Cryptanalysis of an Efficient Proof of Knowledge
of Discrete Logarithm

Sébastien Kunz-Jacques'?, Gwenaélle Martinet!,
Guillaume Poupard!, and Jacques Stern?

1 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg,
F-75700 Paris 07 SP, France
{Sebastien .Kunz-Jacques, Gwenaelle.Martinet,
Guillaume.Poupard}@sgdn.pm.gouv.fr
2 Ecole normale supérieure, Département d’informatique,
45 rue d’Ulm, F-75230 Paris Cedex 05, France
Jacques.Stern@ens. fr

Abstract. At PKC 2005, Bangerter, Camenisch and Maurer proposed
an efficient protocol to prove knowledge of discrete logarithms in groups
of unknown order. We describe an attack that enables the verifier to re-
cover the full secret with essentially no computing power beyond what is
required to run the protocol and after only a few iterations of it. We also
describe variants of the attack that apply when some additional simple
checks are performed by the prover.

Keywords: Public key cryptanalysis, discrete logarithm, proof of
knowledge.

1 Introduction

Since the seminal paper of Diffie and Hellman [I0], the discrete logarithm prob-
lem has been considered a fundamental stone of public key cryptography. In
order to define this problem in a general setting, we consider a multiplicative
group G and an element g € G. We note w the multiplicative order of g in G i.e.
the smallest non-zero positive integer w such that g = 1. The set (9) = {¢'},,
of powers of g is a subgroup of G with w elements. For any member y € (g), there
exists a unique integer x € {0,...w — 1} such that y = ¢*; by definition x is the
discrete logarithm of y in base g. The computation of such discrete logarithms
is considered to be intractable in many groups of cryptographic interest such as
modular groups or elliptic curves.

An interesting question is how to prove knowledge of a discrete logarithm of
a public data without revealing any other information about this value. Such a
problem is closely related to the concept of zero-knowledge introduced in 1985
by Goldwasser, Micali and Rackoff [13]. A well-known and very nice solution was
proposed by Schnorr [I7] in 1989. In this two party-protocol, a prover who knows
the discrete logarithm z of a public value y interacts with a verifier; if the prover
is able to correctly answer the verifier’s challenges, he proves knowledge of . Two

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 27-43] 2006.
© International Association for Cryptologic Research 2006

28 S. Kunz-Jacques et al.

complementary security aspects can be analyzed; firstly, the soundness property
shows that if a prover is able to correctly answer the challenges then he must
know the secret x. This proof is based on the notion of knowledge extractor that
can extract the secret from the prover using rewinding techniques. Secondly, the
zero-knowledge property shows that the execution of the protocol does not leak
any information about the secret x, even if the verifier tries to bias its challenges.
The proof is based on the notion of simulation of the communications.

In the Schnorr scheme, the soundness property can be easily proved since the
secret is immediately derived from two correct and distinct answers correspond-
ing to the same “commitment” sent by the prover as its first message. Deciding
if the protocol is zero-knowledge is still an open problem when large challenges
are used and if they are not randomly chosen by the verifier. It is significant to
note that the proof of soundness strongly relies on the knowledge of the order w
of the basis g. Surprisingly, if this order is not known, for example is the context
or RSA groups, the basic extraction strategy no longer applies. It is still possible
to prove the security of the scheme used as an identification scheme [12,[16] but,
in groups of unknown order, Schnorr based proofs cannot be considered as proofs
of knowledge. This interesting open problem has attracted the interest of several
research papers [I110] and, at PKC 2005, Bangerter, Camenisch and Maurer [I]
proposed an efficient protocol, the so-called X T-Protocol to prove knowledge of
discrete logarithms in groups of unknown order. This scheme is derived from the
Y-Protocol whose paternity is unclear. The name was first proposed in 1997 by
Cramer [7] in his PhD thesis and used by Cramer and Damgérd [8] but original
ideas can be found in the Schnorr scheme [I7] and even previously in [5[4L[2].
However, Girault [I2] was the first to observe, in 1991, that the knowledge of
the underlying group order was not necessary to carry Schnorr’s like proofs.

In this paper, we show that the proposal in [I] is not secure since a dishonest
verifier can obtain the secret of the prover. The main flaw in [I] is that the
authors assume that some parameters needed for a protocol run are honestly
chosen by the verifier; in the XF protocol, the prover never checks, and is not
able to check, that these parameters actually have the correct form. Our attack
takes advantage of this mistake. Thus, even if the protocol if proved in [I] to be
a zero-knowledge proof of knowledge, the assumptions made in the proof cannot
be verified with the described protocol. To fulfil the proof’s assumptions, some
additional and non obvious checks are needed which may drastically reduce the
protocol efficiency. Some other solutions may be considered but they require to
revise the protocol’s proof.

