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Abstract. This paper presents a tool for prototyping ODE (Ordinary Differen-
tial Equations) based systems in the area of computational modeling. The mod-
els, tailored during the project step of the system development, are recorded in 
MathML, a markup language built upon XML. This design choice improves in-
teroperability with other tools used for mathematical modeling, mainly consid-
ering that it is based on Web architecture. The resulting work is a Web portal 
that transforms an ODE model documented in MathML to a C++ API that  
offers numerical solutions for that model. 

1   Introduction 

This work is within the scope of Computational Modeling of Electrophysiology [1]. 
Under this area of research, biological cell models are often based on large non-linear 
systems of Ordinary Differential Equations (ODEs). Nowadays, modern cardiac cell 
models comprises of ODE systems with tens to near hundred of free variables and 
hundreds of parameters. Recently, the computational biology community has come 
out with a XML based standard for the description of cellular models [2]. The CellML 
standard provides the community with both a human- and computer-readable 
representation of mathematical relationships of biological components.  

In this work we extend the CellML goals with a transformation tool that 
automatically generates C++ code that allows one to manipulate and numerically 
solve CellML based models.  

The transformation tool described here alleviates several problems inherent to the 
development, implementation, debugging and use of cellular biophysical models.  

The implementation of the mathematical models is a time consuming and error 
prone process, due mainly to the ever rising size and complexity of the models. Even 
the setup process of the simulations, where all initial values and parameters are to be 
set, is time consuming and error prone. In addition, the numerical resolution typically 
demands high performance computing environments and the programming expertise 
adds more complexity to this multidisciplinary area of research.   
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To minimize the above mentioned problems, we have built a systematic transfor-
mation process that automatically turns mathematical models into corresponding 
executable code. The tool is an API (Application Program Interface) generator for ODE 
Solution (AGOS) [1]. AGOS is an on-line tool that automatically builds up an object-
oriented C++ class library that allows its users to manipulate and numerically solve 
Initial Value Problems based on ODE systems described by the CellML or MathML 
standard. Manipulation here means to set initial values, parameters and some features of 
the embedded model and of the numerical solver. 

Finally, although the AGOS tool was initially tailored to support models described 
by the CellML standard, currently it works for any initial value problem based on 
non-linear system of first-order ODEs documented in the MathML standard. 
Therefore, AGOS is a powerful and useful transformation tool that aims to support 
the development of many scientific problems in the most diverse areas of research. 
Biological, ecological, neural and cardiac prototype models are available at the AGOS 
web page [1] as examples.     

In this paper we present the systematization of the transformation process, showing 
a compromise with implementation correctness. Some other tools described in the 
Internet [3][4] pursue similar goals. However, the lack of scientific documentation 
does not allow a proper evaluation and comparison to the AGOS tool. 

The next sections present the transformation process, the tool architecture and its 
components, and some concluding remarks.  

2   Transformation Process 

The input data for this process is a CellML [2] or a Content MathML [5] file, i.e., 
XML-based languages. MathML is a W3C standard for describing mathematical 
notation. CellML is an open-source mark-up language used for defining mathematical 
and electrophysiological models of cellular functions. A CellML file includes Content 
MathML to provide both a human- and a computer-readable representation of 
mathematical relationships of biological components. Therefore, the AGOS tool 
allows the submission of a complete CellML file or just its MathML subset. 

Once submitted, the XML file is translated to an API. The AGOS application was 
implemented in C++ and makes use of basic computer data structures and algorithms 
in order to capture the variables, parameters and equations that are embedded in a 
MathML file and to translate these to executable C++ code, i.e. the AGOS API.  

The transformation process consists of identifying and extracting the ODE 
elements documented in the XML file and generating the corresponding API classes. 
The conceptual elements in the ODE are: independent variable, dependent variables, 
auxiliary variables, equation parameters, differential equations and algebraic 
equations. 

The structural elements in the API are methods that can be classified as private or 
public. The public ones include methods that: set and get the values of the dependent 
variables (Set/GetVar), set the number of iteration cycles and the discretion interval 
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(Setup), set the equation parameters (ParSet), calculate the numerical solution via the 
Explicit Euler scheme (SolveODE). 

