore their information is not compatible.  

In this step the semantic equivalence of the candidate ontology terms obtained in step 
2 is studied. As a consequence, ontology terms that are syntactically related to the 
terms in the query, but are not semantically equivalent, are discarded as potential 
mappings. The semantic equivalence, and therefore the word sense disambiguation 
(WSD), is measured through the notion of similarity. Many reasonable similarity 
measures and strategies exist in the literature for WSD (see [12] for a state of the art). 
Hence, to maximize our system applicability we propose a sense-based similarity 
matcher algorithm in section 4.3.1. This algorithm applied to PowerAqua is described 
in the steps 4.3.2 and 4.3.3. 

4.3.1   Semantic Equivalence Between Two Terms: Sense-Based Similarity 
Algorithm 

To study similarity between terms the meaning of each term should be made explicit 
by an interpretation of its label and position in the ontology taxonomy (see 4.3.3). 
Note that similarity is a more specialized notion than association or relatedness. Simi-
lar entities are semantically related by virtue of their similarity (bank-trust company). 
Dissimilar entities may also be semantically related by lexical relationships such as 
meronym (car-wheel) and antonymy (hot-cold), or just by any kind of functional 
relationship or frequent association (pencil-paper, penguin-Antarctica) [13]. Taking 
the example in [14] doctors are minimally similar to medicines and hospitals, since 
these things are all instances of “something having concrete existence, living or 
nonliving” (although they may be highly associated), but they are much more similar 
to lawyers, since both are kinds of professional people, and even more similar to 
nurses, since both are professional people within the health professions. 
    In Hierarchy distance based matchers [15] the relatedness between words is meas-
ured by the distance between two concepts/senses in a given input hierarchy.  In par-
ticular, similarity between words is measured by looking at the shortest path between 
two given concepts/senses in the WordNet “IS-A” taxonomy of concepts.  

Two words are similar if any of the following holds: 

1. They have a synset in common (e.g. “human” and “person”)  
2. A word is a hypernym/hyponym in the taxonomy of the other word. 
3. If there exists an allowable “is-a” path connecting a synset associated with each 

word –in the WordNet taxonomy-. 
4. Additionally, if any of the previous cases is true and the definition (gloss) of 

one of the synsets of the word (or its direct hypernyms/hyponyms) includes the 
other word as one of its synonyms, we said that they are strongly similar.

For evaluating points 2 and 3 we make use of two WordNet indexes: the depth and 
the common parent index (C.P.I). At the top of WordNet hierarchy are 11 abstract 
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concepts or unique beginners (e.g. “entity”), the maximum depth in the noun hierar-
chy is 16 nodes. The shorter the path between two terms [14] the more similar they 
are, e.g. depth=1 represents case 3 (“is-a” path). However, a widely acknowledged 
problem is that the approach typically “relies on the notion that links in the taxonomy 
represent uniform distances”, but typically this is not true and there is a wide variabil-
ity in the “distance” covered by a single taxonomic link [13]. Resnik [14] established 
that one criterion of similarity between two concepts is the extent to which they share 
information in common, which, in an IS-A taxonomy, can be determined by inspect-
ing the relative position of the most-specific concept that subsumes them both. With 
the use of the C.P.I we can immediately identify this lowest super-ordinate concept 
(lso) between two terms, or the most specific common subsumer. The number of links 
(depth) is still important to distinguish between any two pairs of concepts having the 
same lso. Apart from point 1 of the algorithm, in which the words have a synset in 
common, the most immediate case occurs in point 2 (C.P.I = 1, Depth = 1), e.g. while 
comparing “poultry” and “chicken” we notice that “poultry#2” is the common sub-
sumer (hypernym) of “chicken#1”.  

4.3.2   Phase a: Filtering Non-semantically Equivalent Candidate Ontology 
Terms with Respect to a Query by the Use of Similarity 

SDT (string algorithms, synonyms) were used in the previous phases to select the first 
set of candidate terms and ontologies to map a query. Because of the use of SDT, the 
ontology mapped term and the query term do not necessarily share the same meaning. 
However, they must share some similarity in common; otherwise the candidate ontol-
ogy term is discarded.  