Notations and Organization of the Paper. Throughout this paper, we use
the following notation: for any integer n,

— Zy, is the set of integers modulo n,

— Zy," is the multiplicative group of invertible elements of Z,,,

— (n) is the Euler totient function, i.e. the cardinality of Z,,*,

ord(g) is the order of an element g € Z,,",

A(n) is the Carmichael’s lambda function defined as the largest order of the
elements of Z,,".

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 29

It is well known that if the prime factorization of an odd integer n is [[/_, ¢;%i
then ¢(n) =[], ¢:'i7 (g — 1) and A(n) = lem;—1._, (qifi_l(qi - 1))

The paper is organized as follows: section 2l recalls the X T-protocol [1]. Then,
in section[3] we make some security related observations which lead to a practical
cheating strategy. We also observe in this section and in section M that several
simple and natural countermeasures do not succeed into defeating our strategy.
Finally, annex [A] gives a detailed analysis of the attack complexity and annex [Bl
describes a detailed algorithm of independent interest, strongly inspired of the
Pohlig-Hellman algorithm [I4], to compute discrete logarithms in our setting.

2 The ¥ *t-Protocol

Let us now briefly recall the X T-protocol using the notations of [I]. Let H be an
arbitrary group whose order needs not to be known. For example, H can be the
set Z,™ for a composite RSA modulus n. Let h be an element of H such that
the computation of discrete logarithms in base h is intractable.

The X*-protocol is a proof of knowledge of discrete logarithms of elements in
H, in base h. Roughly speaking, this means that, for a given y € H, a prover can
convince a verifier that he knows an integer x such that y = h*. As we will see in
the rest of this paper, this protocol is not a zero-knowledge proof of knowledge
of discrete logarithm since the prover reveals some information about his secret
x when interacting with a dishonest verifier.

The proof requires a generator Ds(k) that outputs a pair (n,g) s.t. n is an
RSA modulus, g € Z,* and it is hard to compute u € Z," and an integer
e > 1 fulfilling u® = g mod n. It is stated in [I] that “[the authors] assume that
n= 2p+1)(2¢+ 1) with p, q, 2p+ 1) and (2¢ + 1) being primes, and that
g € QR,,, where QR,, is the subgroup of quadratic residues of Z,"”. However
even if this assumption appears to be used in the security analysis, at least in a
side remark to prove the statistical zero-knowledge property of the protocol, it
is not guaranteed by the protocol itself.

We still need a few additional notations coming from [IJ:

— k is a security parameter,

— a €y A means that the element a is randomly chosen in the set A using a
uniform distribution,

— the equality symbol = is used to denote definitions,

— the secret exponent x is in the range [— Az, Az] and the related public ele-
ment of H is y = A7,

— [, is an integer parameter related to the security parameter k,

— ¢* is another parameter that determines the set {0,...,¢"} in which the
verifier picks its challenges c,

— commit(y,r) is a computationally binding and statistically hiding commit-
ment scheme that commits v using the random value r; to open the com-
mitment one reveals v and r.

The typographic convention of [I] is to use sans serif font for elements related to
computations in Z," and standard italic font when dealing with elements of H.

30 S. Kunz-Jacques et al.

Prover Verifier
Private input : z in [- Az, Az]
Common input : h and y = h” both in H
(n,9) — Ds(k)
p €v [0,2%|n/4]]
g1=g” mod n
(917 9, n)

x €v [0, [n/4]]

y=¢7g* mod n

r €y [—2%cT Az, 2 ¢ T Ax]
t=h"

reu [—2%ct|n/4], 2%t | n/4]]
t=g19"

Choose ry; y=commit(y, ry)
Choose 7¢; t=commit(t, r¢)

(y,t,t)
cEu {0,...,c+}
¢
s=r + cx
s=r + cX
(s;s)
B —
o r

If g1 # ¢g” mod n, then halt.

If the equalities

y = commit(y, ry)

t = commit(t, rt)

h® =ty

gig® = ty° mod n
hold, then output 1
else output 0

Fig. 1. The X*-Protocol from [I]

The X*-protocol described in figure [[performs a kind of parallel proof of
knowledge of discrete logarithms in two mathematical structures, H and Z, ",
in a way similar to proofs of equality of discrete logarithms. However, the main
original part is that the second structure is not a parameter of the system but
is chosen by the verifier and changes from one proof to another.

3 Some Security Related Observations

3.1 A Preliminary Observation

A first simple security related observation is that some basic checks should be added
to the scheme, exactly as for the original X-Protocol. This may be considered

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 31

implicit but it is probably better to make checks explicit in order to avoid dramatic
consequences in practical implementations.

More precisely, a remark made by D. Bleichenbacher about the GPS iden-
tification scheme during the NESSIE selection process [6] is relevant to the
present context; consider a cheating verifier that does not choose the chal-
lenge ¢ uniformly in the range [0,c¢"] but sends a value much larger than c*.
If the prover does not check that ¢ € [0,c¢t], he reveals s = r + cz with
r € [-2=ct Az, 2% ¢t Az]. Then, s/c = z+7/c and, if ¢ > 2L=F1ct Az, the verifier
obtains s/c¢ —1/2 < & < s/c+ 1/2 and consequently the secret © = [s/c+1/2].