In addition, the API offers public reflexive functions used, for example, to restore 
the number of variables and their names. These reflexive functions allow the 
automatic creation of model-specific interfaces. This automatic generated interface 
enables one to set any model initial condition or parameter, displaying their actual 
names, as documented in the CellML or MathML input file. 

The algebraic equation solver (SolveAE) is an example of a AGOS private method 
that is used by the numerical solution method (SolveODE) to obtain the values of 
auxiliary variables.    

Figure 1 synthesizes the relations between the conceptual elements of the ODEs 
and the basic methods of the API. ODE elements are presented with circles and API 
methods with rectangles. Arrow directions define the relationship dependency. For 
instance, algebraic equations depend on parameters, dependent, auxiliary and 
independent variables; the SolveAE method depends on the algebraic equations; and 
in turn it influences the auxiliary variables.   

 

Fig. 1. ODE to API Mapping 

The next example better illustrates the transformation process and the relationship 
between ODE elements and API methods. Consider the following ODE, known as the 
bistable equation [6]: 

                                    dVm/dt = – (I_ion) / Cm, 

I_ion = a (Vm – b) (c – Vm) Vm. 

(1) 

(2) 

AGOS identifies the ODE elements: Eq. 1 is a differential equation and Eq. 2 is an 
algebraic equation; Vm, I_ion, and t are dependent, auxiliary and independent 
variables, respectively; and the ODE parameters are Cm, a, b and c. Using the 
Forward Euler method a numerical implementation of the above ODE can be written 
as:  
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Vmi = – Δt a (Vmi-1 – b) (c – Vmi-1) Vmi-1/ Cm + Vmi-1, (3) 

where  Δt is the time step and Vmi is the discretization of Vm(i Δt), for i ≥ 0. 
Based on the extracted ODE elements from Eqs. 1 and 2, AGOS generates the 

following SolveODE and SolveAE methods that implement the numerical solution 
presented by Eq. 3. 

void Solveode::solve(int iterations){ 
   for(i=1; i<iterations; i++) 
      Vm[i] = dt* (-calc_I_ion()/Cm) + Vm[i-1]; 
} 
double calc_I_ion(){ 
 return a*(Vm[i-1]–b)*(c–Vm[i-1])*Vm[i-1]; 
} 

3   Tool Architecture 

The translator tool comprises of three basic components: a Preprocessor for XML 
format, an Extractor of ODE conceptual elements, and a Code Generator. The 
components are organized as a pipeline. The Preprocessor reads an XML-based file 
(MathML or CellML) and extracts the content into an array of tree data structures. 
Every tree of this array is processed by the ODE extractor that identifies the ODE 
elements and stores them in appropriate data formats. At the end of the pipeline, the 
Code Generator combines the extracted information to a code template and generates 
the AGOS API. Fig. 2 presents the tool architecture where the relations between the 
basic components are illustrated.  

 

Fig. 2. AGOS Architecture 

3.1   XML Preprocessing 

The MathML description language uses prefix format on input, i.e. the operators 
precede the operands. Therefore, a tree is an appropriate structure to store the XML 
content as it facilitates the identification of the operands and operators. In addition, 
with the information stored in a tree it is easy to recover the equation formulation with 
a search in depth procedure. We use the DOM class library [7] to manipulate the 
XML input files. The Document Object Model (DOM) is an API for HTML and 
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XML files that provides a structural representation of the document, enabling 
programs and scripts to access and modify its content [7]. The information is 
extracted into a tree data structure with equation elements and XML tags. The DOM 
tree nodes contain information about each operand and operator, besides the equation 
type (if it is a differential equation or an algebraic one).  

To illustrate the preprocessing step, Fig. 3 presents the corresponding Content 
MathML code and the generated tree of Eq. 1. 

