
Inference of User-Defined Type Qualifiers
and Qualifier Rules

Brian Chin, Shane Markstrum, Todd Millstein, and Jens Palsberg

University of California, Los Angeles
{naerbnic, smarkstr, todd, palsberg}@cs.ucla.edu

Abstract. In previous work, we described a new approach to supporting user-
defined type qualifiers, which augment existing types to specify and check addi-
tional properties of interest. For each qualifier, users define a set of rules that are
enforced during static typechecking of programs. Separately, these rules are au-
tomatically validated with respect to a user-defined predicate that formalizes the
qualifier’s intended run-time invariant. We instantiated this approach as a frame-
work for user-defined type qualifiers in C programs, called CLARITY.

In this paper, we extend our earlier approach by resolving two usability is-
sues. First, we show how to perform qualifier inference in the presence of user-
defined rules by generating and solving a system of conditional set constraints,
thereby relieving users of the burden of explicitly annotating programs. Second,
we show how to automatically infer rules that respect a given user-defined invari-
ant, thereby relieving qualifier designers of the burden of manually producing
such rules. We have formalized both qualifier and rule inference and proven their
correctness. We have also extended CLARITY to support qualifier and rule infer-
ence, and we illustrate their utility in practice through experiments with several
type qualifiers and open-source C programs.

1 Introduction

Type systems are a natural and powerful discipline for specifying and statically
checking properties of programs. However, language designers cannot anticipate all
of the properties that programmers will wish to specify, nor can they anticipate all of
the practical ways in which such properties can be statically checked. Therefore, it is
desirable to allow programmers to refine existing types in order to specify and check
additional program properties. A practical form of refinement can be achieved through
user-defined type qualifiers [6, 7].

In previous work [2], we described a new approach to user-defined type qualifiers
that is more expressive and provides stronger guarantees than prior approaches. Users
provide a set of qualifier rules in a stylized language. These rules declaratively define
a qualifier’s associated programming discipline and are automatically enforced during
static typechecking of programs. Users may also provide a predicate that formalizes a
qualifier’s intended run-time invariant. This invariant is used to automatically validate
the correctness of the provided qualifier rules. We instantiated this approach as a frame-
work for user-defined type qualifiers in C programs, called CLARITY, and illustrated
its utility for a variety of qualifiers, including pos and neg for integers, nonnull for
pointers, and tainted and untainted for format strings.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 264–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inference of User-Defined Type Qualifiers and Qualifier Rules 265

qualifier nonzero(int Expr E)
case E of

decl int Const C:
C, where C != 0

| decl int Expr E1:
E1, where pos(E1)

| decl int Expr E1, E2:
E1 * E2,
where nonzero(E1) && nonzero(E2)

restrict
decl int Expr E1, E2:

E1 / E2, where nonzero(E2)
invariant value(E) != 0

Fig. 1. A user-defined type qualifiers for nonzero integers.

In this paper, we extend our earlier approach by resolving two usability issues. First,
we show how to perform qualifier inference, relieving programmers of the burden of
explicitly annotating their programs. We describe an inference algorithm that is para-
meterized by a set of user-defined qualifier rules. The algorithm generates and solves
a system of conditional set constraints. We have formalized constraint generation and
proven that the constraint system is equivalent to the associated qualifier type system.
We have also extended CLARITY to support qualifier inference and have used it to infer
qualifiers on several open-source C programs.

Second, we show how to automatically infer rules that respect a given user-defined
invariant, relieving qualifier designers of the burden of manually producing such rules.
We define a partial order of candidate rules that formalizes the situation when one rule
subsumes another. We then describe an algorithm for walking this partial order to gener-
ate all valid rules that are not subsumed by any other valid rule. We have implemented
rule inference in CLARITY and used it to automatically generate all of our manually
produced qualifier rules as well as some valid rules we had not thought of.

The next section reviews our approach to user-defined type qualifiers in the context
of CLARITY. Sections 3 and 4 describe qualifier inference and rule inference, respec-
tively. Section 5 discusses our experiments with qualifier and rule inference in CLAR-
ITY. Section 6 compares with related work, and section 7 concludes.