As a consequence, a check on the range of ¢ must be performed by the prover.
In the same vein, even if the consequences are not so important, the verifier
should also check that the answers s and s lie in consistent ranges; this may be
important to perform a full security proof.

This preliminary observation is not used in the sequel and we consider that
the order of magnitude of any transmitted data is always checked.

3.2 First Observation: n Can Be Chosen in Such a Way That
Discrete Logarithms in Z,,* Can Be Efficiently Computed

The first immediate idea to attack the X T-Protocol is to make the verifier choose
a group Z, " in which he can efficiently compute discrete logarithms. For example,
such a computation can be made if the Pohlig-Hellman algorithm [I4] can be
applied efficiently, i.e. if the multiplicative order of g is the product of only
small prime integers. This situation occurs if n is computed as the product of
two primes p and ¢ s.t. p—1 and ¢—1 are “smooth”, i.e. are equal to the product
of only small prime factors.

Note that this kind of attack was somewhat considered by the authors of [I]
since, as we already mentioned, they explicitly restricted themselves to the op-
posite situation where p and ¢ are strong primes i.e. (p —1)/2 and (¢ —1)/2 are
also primes. But, even if such a choice seems to be specified for a honest verifier
in order to protect him against dishonest provers, a dishonest verifier can choose
different kind of parameters to try to attack a honest prover. Such a cheating
strategy does not seem to be taken into account since the prover does not try
to detect it. The situation is even worse since the prover does not have enough
information to check the correctness of n as a product of two unknown strong
primes. In [3], Camenisch and Michels have shown how to prove that a modulus
is the product of two safe primes. Adding such a proof in X+ would drastically
reduce the claimed efficiency of the protocol and render it totally unpractical.

The consequence of this first observation is that a cheating verifier can choose
the modulus 7 s.t. he can further compute easily the following information:

1. zp+xmod ord(g) (= log,(y))
2. rp+rmodord(g) (=log,(t))

Furthermore, he obtains from the regular execution of the protocol the answers
s and s:

32 S. Kunz-Jacques et al.

3. s=xc+r
4. s=xc+r

However, even if we obtain four equations with four unknowns (z, x, r and r),
this system cannot be solved to recover the secret = since the equations are not
independent. Some more work is therefore needed.

3.3 Second Observation: Some Information May Be Revealed by a
Honest Prover

If a dishonest verifier chooses the prime numbers p and ¢ s.t. (p — 1)/2 and
(¢ — 1)/2 are relatively prime, we know that the maximal order of an element
in Z," is given by the Carmichael lambda function A(n) = lem(p — 1, — 1) =
(p—1)(¢—1)/2. The verifier can choose an element g with such a maximal order
which is close to n/2. In this case, g is not a quadratic residue in Z,*.

Then, an idea is to choose p = 1 in combination with a group Z,* where the
verifier can compute discrete logarithms. The consequence is that the attacker
learns log,(y) = (z + x) mod ord(g) which can be seen as the secret x mod
ord(g) masked with x randomly chosen in the range [0, |n/4]]. Since ord(g) =
n/2, the mask x does not fully hide the value of z mod ord(g) and, from an
information theoretic point of view, one bit of information is revealed if x is
uniformly distributed modulo ord(g).

It is quite plausible that by repeating this approach one can deduce the exact
value of the secret = from this partial information. However, we propose an
additional trick to make the attack straightforward and effective.

3.4 Third Observation: Parameter p Can Be Chosen in Such a Way
That the Multiplicative Order of g; Is Small

Using both previously exposed ideas, let us consider that the verifier chooses n
and g s.t.

— p and ¢ are prime integers,

— (p—1)/2 and (¢ — 1)/2 are relatively prime,

— p—1and q— 1 are smooth,

— ¢ is an element of Z,,* of maximal order A(n) = (p — 1)(¢ —1)/2.

An)/2 mod n has

Let us now choose p = A(n)/2. As a consequence, g1 = g° =g
multiplicative order 2.
As explained previously, a cheating verifier is able to compute discrete loga-

rithms and thus obtains from a regular proof
log,(y) = zp + x mod ord(g)
A
= <m X (n)) + x mod A(n)

2
= (x mod 2) x)\(Qn) + x mod A(n)

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 33

As a consequence, since the mask x is chosen in a range of size approximately
A(n)/2, the observation of the most significant bit of log,(y) reveals the least
significant bit of x, i.e. the value x mod 2.

Indeed, if mod 2 = 0, then log, (y) = x is uniformly distributed in the range
[0, []]. If x mod 2 = 1, then log,(y) = x + ’\(2") is now uniformly distributed in
[/\(2”), M) |y]]. These intervals are not disjoint but their intersection contains
approxnnately only p+q points. Thus, with overwhelming probability, the least
significant bit of x leaks from a single execution of the protocol with such a
cheating verifier.