For instance, for a query like “What investigators work in the akt project?” the sys-
tem, using string algorithms over WordNet synonyms, discovers the following terms 
as possible candidate mappings for “investigators”: “researcher”, “KMi-researchers”, 
“research-worker”, “research-area”. Using the WordNet “IS-A” taxonomy we must 
find at least one synset in common with the mapped ontology term and the query term 
or a short/relevant path in the IS-A WordNet taxonomy that relates them together. 
Otherwise it is discarded as a solution.    

Here, “researcher” and “investigator” have a synset in common, namely “research-
worker, researcher, investigator – a scientist who devotes himself to doing research”. 
We get the same for “research-worker” and “KMi-researchers” (nominal compound 
which lemma is “researcher”). However “research-area” will be discarded (even if 
they may be highly associated) because not only do they not share any sense in com-
mon but also there is not a relevant “IS-A” path that connects “researcher” with “re-
search-area”; “researcher” is connected to the root through the path “scientist/man of 
science” and “person”, while “research-area” is connected through “investigation” 
which is connected to “work”.  

4.3.3   Phase b: Analysis of the Semantic Interoperability Between Candidate 
Ontology Terms by Means of Similarity Measures 

Different ontology mappings for the same query term may represent different mean-
ings of the query term, and therefore they are not necessarily semantically equivalent. 
Two classes are semantically interoperable or two instances are semantically equiva-
lent if they are similar, following the algorithm in 4.3.1, for any of its possible  
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WordNet synsets. The meaning of an ontology term is determined not only by its label 
but by its position in the ontology taxonomy (ancestors and descendants) and by the 
meaning of the rest of the concepts in the same taxonomy path (the context where the 
class or instance occurs).  

The algorithm used to obtain the set of possible WordNet synsets valid for an on-
tology term as part of an ontology taxonomy is inspired by the algorithm described in 
[16] to make explicit the semantics hidden in schema models: Let L be a generic label 
for a concept and L1 either an ancestor label or a descendant label of L and let s* and 
s1* be respectively the sets of WordNet senses of a word in L and a word in L1. If 
one of the senses belonging to s* is either a synonym, hypernym, holonym, hyponym 
or a meronym of one of the senses belonging to s1*, these two senses are retained and 
all the other senses are discarded. As an example, imagine Apple (which can denote 
either a fruit or a tree) and Food as its ancestor; since there exits a hyponymy relation 
between apple#1 (denoting a fruit) and food#1, we retain apple#1 and discard apple#2
(denoting a tree). Note this phase works better when the ontology term is a class in-
stead of an instance, as WordNet may not have the correct sense for a proper name. 
This phase is further described in the running example.  

4.3.4   Running Example 
Going back to the example “What is the capital of Spain?” the mappings for “capital” 
for the geographical and financial ontologies are “capital-city” and “capital” respec-
tively. After execution of phase a both interpretations remain, as the lemma for both 
terms is the same as the query term “capital” and therefore, in principle, they have all 
the synsets in common. In phase b the system will study whether both interpretations 
are semantically equivalent by obtaining the sense of the mapped term in the context 
of the ontology it belongs to.  
    For instance, we run the algorithm of similarity presented in 4.3.1 to obtain the 
synset of the term “capital” in the geographical ontology. We obtain the results pre-
sented in table 2 when  trying to find an allowable path between all the senses of the 
candidate ontology word “capital” and all the senses of its ancestor “city” (please note 
that blank means that either there is not an allowable path or the depth is too long to 
be considered as relevant). 