2 An Overview of CLARITY

2.1 Qualifier Rules and Qualifier Checking

Figure 1 illustrates the definition of a simple user-defined qualifier for nonzero integers
in CLARITY.1 The first line defines the qualifier nonzero to be applicable to all ex-
pressions of type int. The case and restrict blocks provide the user-defined typing

1 This paper focuses on CLARITY’s “value” qualifiers; its “reference” qualifiers are not
considered [2].

266 B. Chin et al.

discipline associated with the new qualifier. Each clause in the case block represents
a qualifier rule, consisting of some metavariable declarations for use in the rest of the
rule, a pattern, and a condition. The first case clause in Figure 1 indicates that an inte-
ger constant can be given the qualifier nonzero if the constant is not equal to zero. The
second clause indicates that an expression can be given the qualifier nonzero if it can
be given another user-defined qualifier pos, whose definition is not shown. The third
clause indicates that the product of two nonzero expressions can also be considered
nonzero.

A restrict clause has the same syntax as a case clause, but the semantics is
different. Namely, a restrict clause indicates that whenever the pattern is matched by
some program expression, then the condition should also be satisfied by that expression.
Therefore, the restrict clause in Figure 1 indicates that all denominator expressions
in a division must have the qualifier nonzero.

CLARITY includes a qualifier checker that statically enforces user-defined qualifier
rules on programs. As a simple example, consider the statement

nonzero int prod = a*b;

where a and b are each declared to have the type pos int. Since prod is declared to
have the qualifier nonzero, the qualifier checker must ensure that a*b can be given
this qualifier. By the third case clause for nonzero in Figure 1, the check succeeds
if it can be shown that a and b each recursively has qualifier nonzero. Each of these
recursive checks succeeds by the second case clause for nonzero, since a and b are
each declared to have qualifier pos.

In general, each program expression can be associated with a set of qualifiers. Qual-
ifier checking employs a natural notion of subtyping in the presence of user-defined
qualifiers: a type Q1τ subtypes another type Q2τ, where Q1 and Q2 are sets of qualifiers
and τ is an unqualified type, if Q1 ⊇ Q2. We have formalized this notion of subtyping
and proven that it is sound for all user-defined qualifiers expressible in our rule lan-
guage [2]. There is no direct notion of subtyping between qualifiers, but this can be
encoded in the rules. For example, the second case clause for nonzero in Figure 1 has
the effect of making pos int a subtype of nonzero int.

2.2 Qualifier Invariants and Qualifier Validation

In addition to the qualifier rules, CLARITY allows users to provide a predicate that for-
malizes a qualifier’s intended run-time invariant. For example, the invariant clause for
nonzero in Figure 1 indicates that the value of an expression qualified with nonzero
should not equal zero, in all run-time execution states. The invariant makes use of a
value predicate that our framework provides. Given a qualifier’s invariant, CLARITY’s
qualifier validator component ensures that the qualifier’s rules are correct, in the sense
that they respect this invariant. Qualifier validation happens once, independent of any
particular program that uses the qualifier. For each case clause, the qualifier valida-
tor generates one proof obligation to be discharged.2 Our implementation discharges
obligations with the Simplify automatic theorem prover [5].

2 We do not validate restrict rules, whose correctness depends on a user-specific notion of
run-time error.

Inference of User-Defined Type Qualifiers and Qualifier Rules 267

Each proof obligation requires that a rule’s pattern and condition are sufficient to
ensure the qualifier’s invariant at run time. For example, the qualifier validator gener-
ates the following obligation for the first case clause for nonzero in figure 1: if an
expression E is an integer constant other than zero, then the value of E in an arbitrary
execution state is not equal to zero. For the third case clause, the qualifier validator gen-
erates the following obligation: if an expression E has the form E1 * E2 and both E1
and E2 satisfy nonzero’s invariant in an arbitrary execution state, then E also satisfies
nonzero’s invariant in that state. These obligations are easily discharged by Simplify.3

On the other hand, if the pattern in the third case clause were erroneously specified as
E1 + E2, the qualifier validator would catch the error, since it is not possible to prove
that the sum of two nonzero integers is always nonzero.