In short, we have seen that a dishonest verifier can choose special parameters
n, g and p in such a way that he can learn the secret + modulo two. Note that
this is not detected by a prover who follows the protocol.

Then, the next bits of x can also be obtained by extending this attack. Sup-
pose the verifier knows the k least significant bits xg,...,xx—1 of x, where
T = Zf:o z;2'. He then tries to infer the bit z;. To this end, he chooses the
parameters n and g as before with the extra condition that 2¢*' divides A(n)
and p = A(n)/2**1. From the prover’s answers during the protocol, he computes
log,(y) =x+z x A(n)/2FF1 mod A(n) and considers the value

logg Zaxﬂz 2k+1_ 4—223312Z 2k+1

A(n)

=X+ T X 9 + Z $i2i—(k+1) X)\(n)
i=k+1
A
=X+ x) X (2n) mod A(n)

which is either in the range [0, 7]] or in the range [*("), ’\)+ L't]] according

to the value of the bit xj. As before, the verifier can deduce Tk w1th very high
probability from a single execution of the protocol. The precise algorithm is given
in figure 2l In this description, for clarity, the commitment of the values y, t and
t are not described. This does not change anything in the attack.

A strategy for breaking the protocol is thus to choose a special value for n, i.e.
a modulus computed as the product of two primes p and ¢ with smooth values
p—1and ¢ — 1, and a generator g which is of maximal order and thus not a
quadratic residue in Z,,*

The total number of protocol executions to recover a £-bit secret z is finally
£ x (14 1/+/n), since each bit requires at least one protocol execution, and the
intersection of the intervals contains approximately /n points.

The attack is no longer possible if the prover checks the correctness of n or g.
However, as we will see in the next subsection, if only the quadratic residuosity
is checked, a variant of the attack can be applied.

In annex [B] we review some technical details related to the computation of
discrete logarithms in groups of smooth order in order to provide a complete

34 S. Kunz-Jacques et al.

— Inputs: the bits xo,x1,...,2x—1 of T
— Output: the bit xx of x

1. Generate n = px ¢, with p and ¢ prime, (p—1)/2 and
(¢ — 1)/2 relatively primes, p — 1 and ¢ — 1 smooth
and p — 1 is divisible by 2**!;

2. Generate g € Z," of order A(n) = (p—1)(q — 1)/2;

Set p = A(n)/2F™! and compute g1 = ¢g” mod n;

4. Execute a protocol with the prover:

(a) Send (n,g,g1) to the prover;

(b) Receive y = gfg*modn, t = g7g" mod n and
t=h";

(c) Finish correctly the protocol with the prover;

5. Compute the discrete logarithm of y in base g using
the Pohlig-Hellman algorithm (see annex [B]):

w

log,(y) = p X © + x mod ord(g)

An)

9 |[then set zx = 0;

k-1
6. If logg(y)—z z2' xpeo,]
i=0

k—1
7. Else, if log,(y) = Y 2:2" x p €][n/4], A(;) + n/4]],
i=0
then set zx = 1;
8. Else, go to step [t
9. Return: zj

Fig. 2. The attacker strategy to recover xzj from xo,x1,...,Tr—1

description of the attack. We also provide in section [practical complexity esti-
mates for realistic parameter sizes.

3.5 Final Observation: The Modulus n Can Be Prime

Let us assume that the protocol is slightly modified so that the prover checks the
quadratic residuosity of g. This can be easily implemented: the verifier sends gg
of maximal order A(n) and the prover sets g = g3 mod n. We still assume that
the prover does not make any verification on the modulus n so that it can be
chosen by the cheating verifier without any restriction.

The verifier can then choose n as a prime number such that n—1 is smooth and
divisible by 2¢. In this case, he can still compute discrete logarithms. The generator
g is a quadratic residue of maximal order A(n)/2 = (n— 1)/2. The attack we have
described previously takes advantage of the short size of the mask x so it can be
applied here. Indeed, by iteratively choosing the value p equal to A(n)/2i! for all
the values i less than £ (the bit length of the secret x), the verifier is able to recover
x bit by bit with approximately ¢ executions of the protocol.

In the next section, we describe an extension of the attack when the prover checks
that n is not a prime number. This extension works for any unbalanced modulus,
but its complexity grows exponentially with the length of the smallest factor of n.

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 35

4 Extension of the Attack for an Unbalanced Modulus

In this section we consider the special case where the prover checks that g is
chosen in the subgroup of quadratic residues of Z,*. This can simply be done by
sending g and go such that g = g2 mod n. We also assume that g is a quadratic
residue of maximal order A(n)/2. However we still consider that the sole check
that the prover performs on n is that n is not prime. In that case, the attack of
section 3.0 applies. Thus, n can be chosen by the verifier so that :

— n is unbalanced: its prime factor p is much smaller than ¢. With such a
choice for n, the approximation of ord(g) by n/4 might not be tight, and the
bias could be exploited by a dishonest verifier;

— pissmall enough, and ¢ — 1 is smooth and divisible by a large enough power of
2, so that it is possible for the verifier to compute discrete logarithms in Z,,*.

