
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 68 – 75, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Transformation Tool for ODE Based Models

Ciro B. Barbosa, Rodrigo W. dos Santos, Ronan M. Amorim,
Leandro N. Ciuffo, Fairus Manfroi, Rafael S. Oliveira, and Fernando O. Campos

FISIOCOMP, Laboratory of Computational Physiology
Department of Computer Science - Universidade Federal de Juiz de Fora (UFJF)

PO Box 15.064 - 91.501-970 - Juiz de Fora - MG - Brasil
{ciro, rodrigo}@dcc.ufjf.br,

ronanrmo@ig.com.br, leandro@areaweb.com.br, fayrus@gmail.com,
rsachetto@gmail.com, fernando.ocampos@terra.com.br

Abstract. This paper presents a tool for prototyping ODE (Ordinary Differen-
tial Equations) based systems in the area of computational modeling. The mod-
els, tailored during the project step of the system development, are recorded in
MathML, a markup language built upon XML. This design choice improves in-
teroperability with other tools used for mathematical modeling, mainly consid-
ering that it is based on Web architecture. The resulting work is a Web portal
that transforms an ODE model documented in MathML to a C++ API that
offers numerical solutions for that model.

1 Introduction

This work is within the scope of Computational Modeling of Electrophysiology [1].
Under this area of research, biological cell models are often based on large non-linear
systems of Ordinary Differential Equations (ODEs). Nowadays, modern cardiac cell
models comprises of ODE systems with tens to near hundred of free variables and
hundreds of parameters. Recently, the computational biology community has come
out with a XML based standard for the description of cellular models [2]. The CellML
standard provides the community with both a human- and computer-readable
representation of mathematical relationships of biological components.

In this work we extend the CellML goals with a transformation tool that
automatically generates C++ code that allows one to manipulate and numerically
solve CellML based models.

The transformation tool described here alleviates several problems inherent to the
development, implementation, debugging and use of cellular biophysical models.

The implementation of the mathematical models is a time consuming and error
prone process, due mainly to the ever rising size and complexity of the models. Even
the setup process of the simulations, where all initial values and parameters are to be
set, is time consuming and error prone. In addition, the numerical resolution typically
demands high performance computing environments and the programming expertise
adds more complexity to this multidisciplinary area of research.

 A Transformation Tool for ODE Based Models 69

To minimize the above mentioned problems, we have built a systematic transfor-
mation process that automatically turns mathematical models into corresponding
executable code. The tool is an API (Application Program Interface) generator for ODE
Solution (AGOS) [1]. AGOS is an on-line tool that automatically builds up an object-
oriented C++ class library that allows its users to manipulate and numerically solve
Initial Value Problems based on ODE systems described by the CellML or MathML
standard. Manipulation here means to set initial values, parameters and some features of
the embedded model and of the numerical solver.

Finally, although the AGOS tool was initially tailored to support models described
by the CellML standard, currently it works for any initial value problem based on
non-linear system of first-order ODEs documented in the MathML standard.
Therefore, AGOS is a powerful and useful transformation tool that aims to support
the development of many scientific problems in the most diverse areas of research.
Biological, ecological, neural and cardiac prototype models are available at the AGOS
web page [1] as examples.

In this paper we present the systematization of the transformation process, showing
a compromise with implementation correctness. Some other tools described in the
Internet [3][4] pursue similar goals. However, the lack of scientific documentation
does not allow a proper evaluation and comparison to the AGOS tool.

The next sections present the transformation process, the tool architecture and its
components, and some concluding remarks.

2 Transformation Process

The input data for this process is a CellML [2] or a Content MathML [5] file, i.e.,
XML-based languages. MathML is a W3C standard for describing mathematical
notation. CellML is an open-source mark-up language used for defining mathematical
and electrophysiological models of cellular functions. A CellML file includes Content
MathML to provide both a human- and a computer-readable representation of
mathematical relationships of biological components. Therefore, the AGOS tool
allows the submission of a complete CellML file or just its MathML subset.

Once submitted, the XML file is translated to an API. The AGOS application was
implemented in C++ and makes use of basic computer data structures and algorithms
in order to capture the variables, parameters and equations that are embedded in a
MathML file and to translate these to executable C++ code, i.e. the AGOS API.

The transformation process consists of identifying and extracting the ODE
elements documented in the XML file and generating the corresponding API classes.
The conceptual elements in the ODE are: independent variable, dependent variables,
auxiliary variables, equation parameters, differential equations and algebraic
equations.