Analyzing the results of table 2 we can quickly filter capital#c, capital#f, city#1, 
city#2 and discard the others. A deeper study will show that capital#c is more likely 
than capital#f because there are only 2 common subsumers in the latter (entity and 
location), both of them representing abstracts top elements of the WordNet taxonomy, 
while in the former we have 3 common subsumers. We can not study the descendants 
of “capital” in the ontology because none exist. The study of the next direct ascendant 
of “city” (“geographical-unit”) does not offer additional information (the  
fine-grainedness of WordNet sense distinctions, e.g. in this case city#1 and city#2, is 
a frequently cited problem). Moreover, the hypernym of capital#c is “seat#5”, de-
fined as “seat –centre of authority (city from which authority is exercised)”. The word 
“city” is used as part of its definition. Therefore capital#c is strongly related to “city”.

After phase b it is clear that in the financial ontology “capital” is referred to 
senses #1 and #2, while in geographical ontology “capital” is referred to sense #3.
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Table 2. Similarity between “capital” and its ontology ancestor “city” using WordNet “IS-A” 
taxonomy 

City#1
(large and densely populated 
urban area.., metropolis) 

City#2
(an incorporated administrative 
district ..) 

City#3
(people living in 
large municipality ) 

Capital#a (assests ..) -------------------------- -------------------------- ------------------------
Capital#b (wealth ..) -------------------------- -------------------------- ------------------------
Capital#c
(seat of government) 

Depth = 8, lso = region 
Num_so (common subsumers) 
= 3 (region, location, entity)

Depth = 7, lso = region 
Num_so = 3  (entity, location, 
region)

------------------------

Capital#d
(capital letter) 

-------------------------- -------------------------- ------------------------

Capital#e
(book by Karl Marx) 

-------------------------- -------------------------- -----------------------

Capital#f
(upper part column) 

Depth = 8,  lso = location 
Num_so = 2 (entity, location) 

Depth = 7, lso = location 
Num_so = 2 (entity, location) 

------------------------

Therefore both terms in different ontologies are not semantically equivalent and 
their information cannot be correlated (even if they share the same label) which 
means that the system must select one of them using ontology semantics or query 
relatedness in the following steps.   

4.3.5   Selection of Candidate Ontology Terms Using the Notion of Relatedness 
After the execution of previous steps, we have narrowed down to two the valid map-
pings for the linguistic triple: ?(capital, Spain), one in the geographical ontology and 
the other one in the financial ontology. We also know that there is not semantic inter-
operability or equivalence between the class “capital” represented in both ontologies, 
therefore only one mapping will be valid to create the final ontology compliant triple. 

The next step (section 4.4) is the study of the ontology taxonomy and relationships 
to analyze the relatedness between ontology terms to choose a correct mapping for 
the query. However, it is worth mentioning that we also consider the study of the 
sense of term “capital” in the user’s query by using the idea of relatedness found in 
the computational linguistics literature. Most approaches assume that words that ap-
pear together in a sentence can be disambiguated by assigning to them the senses that 
are most closely related to their neighboring words [17]. For instance, in “What is the 
capital of Spain?”, for a human user it is obvious that capital#c, should be adopted 
when considering only Spain as the neighborhood term. Pendersen and his colleagues 
[17] have made available a Perl implementation of six WordNet measures evaluated 
in [13] plus their own sense disambiguation algorithm based on glosses [17] to assign 
a meaning to every content word in a text. Basically, these measures look for a path 
connecting a synset associated with each word, e.g. in Hirst and St-Onge measure the 
intuition behind is “the longer the path and the more changes of direction (upward for 
hypernym and meronym; downward for hyponymy and holonymy and horizontal for 
antonymy) the lower the weight”. In [17] extended semantic gloss matchers measure 
semantic relatedness between concepts (and its ancestors/descendants according to the 
is-a WordNet hierarchy) that is based on the number of shared words in their defini-
tions (glosses).  

SDT based on text is not mature enough because there are useful computational 
methods in the literature only for quantifying semantic distances for non-ad hoc 
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relationships. However, relatedness includes not just the WordNet relationships but 
also associative and ad hoc relationships. These can include just about any kind of 
functional relation or frequent association in the world (i,e bed-sleep), sometimes 
constructed in the context, and cannot always be determined purely from a priori
lexical resources such as WordNet. 