— Inputs: the bits xo,x1,...,2r—1 of x and a bound k depending
on the allowed error probability
— Output: the bit z of x

1. Generate n = p x ¢, with p and ¢ prime, (p—1)/2 and (¢—1)/2
relatively primes, p < 22, ¢—1 smooth, and 2871 divides ¢ — 1;
Generate go € Z," of order A(n) = (p—1)(¢ — 1)/2;
Compute g = g mod n;
Set p = A(n)/2FT" and compute g1 = ¢ mod n;
Set 7 =0 and S = 0;
While j < k, do:
(a) Execute a protocol with the prover:
i. Send (n,g,g1) to the prover;
ii. Receivey =g¢7¢* mod n, t =g7g" modn and t = h";
iii. Finish correctly the protocol with the prover;
(b) Compute the discrete logarithm of y in base g using the
Pohlig-Hellman algorithm of annex Bt

A

log,(y) = (z X p + x) mod ord(g)

k—1
(c) Iflog,(y) — Y @:2" x p € [0, u] then j = j + 1;
i=0
SN ord(g) ord(g)
(d) Iflogg(y)—zoxﬂ x p €| 9 0 o +], then S =
S+1land j=7j+1;
7. End while;
8. If S < k/2, set x =0,
9. Else zr = 1;
10. Return: xy
Fig. 3. The attacker strategy to recover xj from zo,z1,...,zr—1 in the unbalanced

case

36 S. Kunz-Jacques et al.

From the value y = g g* = ¢g****, the verifier can recover X = pr+x mod ord(g),
where x is uniformly distributed in [0, |7}]].

Let p = ord(g)/2. Then X is either x mod ord(g) or x + ord(g)/2 mod ord(g),
depending on the least significant bit of x. The distribution of the X values is
thus dependent on this bit. Since g is a quadratic residue of maximal order in
Z,", we have:

An) n ptqg—1
2 4 4
We set = (p+ q—1)/4. Thus, n/4 = ord(g) + p.

The cheating verifier’s strategy is detailed in figure Bl The attack consists in
computing the discrete logarithm of y for each execution of the protocol, with a
suitably chosen value p. The distribution of this value, translated according to
previously computed bits, allows to infer one additional bit of the secret x.

The complexity is larger than in the previous attacks since many protocol
executions are required to obtain a single bit of x. This complexity and the attack
analysis are both given in annex [Al With error probability 1/B, an average of
8p1n(B)/9 executions of the protocol are needed for a cheating verifier to recover
each bit of z from the distribution of log,(y).

Figure [3] describes the attacker strategy to infer a bit of z knowing all the
previous ones.

ord(g) =

5 Practical Application of the Attack

The attack has been implemented using NTL. Using RSA moduli with very
small prime factors in A(n), a log can be computed in less than 1 second for
a 2GHz PC with a 1024-bit RSA modulus. The optimum seems to be reached
when using prime factors of about 5 bits.

In the cases where g is a non quadratic residue or n is prime, only one
protocol run is required per secret bit, and the attack is therefore very prac-
tical: for a 160-bit secret, it requires 160 protocol runs and a few minutes of
computations.

In the unbalanced case, several protocol interactions and log computations
per secret bit are needed. Typically, 200 runs per bit ensures an overall success
probability above 90% for a 1024-bit modulus and a 160-bit secret: only several
hours of computations are required, but the secret must be extracted from the
data of 160 x 200 = 32000 protocol runs, which might prove difficult to acquire
with a real prover device.

6 Conclusion

We have described a cheating strategy for an attacker acting as a verifier in
the X% proof of knowledge of discrete logarithm described in [I]. It enables
to recover the full secret with essentially no computational power beyond what

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 37

is required to run the protocol and after only a few iterations of it since each
iteration reveals one bit of secret. We have also described variants of the attack
that apply when some additional simple checks are performed by the prover,
namely verifying that the modulus chosen by the verifier is indeed a composite
integer and that the basis is a quadratic residue.

The correction of the X *-protocol is out of the scope of this paper but it
clearly appears that additional checks would probably be a sound idea. Some
solutions, such as adding a proof that the RSA modulus provided by the ver-
ifier is the product of two safe primes, would drastically reduce the claimed
efficiency of the protocol. Another direction would be to choose the parameter
x in a large enough interval so that there is no usable bias in x mod ord(g),
even if the parameters n and g are chosen by a dishonest verifier. While this
option only adds negligible complexity to the X1 protocol and thwarts all
our attacks, it does not address the question of the soundness of the protocol
proof.