The structural elements in the API are methods that can be classified as private or
public. The public ones include methods that: set and get the values of the dependent
variables (Set/GetVar), set the number of iteration cycles and the discretion interval

70 C.B. Barbosa et al.

(Setup), set the equation parameters (ParSet), calculate the numerical solution via the
Explicit Euler scheme (SolveODE).

In addition, the API offers public reflexive functions used, for example, to restore
the number of variables and their names. These reflexive functions allow the
automatic creation of model-specific interfaces. This automatic generated interface
enables one to set any model initial condition or parameter, displaying their actual
names, as documented in the CellML or MathML input file.

The algebraic equation solver (SolveAE) is an example of a AGOS private method
that is used by the numerical solution method (SolveODE) to obtain the values of
auxiliary variables.

Figure 1 synthesizes the relations between the conceptual elements of the ODEs
and the basic methods of the API. ODE elements are presented with circles and API
methods with rectangles. Arrow directions define the relationship dependency. For
instance, algebraic equations depend on parameters, dependent, auxiliary and
independent variables; the SolveAE method depends on the algebraic equations; and
in turn it influences the auxiliary variables.

Fig. 1. ODE to API Mapping

The next example better illustrates the transformation process and the relationship
between ODE elements and API methods. Consider the following ODE, known as the
bistable equation [6]:

 dVm/dt = – (I_ion) / Cm,

I_ion = a (Vm – b) (c – Vm) Vm.

(1)

(2)

AGOS identifies the ODE elements: Eq. 1 is a differential equation and Eq. 2 is an
algebraic equation; Vm, I_ion, and t are dependent, auxiliary and independent
variables, respectively; and the ODE parameters are Cm, a, b and c. Using the
Forward Euler method a numerical implementation of the above ODE can be written
as:

 A Transformation Tool for ODE Based Models 71

Vmi = – Δt a (Vmi-1 – b) (c – Vmi-1) Vmi-1/ Cm + Vmi-1, (3)

where Δt is the time step and Vmi is the discretization of Vm(i Δt), for i ≥ 0.
Based on the extracted ODE elements from Eqs. 1 and 2, AGOS generates the

following SolveODE and SolveAE methods that implement the numerical solution
presented by Eq. 3.

void Solveode::solve(int iterations){
 for(i=1; i<iterations; i++)
 Vm[i] = dt* (-calc_I_ion()/Cm) + Vm[i-1];
}
double calc_I_ion(){
 return a*(Vm[i-1]–b)*(c–Vm[i-1])*Vm[i-1];
}

3 Tool Architecture

The translator tool comprises of three basic components: a Preprocessor for XML
format, an Extractor of ODE conceptual elements, and a Code Generator. The
components are organized as a pipeline. The Preprocessor reads an XML-based file
(MathML or CellML) and extracts the content into an array of tree data structures.
Every tree of this array is processed by the ODE extractor that identifies the ODE
elements and stores them in appropriate data formats. At the end of the pipeline, the
Code Generator combines the extracted information to a code template and generates
the AGOS API. Fig. 2 presents the tool architecture where the relations between the
basic components are illustrated.

Fig. 2. AGOS Architecture

3.1 XML Preprocessing

The MathML description language uses prefix format on input, i.e. the operators
precede the operands. Therefore, a tree is an appropriate structure to store the XML
content as it facilitates the identification of the operands and operators. In addition,
with the information stored in a tree it is easy to recover the equation formulation with
a search in depth procedure. We use the DOM class library [7] to manipulate the
XML input files. The Document Object Model (DOM) is an API for HTML and

72 C.B. Barbosa et al.

XML files that provides a structural representation of the document, enabling
programs and scripts to access and modify its content [7]. The information is
extracted into a tree data structure with equation elements and XML tags. The DOM
tree nodes contain information about each operand and operator, besides the equation
type (if it is a differential equation or an algebraic one).

To illustrate the preprocessing step, Fig. 3 presents the corresponding Content
MathML code and the generated tree of Eq. 1.

Fig. 3. Content MathML code and tree-like representation

3.2 Extracting ODE Elements

ODE elements are to be used in different parts of the API code. They have to be
correctly placed in the code and the corresponding code variables must be properly
declared and initialized. Therefore, before the final code can be generated, all the
ODE elements must be identified and stored in what we will call here the ODE
Element Pool. The identification of all of ODE elements is done with multiple
searches in depth in the array of trees. In addition, different ODE elements require
different data formats for storage and manipulation. Parameters, dependent and
auxiliary variables are each stored in different linked lists. Examples of information
stored here are the names, units and default values. The equations are stored in a
linked list of trees. This way, the order between elements is preserved as well as
information concerning the element type (operand or operator), element characteristic
(infixed, prefixed, variable or constant), among others. Figure 5 illustrates the tree
that corresponds to Eq. 1. During the creation of this data structures the XML tags are
eliminated and the position of operands is standardized. Once the ODE elements are
identified and stored in the appropriate data structures, the collection of these
structures, i.e. the ODE Element Pool, contains all the necessary information for the
Code Generator.