 

Fig. 3. Content MathML code and tree-like representation 

3.2   Extracting ODE Elements 

ODE elements are to be used in different parts of the API code. They have to be 
correctly placed in the code and the corresponding code variables must be properly 
declared and initialized. Therefore, before the final code can be generated, all the 
ODE elements must be identified and stored in what we will call here the ODE 
Element Pool. The identification of all of ODE elements is done with multiple 
searches in depth in the array of trees. In addition, different ODE elements require 
different data formats for storage and manipulation. Parameters, dependent and 
auxiliary variables are each stored in different linked lists. Examples of information 
stored here are the names, units and default values. The equations are stored in a 
linked list of trees. This way, the order between elements is preserved as well as 
information concerning the element type (operand or operator), element characteristic 
(infixed, prefixed, variable or constant), among others. Figure 5 illustrates the tree 
that corresponds to Eq. 1. During the creation of this data structures the XML tags are 
eliminated and the position of operands is standardized. Once the ODE elements are 
identified and stored in the appropriate data structures, the collection of these 
structures, i.e. the ODE Element Pool, contains all the necessary information for the 
Code Generator.  
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Fig. 4. The tree structure obtained from the MathML 

3.3   Generating the AGOS Code 

The adopted strategy for code generation is largely based on code templates. The 
syntactical structure of code templates can be described using formal grammar 
notation. The algorithm for code generation is inspired in a recursive algorithm for 
syntax analysis [8]. This algorithm fills in the C++ code template with data contained 
in the generated Pool of ODE elements. Next we illustrate the AGOS grammar. 

<api> -> "Class header" "class body" <variables 
declaration>  <solution> <algebraic 
equation set> <GetVar> <SetVar> <Setup> 
<ParSet> 

<variable declaration> -> "type" <variable> | "type" 
<variable>  <variables declaration> 

<solution> ->  "method prototype"  <equation group>  

<equation group>  ->  <equation>  |  <equation> 
 <equation group>  

<equation> ->  <dependent variable (t)> "=" 
<discretization> “*”  <expression (t-dt)> 
"+" <dependent variable (t-dt)> 

<algebraic equation set> -> <algebraic equation>  | 
   <algebraic equation> <algebraic 
equation set> 

<discretization> -> “d”<independent variable> 

In the grammar, terminal symbols are enclosed by ("). The title of the terminal 
symbol indicates a piece of the code template. Non-terminal elements are enclosed by 
(<>). Such elements are defined elsewhere in the grammar or represent functions that 
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fill in a particular template section. The syntax is recursive, as can be seen in the 
definition of <equation group>.  An example of terminal element is presented below 
for the terminal "method prototype". This code below is a fixed part of the template 
code and, therefore, will be used for all APIs.  

void Solveode::solve(int iterations){ 
    // solutions' calculation 
    for(it_=1; it_ < iterations; it_++){ 
       // <equation group>  
    } 
} 

 

An example of non-terminal element is presented next. 

MMLVarListNode *cur = vlVariables; 
fprintf(file,"//private variables\n”); 
fprintf(file,"//private: \n”);  
while(cur != NULL){ 
   fprintf(file,"\tdouble *%s;\t //%s \n",cur->name, 

cur->units); 
   cur = cur->next; 
} 

The above code shows the implementation of the recursive definition of <variables 
declaration>. This part of the code generation uses the linked list structure that stores 
the dependent variables (linked list vlVariables) to dynamically generate the variable 
declaration of the AGOS API. The resulting code is:   

//private variables 
private: 
 double *Vm; 

4   Conclusions 

In this work we described AGOS, a transformation tool that automatically generates 
executable code that solves and manipulates mathematical models described by initial 
value problems based on non-linear systems of ODEs and documented in the 
MathML or CellML standards. The support provided by this systematic transforma-
tion process aims on reducing the time during the various phases of scientific model 
development, implementation, debugging and use.   

The AGOS Tool is available at [1], from where it is possible to download the API 
source-code.  The AGOS API can also be used online via a web application, which 
uses the generated API to solve the ODE system and to visualize the results. Via a 
dynamic web form, that uses the reflexive AGOS methods, one is able to set up the 
ODE parameters and initial conditions of the specific submitted ODE system.   
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