References

1. E. Bangerter, J. Camenisch, and U. Maurer. Efficient Proofs of Knowledge of Dis-
crete Logarithms and Representations in Groups with Hidden Order. In PKC' 2005,
LNCS 3386, pages 154—171. Springer-Verlag, 2005.

2. T. Beth. Efficient Zero-Knowledge Identification Scheme for Smart Cards. In
Eurocrypt ’88, LNCS 330, pages 77-86. Springer-Verlag, 1988.

3. J. Camenisch and M. Michels. Proving in Zero-Knowledge That a Number Is
the Product of Two Safe Primes. In Furocrypt ’99, LNCS 1592, pages 107-122.
Springer-Verlag, 1999.

4. D. Chaum, J. Evertse, and J. van de Graaf. An Improved Protocol for Demonstrat-
ing Possession of Discrete Logarithms and some Generalizations. In Eurocrypt 87,
LNCS 304, pages 127-141. Springer-Verlag, 1988.

5. D. Chaum, J. Evertse, J. van de Graaf, and R. Peralta. Demonstrating Possession
of a Discrete Logarithm without Revealing it. In Crypto ’86, LNCS 263, pages
200-212. Springer-Verlag, 1987.

6. NESSIE consortium. Portfolio of recommanded cryptographic primitives, 2003.
Available from http://www.cryptonessie.org.

7. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol, 1997.
PhD thesis, University of Amsterdam.

8. R. Cramer and I. Damgard. Zero-Knowledge Proofs for Finite Field Arithmetic
or: Can Zero-Knowledge Be for Free. In Crypto ’98, LNCS 1462, pages 424-441.
Springer-Verlag, 1998.

9. I. Damgard and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In Asiacrypt 2002, LNCS 2501, pages 125—
142. Springer-Verlag, 2002.

10. W. Diffie and M. E. Hellman. New Directions in Cryptography. In IFEE Trans-
actions on Information Theory, volume IT-22, no. 6, pages 644-654, november
1976.

38

11

12.

13.

14.

15.

16.

17.

18.

S. Kunz-Jacques et al.

E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modu-
lar Polynomial Relations. In Crypto ’97, LNCS 1403, pages 16-30. Springer-Verlag,
1997.

M. Girault. Self-Certified Public Keys. In Furocrypt '91, LNCS 547, pages 490-497.
Springer-Verlag, 1992.

S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM journal of computing, 18(1):186-208, february 1989.

S. C. Pohlig and M. E. Hellman. An Improved Algorithm for Computing Log-
arithms over GF(p) and its Cryptographic Significance. IEEE Transactions on
Information Theory, IT-24(1):106-110, january 1978.

J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation, 32(143):918-924, July 1978.

G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authen-
tication and Signature Generation. In Furocrypt ‘98, LNCS 1403, pages 422-436.
Springer-Verlag, 1998.

C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Crypto ’89, LNCS 435, pages 235-251. Springer-Verlag, 1990.

P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with
Short Exponents. In Furocrypt ’96, LNCS 1070, pages 332-343. Springer-Verlag,
1996.

A Analysis of the Unbalanced Modulus Case

In the following we show that the attack, described in section M in the case of
prime modulus, can also applied if the modulus is unbalanced. In that case, we
will show that its complexity grows exponentially with the length of the smallest
factor.

We recall that the modulus n is unbalanced and that g is a quadratic residue of

maximal order. In the following, we analyze the attack in detail. We briefly recall
some notations already given in section @l Let zg denote the least significant bit
of z, i.e. xg = x mod 2, X the value of X for g = 0 and X' the value of X for
xo = 1. Since g is a quadratic residue of maximal order in Z,*, we have:

Aln n pt+qg-—1
ord(g) = (2):4— 4

We set p = (p+ ¢ —1)/4. Thus, n/4 = ord(g) + p.

For 7o = 0, X° = x is uniformly distributed in the interval [0,["]] =

4

[0,0rd(g) + |1]]. Taking the values modulo ord(g), we have :

Pr(X® € [0, [p]]) = Pr(x € [0, [1]] U[ord(g), ord(g) + [1]])

2 8u
ord(g) + lu] n
8

Pr(X? & [[u],ord(g))) 1=

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 39

We can easily infer the distribution for o = 1 with a circular shift of width

ord(g)/2. Since X! = x + ord(g)/2 is uniformly distributed in the interval

[OrdQ(g), 30r§(g) + |u]], we thus obtain

Pr(X' €[0,0rd(g)/2] U [ord(g)/2 + 1], ord(g)]) = Pr(x € [ord(g)/2 + [u],3 0rd(g)/2])

_ord(g) = [ul , _8u
ord(g) + L] n
1 81
Pr(X" € [ord(g)/2,0rd(9)/2 + [ul]) =
zg =0 zg =1
8 8
N N
4 4
N N
Ll Orc;(g) ord(g) ordfs) ord(g)