 A Transformation Tool for ODE Based Models 73

Fig. 4. The tree structure obtained from the MathML

3.3 Generating the AGOS Code

The adopted strategy for code generation is largely based on code templates. The
syntactical structure of code templates can be described using formal grammar
notation. The algorithm for code generation is inspired in a recursive algorithm for
syntax analysis [8]. This algorithm fills in the C++ code template with data contained
in the generated Pool of ODE elements. Next we illustrate the AGOS grammar.

<api> -> "Class header" "class body" <variables
declaration> <solution> <algebraic
equation set> <GetVar> <SetVar> <Setup>
<ParSet>

<variable declaration> -> "type" <variable> | "type"
<variable> <variables declaration>

<solution> -> "method prototype" <equation group>

<equation group> -> <equation> | <equation>
 <equation group>

<equation> -> <dependent variable (t)> "="
<discretization> “*” <expression (t-dt)>
"+" <dependent variable (t-dt)>

<algebraic equation set> -> <algebraic equation> |
 <algebraic equation> <algebraic
equation set>

<discretization> -> “d”<independent variable>

In the grammar, terminal symbols are enclosed by ("). The title of the terminal
symbol indicates a piece of the code template. Non-terminal elements are enclosed by
(<>). Such elements are defined elsewhere in the grammar or represent functions that

74 C.B. Barbosa et al.

fill in a particular template section. The syntax is recursive, as can be seen in the
definition of <equation group>. An example of terminal element is presented below
for the terminal "method prototype". This code below is a fixed part of the template
code and, therefore, will be used for all APIs.

void Solveode::solve(int iterations){
 // solutions' calculation
 for(it_=1; it_ < iterations; it_++){
 // <equation group>
 }
}

An example of non-terminal element is presented next.

MMLVarListNode *cur = vlVariables;
fprintf(file,"//private variables\n”);
fprintf(file,"//private: \n”);
while(cur != NULL){
 fprintf(file,"\tdouble *%s;\t //%s \n",cur->name,

cur->units);
 cur = cur->next;
}

The above code shows the implementation of the recursive definition of <variables
declaration>. This part of the code generation uses the linked list structure that stores
the dependent variables (linked list vlVariables) to dynamically generate the variable
declaration of the AGOS API. The resulting code is:

//private variables
private:
 double *Vm;

4 Conclusions

In this work we described AGOS, a transformation tool that automatically generates
executable code that solves and manipulates mathematical models described by initial
value problems based on non-linear systems of ODEs and documented in the
MathML or CellML standards. The support provided by this systematic transforma-
tion process aims on reducing the time during the various phases of scientific model
development, implementation, debugging and use.

The AGOS Tool is available at [1], from where it is possible to download the API
source-code. The AGOS API can also be used online via a web application, which
uses the generated API to solve the ODE system and to visualize the results. Via a
dynamic web form, that uses the reflexive AGOS methods, one is able to set up the
ODE parameters and initial conditions of the specific submitted ODE system.

Acknowledgements. We thank the support provided the Brazilian Ministry of
Science and Technology, CNPq (processes 506795/2004-7).

 A Transformation Tool for ODE Based Models 75

References

1. Fisiocomp. Laboratory of Computational Physiology. UFJF, Brazil (2005).
http://www.fisiocomp.ufjf.br/

2. CellML biology, math, data, knowledge. Internet site address: http://www.cellml.org/
3. LI, J. and LETT, G.S.: Using MathML to Describe Numerical Computations,

http://www.mathmlconference.org/2000/Talks/li/
4. CellML: mozCellML. http://www.cellml.org/tools/mozCellML/mozCellMLHelp/technical
5. W3C: Mathematical Markup Language Version 2.0, http://www.w3.org/TR/MathML2/
6. Keener,J., Sneyd, J.: Mathematical Physiology. Springer, 1 edition, 792p., (1998).
7. W3C, Document Object Model (DOM): http://www.w3.org/DOM/
8. Aho, A.V., Seit, R. and Ullman, J.D.: Compilers Addison Wesley, 500p., (1986).

	Introduction
	Transformation Process
	Tool Architecture
	XML Preprocessing
	Extracting ODE Elements
	Generating the AGOS Code

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