We believe that in our PowerAqua scenario we can take advantage of the related-
ness expressed in the ontology semantics to filter the correct candidate ontology tri-
ples equivalent to the user query triples, without the need to apply techniques for text 
relatedness. This is explained in section 4.4. 

4.4   Relation Similarity Services and Linking Triples 

Essentially, the relation similarity service (RSS) tries to make sense of the input query 
and express it in the form of ontology relationships between ontology terms. The RSS 
is invoked after all the linguistic terminology is mapped into ontology terms (classes 
or instances). The RSS is responsible of creating the ontology compliant triples by a) 
linking the mapped ontology terms to create triples and b) linking the triples between 
themselves. For the step a) to create the triples, a pair of ontology terms is linked by 
relationships within the same ontology to which the terms belong. For step b) while 
different triples may belong or not to different ontologies they have to be also linked 
by at least one common term.   

AquaLog mechanisms for step a) and b) can be reused. Briefly, for step a) 
AquaLog looks for a set of possible ontology relationships between two terms by 
looking at the structure in the ontology. This set is further disambiguated by the use of 
distance metrics, or as the vocabulary of the user may have a number of discrepancies 
with the vocabulary of the ontology it also uses WordNet and a learning mechanism. 
For step b) sentences that are structurally ambiguous, in the way they are linked, can 
be disambiguated using domain knowledge or in the last instance by calling the user 
to choose between alternative readings. 

There is not a single strategy here; basically it depends on the query category and 
ontology structure. A typical situation is when the structure of triples in the ontology 
do not match the way the information was represented in the query triples. We ex-
plore this situation with the following example: consider the query “which KMi re-
searchers working in the Semantic Web have publications in the ESWC conference?” 
and the subset of ontologies in figure 3. The resultant semantically equivalent map-
pings or ontology-compliant-triples are presented in table 3. Note that the first query 
triple <KMi researchers, working, Semantic Web> has a translation in both ontolo-
gies, while the second query triple <KMi researchers, have publications, eswc con-
ference> can only be resolved by the second ontology.  
    The number of query triples is fixed a priori for each query category, however the 
final number of ontology triples is not obvious at the first stage and it is dependent on 
the ontology semantics. Therefore, triples must be created at run-time to generate an 
equivalent representation according to the ontologies. Linguistic terms can be mapped 
into ontology classes (i.e., “Kmi-researchers”), instances (“Semantic-web-area”, 
“ISWC conference), or even a new triple (like the nominal compound “KMi research-
ers” into the triple <academics, Belongs-to, KMi>). 
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Different situations can be found by the similarity services when looking for a 
proper relation mapping. For instance, the simple case is when a linguistic relation is 
mapped into a ontology relation like “working” into “has-interest-on” in the case of 
the first triple. In other cases, to map a relation a new triple must be created, for in-
stance, the relation “have publications” is mapped in the ontology B though the medi-
ating concept “papers”, and a new triple is created to represent the indirect relation-
ship (<academics, wrote, papers> <papers, accepted-in, european semantic web 
conference>). Other mapping situations can be found in [4].  

Ontology A: KMi ontology

KMi-researcher

employee

secretary
Subclass-ofSubclass-of

Ontology B: AKT ontology

research-area

Semantic-Web-area

Instance-of

has-interest-on

European Semantic 
Web Conference

people

academics
Subclass-of organization

Belongs-to
KMi

Instance-of

papers conferences

wrote

accepted inreview

Instance-ofSemantic web

agents ontologies …

Instance-of

works-in

Fig. 3. Ontology scenario example 

Table 3. Triples representation 

Query-triples (linguistic triples) Onto-triples (ontology compatible triples)
<kmi researchers, working,
semantic web> 

Ontology 1: [kmi-researchers, has-
interest-on, semantic-web-area]

Ontology 2: [academics, belongs-to, kmi]
[academics, works-in, semantic-web]

<kmi researchers, have publica-
tions, eswc conference>

Ontology 2: [academics, wrote, papers] [papers, accepted-in, european semantic
web conference]