2
W) Ll

Fig. 4. The distribution of X° and X*

The verifier should run the protocol several times to distinguish these two
distributions. Each time the value X obtained is not in the intervals [0, [p]]
or [ord(g)/2,0rd(g)/2 + |i]] the verifier gains no information. Accordingly we
consider only the values X in these intervals and try to distinguish xg = 0 from
zo=1. Weset X = 0if X € [0, |x]] and X = 1if X € [ord(g)/2,0rd(g)/2+ |]].
We ignore the other cases so that we keep in average only 3u values amongst
ord(g) + pt. Depending on the bit xg, X has the following distribution:

2 1
ifxg =0, Pr(z=0) = 3 and Pr(z=1)= 5
1 2
ifrg=1, Pr(z=0) = 5 and Pr(z=1)= 5

Let k be the number of values collected by the verifier lying in the suitable
ranges. Let Sg the sum of the & depending on the value b of the bit zy. The
Chernoff bound shows that, for every € > 0,

0 B
Pr <S~vk — :15 >5> < e~ke?x]
) > <

s i
Pr< g ; <s> < ekt
P

If € is the sample mean of the two distributions, i.e. ¢ = 1/2, this allows us to
have a bound on the number of values needed so that the error value is not too

and

40 S. Kunz-Jacques et al.

large. For an error probability less than 1/5, then the number k of collected &
values should be such that k£ > 161n(B)/3.

Taking into account the number of unused values X, we obtain that the total
number of verifications to learn 1 bit of information with probability 1/B is:

In(B) " ord(g) + p
3 3
16 In(B) n
> X
-3 3p+qg—1)
16pIn(B)
91+
8pIn(B
o r;()

k> 16

Practical Results. Such a bound on the number of runs needed to learn one
bit of information allows us to estimate the complexity of the attack depending
on p and q. If p is really small, for example if p = 3, we obtain k > 26 for an
error probability per bit equal to 1/1000.

When p is larger, the number of runs explodes. Indeed, the number of queries
strongly depends on the length of p and becomes too large as soon as p is larger
than say 230, For such a value, and for a 256 bits secret z, the total complexity
of the attack can be approximated by 24°, for an error probability for each bit
of & which is 1/B = 1/1000.

Using Additional Information in X. To improve the overall success prob-
ability of the attack, we can analyze what happens when a bit was guessed
incorrectly. In that case, when treating the next bit, one gets the distributions
of figure @l with a circular shift of ord(g)/4. Irrespectively of the correctness of
the previous guess, the two candidate distributions for X are equal up to a shift
by ord(g)/2. As a consequence, the distribution of 2X mod ord(g) can take
two values: a distribution D; when the previous bit was guessed correctly, and a
distribution Do otherwise. D1 and Dy have the same shape as the distributions
of figure [with pu = 2P+Z_1 = p+‘21_1. Because of the multiplication by 2, the
peak is only 3/2 as high as the rest of the distribution.

These remarks can be used to add new experiments regarding bit x; when
performing the experiments on bit x;.1. D1 and D5 are harder to distinguish
than the distributions of X° and X'; therefore, the new experiences are less con-
clusive, and ”weight” less than the first series; the weight ratio is In(3/2)/ In(2).
This is partly compensated by the higher probability to land in the peaks of
distributions D1 and D-, which are twice as wide as for the distributions of
X% or X!, Overall, with the same success probability per bit, these additional
experiences save up to 54% of the log computations, depending on u. The most
attractive case is when the two p-wide peaks of distributions D; and Dy do not
overlap, in which case the saving ratio is 21n%;/1g)))—/&-2121(2) ~ 0.54.

The algorithm finally obtained is described figure

B

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm

— Inputs: a bound k depending on the allowed error probability
— Output: the secret =

1. Generate n = p X ¢, with p and ¢ prime, p = 3 mod 4, p small,
p—1and g — 1 smooth, (p —1,¢ — 1) = 2 and 2°" divides ¢ — 1;
Generate go € Z,," of order A(n) = (p—1)(q — 1)/2;
Compute g = g2 mod n;
S[i]=0,i=0,...,k—1
X[j]=0,j=0,...,k
z2=0,n=ord(g)/2
Fori=0,...,k—1, do
(a) Set p = A(n)/2"7% = ord(g)/2""" and g1 = g” mod n;
(b) While j < |k x ord(g)/(2u)], do:
i. Execute a protocol run and extract

oot W

log,(y) = (z X p+x) mod ord(g)

ii. X[j] =log,(y) —2zxp
i, If i > 0, do
A. If2X[j] € [max(0,2u—n), min(2u,n)] then S[i—1]— =
In(3/2);
B. If 2X[j] € [max(n,2u), min(ord(g),n + 2u))], then
Sli — 1]+ = 1n(3/2);
(c) End while;
(d) If i > 0, do
i If S[Z — 1] < O, set x;—1 = O;
ii. Else z;—1 =1;
il z=z42; 127"
(e) While j < |k x ord(g)/(2p)], do:
i. If X[j] € [0, p] then S[i]— = In(2);
ii. If X[j] € [n,n+ p], then S[i]+ = In(2);
(f) End while;
8. End For;
9. If S[k—1] <0, set xx—1 = 0;
10. Else xp_1 = 1;
11. Return: =z = Zf;ol 7;2°

Fig. 5. The attacker improved strategy to recover x in the unbalanced case

Practical Computation of Discrete Logarithms in
Groups of Smooth Order

41

In the following we show how to compute discrete logarithms when the order’s
factorization of the group element is unknown, but only small factors are known.
Let G be a multiplicative group. We do not assume any specific property of
this group in this section. Let g be an element of multiplicative order w.
Generic algorithms to compute discrete logarithms, such as Baby step-Giant
step or Pollard rho and lambda methods [I5[I8] have complexity O(y/w).

42 S. Kunz-Jacques et al.

1. input: y € (g)
2. initialization: Y =y, G =g, 2 =w, P=1, X =0
3. for i from 1 to ¢ do

(a) for j from 1 to e; do

ii. z=logge (Y7)
iii. Y =Y/G?
iv. G =GP
v. X=X+Pxz
vi. P=P X p;

4. return: X

Fig. 6. A variant of the Pohlig-Hellman algorithm to compute discrete logarithms

However, in some cases, more efficient techniques apply. The well-known
Pohlig-Hellman algorithm [T4] takes advantage of the factorization of the order
w when it is applicable. If we choose the group parameters such that this order
is smooth, this algorithm enables to compute discrete logarithms efficiently.

We now describe a variant strongly inspired from the original Pohlig-Hellman
algorithm. We note

k Vi € [1,k] p; is a prime integer
w= Hp? with Vie[l,k] e; € N*
i=1 1<i<j<k=p<p;

and we consider the algorithm of figure

Note that if we use this algorithm with ¢ = k, it just computes discrete
logarithms using the Pohlig-Hellman idea, performing the Chinese remainder
computation whenever it is possible. We can also use it with ¢ < k; in this
case we can compute some partial information about the discrete logarithms.
This may have important consequences when some optimizations such as so-
called short exponents, i.e. exponents much smaller than the order w but larger
than 160 bits are used for efficiency reasons. In such a situation, the complete
factorization of the order of ¢ may be unknown but enough small factors p; may
still enable to recover some secrets.

Theorem 1. On input y € {(g) and £ € [1,k], the algorithm of figurel@ computes
X =log,(y) mod Hle pst. The time complexity is O (Zle e; X \/pz)

K2

Proof. The justification of the result is done recursively. For any value of indexes
¢ and j, we have, just before line “i.” the following relations:

i—1 j—1
— P=][._, s xpj

—G’:gp
- N=w/P
— X =2z mod P

Y :g(x div P)xP _ y/gX

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 43

After execution of line “i.”, the new value of §2 is §2 = w/(P X p;). Then, in line

“ii.”, we have
Px ¢ i
GQ =g Pxp; _gw/pL

Pi

and YQ _ g(z div P)xPx P;)I’i _ g(m div P)x ¢

so the computation of z = logg« (YQ) leads to

z div P
2 =108 u/p; <(gw/pi>) = (z div P) mod p;

An important fact for the complexity of the algorithm is that z is an integer in
the range [0, p; — 1] because g*/P¢ has multiplicative order p;. Consequently, if
p; is small, we can use generic discrete logarithm algorithms with running time
O(/pi) to efficiently compute z.

Then, after computation “iii.”, we have

Y = g(w div P)xP—(z div P) mod p; _ g(w div (PXxp;)) X (PXp;)

Di

After the next computation, G = (g”)" = ¢©*?# and then

X =z mod P+Pxz=x mod P+ P x ((z div P) mod p;) =z mod P X p;

i—1 i—1
a=1 a=1

The result X which is returned is X = x mod Hﬁle pee.
The main computation is the evaluation of z on line “ii.”. Its complexity is
O(y/pi) so the global time complexity of the algorithm is O (Zle e; X \/pl>

O

	Introduction
	The Σ^+-Protocol
	Some Security Related Observations
	A Preliminary Observation
	First Observation: n Can Be Chosen in Such a Way That Discrete Logarithms in Z_{n}* Can Be Efficiently Computed
	Second Observation: Some Information May Be Revealed by a Honest Prover
	Third Observation: Parameter ρ Can Be Chosen in Such a Way That the Multiplicative Order of g_1 Is Small
	Final Observation: The Modulus n Can Be Prime

	Extension of the Attack for an Unbalanced Modulus
	Practical Application of the Attack
	Conclusion
	Analysis of the Unbalanced Modulus Case
	Practical Computation of Discrete Logarithms in Groups of Smooth Order

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