4.4.1   Running Example 
As said before, through the use of WordNet and the ontology we have narrowed down 
to two valid non-equivalent mappings for the linguistic triple: <capital, ?,  Spain>,
one in the geographical ontology and the other one in the financial ontology. A deeper 
analysis of the ontology relationships will find a direct relation that connects any 
country, e.g. Spain, with its capital for the geographical ontology. However, in the 
financial ontology there is not a direct relation between countries and capital. There is 
a mediating concept that represents a company, that has a series of capital goods and 
it is based in a country. This is a strong indication that the geographical ontology is 
more related to our query and should be selected.  
   For the linguistic triple <?, capital, Spain> where capital is considered a relation, a 
relationship analysis will  uncover the relation “is-capital-of” between “country” and 
“city” in ontology 3 (country statistics), while in the ontology 4 (flight information) 
there are not any relations similar to “is-capital-of”. Therefore ontology 3 is selected.  
    Note that both triple representations are valid representations of the query and se-
mantically equivalent to each other (they refer to “city” as the ascendant of “capital” 
in one ontology or as the type of the relation “is-capital-of” in the other ontology). In  
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the next phases of the algorithm, an answer can be generated by correlating both re-
sults, e.g. identifying the common instance “Madrid” as an answer, or by selecting 
one representation.  

4.5   Generating an Answer 

A key issue when generating an answer is to identify if semantically equivalent con-
cepts in the ontology triples have overlapping information and, in such a case, per-
form the fusion of instances. For example, in the KMi semantic web portal ontology,
the instance “Nigel Shadbolt” from the class “researcher” has some basic information, 
but an instance about the same person has also been defined in the AKT web portal 
ontology under the class “AKT-researcher”.  

4.5.1   Phase a: Operational Combination of Triples 
AquaLog provides two mechanisms (depending on the triple categories) for opera-
tionally integrating the triples information to generate an answer. These mechanisms 
are: (1) and/or link: e.g., in “who has an interest in ontologies or in knowledge re-
use?”, the result will be a fusion of the instances of people who have an interest in 
ontologies and the people who are interested in knowledge reuse; (2) conditional link, 
in which we can differentiate between: a) conditional link to a term: e.g. in ”which 
KMi academics work in the akt project sponsored by eprsc?” the second triple <akt 
project, sponsored, eprsc> must be resolved and the instance representing the “akt 
project sponsored by eprsc” identified to get the list of academics required for the first 
triple <KMi academics, work, akt project>; and b) conditional link to a triple: e.g. in 
”What are the homepages of the researchers working on the semantic web?” the sec-
ond triple <researchers, working, semantic web> must be resolved and the list of 
researchers obtained prior to generating an answer for the first triple <?, homepage, 
researchers>.

4.5.2   Information Correlation: Identify Common Instances 
It is common to get semantically equivalent triples from different ontologies, as a 
translation of one query triple. The challenge is to identify the instances in common 
between the two equivalent terms in each triple. For example, the query “Who are the 
academics working on the Semantic Web?”  might have a complete translation in the 
ontology X about researchers in KMi, ontology Y about academics in the University 
of Trento and ontology Z about the AKT consortium. Ontologies X and Y have no 
instances in common. However, ontologies X and Z contain overlapping information, 
as many of the academics in KMi belong to the AKT project. Common instances must 
be identified to give a complete non-redundant answer. 

Furthermore, for queries represented by partial translations from different ontolo-
gies the identification of common instances is also a key issue. For instance, the query 
“What are the citations for the publications of Enrico Motta?” is solved by an ontol-
ogy about citations and an ontology about academics in which the instance “Enrico 
Motta” is related to his publications. The publications from the academics ontology 
must be identified in the citations ontology. 

Identifying whether two instances from semantically equivalent concepts are the 
same is not an easy task. Instances may not have the same name, and information 
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about the same instance can have different purposes, e.g. the description of a car for 
sale or for an environmental study. We can use the OWL mechanism which identifies 
the attributes that provide sufficient evidence that two instances are the same. How-
ever, further mechanisms need to be adopted, e.g., use of joint probability approaches 
similar to GLUE[3] over the instance full name (from the taxonomy root) and its 
textual content (word frequency over attributes and  values) 

5   Related Work 

The AquaLog linguistic component, reused for PowerAqua, in combination with the 
SW scenario provides a new twist on the old issues associated to asking natural lan-
guage queries to databases (NLDB). See [4] for comparisons between AquaLog and 
previous work in NLDB and open-domain NL QA systems. Here, we look at the 
solutions proposed in the literature to address semantic heterogeneity in information 
systems. 

The Semantic Knowledge Articulation Tool (SKAT) [18] uses a first order logic 
notation to specify declarative matching rules between ontology terms. SKAT initially 
attempts to match nodes in the two graphs based on their labels and their structural 
similarity. The idea of presenting a conceptually unified view of the information 
space to the user, the world-view, is studied in [19]. The user can pose declarative 
queries in terms of the objects and the relations in the world-view. Given a query to 
the world-view, the query processor in the global information system poses subqueries 
to the external sources that contain the information relevant to answer a query. In 
order to do that, the semantic of the contents of the external sites is related to the 
world-view through the use of a description language. These solutions have an intrin-
sic limitation to be applied to the open-world domain introduced by the SW scenario, 
where the distributed sources are constantly growing. And therefore, it is not possible 
to apply any closed-domain solution for environments with well-defined boundaries, 
like corporate intranets, in which the problem can be addressed by the specification of 
shared models like mapping rules, global ontologies/vocabularies, and definitions of 
conversion libraries or functions between semantic data/values, among others. The 
manual effort needed to maintain any kind of centralized/global shared approach for 
semantic mapping (i.e. to implement the previous solution) in the SW is not only very 
costly, in terms of maintaining the mappings for such a highly dynamic environment 
that evolves quickly, but also has the added difficulty of “negotiating” a shared model 
that suits the needs of all the parties involved [20].  

In Query Processing in Global Information Systems [9] user queries are rewritten 
by using inter-ontology relationships to obtain semantic translations across ontolo-
gies. There are two restrictions: firstly the user must subscribe to the terminology and 
model captured by a chosen ontology. Secondly, the solution to the vocabulary prob-
lem is obtained through the declarative representation of synonym relationships relat-
ing ontology terms. The disadvantages are: 1) synonym relationship mappings must 
be maintained between terms in the user ontology and the underlying repositories. 2) 
Every time there is a change in the structure of underlying repositories the mappings 
of the component ontology must be change. 3) Such synonym relationships should be 
defined when a new ontology is added to the system (its centralized nature may affect 
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the efficiency of the system). The advantage is that different partial answers can be 
easily correlated since all of them are expressed in the language of the user ontology.  

CUPID [21] analyzes the factors that affect effectiveness of algorithms for auto-
matic semantic reconciliations; however, this is a complementary goal to ours: our 
system matches terms and relations in an user’s query with distributed ontologies 
while they match data repositories and ontologies. In GLUE [3] the probability of 
matching two concepts is studied by analyzing the available ontologies using a relaxa-
tion labeling methods; however, this approach is not very adaptable because it ana-
lyzes all the ontology concepts. Finally, In our QA-driven scenario there is no need 
for obtaining mappings for each pair of concepts belonging to different ontologies, in 
which the level of effort is at least linear in the number of matches to be performed 
[22] (see algorithms for the Match operator [22]). In our run-time scenario only rele-
vant concepts to the user’s query are analyzed (on-demand driven approach).  

6   Summary 

We have presented the design of PowerAqua, a novel QA system which provides 
answers drawn from multiple, heterogeneous and distributed ontologies on the Web. 
PowerAqua evolved from AquaLog, an implemented ontology-based QA system 
limited to one ontology at a time. The issues derived from opening the system with 
respect to the SW have been addressed here. A prototype based on the algorithm pre-
sented here will be implemented in the following months. 
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