CLARITY’s qualifier validator is currently limited by the capabilities of Simplify,
which includes decision procedures for propositional logic, linear arithmetic, and equal-
ity with uninterpreted functions, and additionally includes heuristics for handling first-
order quantification. Simplify works well for many kinds of properties, for example
arithmetic invariants and simple invariants about pointers such as nonnullness. Sim-
plify is not tailored for reasoning about other useful kinds of invariants, for example
shape invariants on data structures. However, our approach to qualifier validation could
easily be adapted for use with other decision procedures and theorem provers, including
tools requiring some user interaction.

3 Qualifier Inference

The original CLARITY system supports qualifier checking: all variables must be explic-
itly annotated with their qualifiers. In this section, we show how to support qualifier
inference in the presence of user-defined qualifier rules. We formalize qualifier infer-
ence for a simply-typed lambda calculus with references and user-defined qualifiers, as
defined by the following grammar:

e ::= c | e1 + e2 | x | λx : τ.e | e1 e2 | ref e | e1 := e2 |!e | assert(e,q)
τ ::= int | τ1 → τ2 | ref τ

Let Q be the set {q1, . . . ,qn} of user-defined qualifiers in a program. Sets of quali-
fiers from Q form a natural lattice, with partial order ⊇, least-upper-bound function ∩,
and greatest-lower-bound function ∪. We denote elements of this lattice by metavariable
l; qualified types are ranged over by metavariable ρ and are defined as follows:

ρ ::= l φ φ ::= int | ρ1 → ρ2 | ref ρ

We present both a type system and a constraint system for qualifier inference and prove
their equivalence, and we describe an algorithm for solving the generated constraints.
We assume the bound variables in expressions are annotated with unqualified types τ.
It is possible to combine qualifier inference with type inference, but separating them
simplifies the presentation.

3 Our qualifier validator currently does not properly model overflow.

268 B. Chin et al.

3.1 Formal Qualifier Rules

We formalize the case rules as defining two kinds of relations. First, some case clauses
have the effect of declaring a specificity relation between qualifiers. We formalize these
rules as defining axioms for a relation of the form q1 � q2. For example, the second
case clause in Figure 1 would be represented by the axiom pos�nonzero. We use �∗

to denote the reflexive, transitive closure of the user-defined � relation, and we require
�∗ to be a partial order.

The other kind of case clause uses a pattern to match on a constructor (e.g., +),
and the clause determines the qualifier of the entire expression based on the qualifiers
of the immediate subexpressions. We formalize these rules as defining relations of the
form Rq

p, where q is a qualifier and p represents one of the constructors in our formal
language, ranging over integer constants and the symbols +, λ, and ref. The arity of
each relation Rq

p is the number of immediate subexpressions of the constructor repre-
sented by p, and the domain of each argument to the relation is Q. Each case clause
is formalized through axioms for these relations. For example, the third case clause
in Figure 1 would be represented by the axiom Rnonzero

∗ (nonzero,nonzero) (if our
formal language contained multiplication). The first case clause in that figure would
be formalized through the (conceptually infinite) set of axioms Rnonzero

1 (), Rnonzero
2 (),

etc. For simplicity of presentation, we assume that each subexpression is required to
satisfy only a single qualifier. In fact, our implementation allows each subexpression to
be constrained to satisfy a set of qualifiers, and it would be straightforward to update
our formalism to support this ability.

Finally, we formalize the restrict rules with an expression of the form
assert(e,q), which requires the type system to ensure that the top-level qualifier
on expression e’s type includes qualifier q. For example, the restrict rule in Fig-
ure 1 is modeled by replacing each denominator expression e in a program with
assert(e,nonzero). The assert expression can also be used to model explicit
qualifier annotations in programs.

3.2 The Type System

We assume we are given an expression e along with a set A of axioms representing the
user-defined qualifier rules, as described above. The qualifier type system is presented
in Figure 3, and the axioms in A are implicitly considered to augment this formal sys-
tem. As usual, metavariable Γ ranges over type environments, which map variables to
qualified types. The rule for assert(e,q) infers a qualified type for e and then checks
that q is in the top-level qualifier of this type. The strip function used in the rule for
lambdas removes all qualifiers from a qualified type ρ, producing an unqualified type τ.

The main novelty in the type system is the consultation of the axioms in A to pro-
duce the top-level qualifiers for constructor expressions. For example, consider the first
rule in Figure 3, which infers the qualifiers for an integer constant c using a set compre-

hension notation. The resulting set l includes all qualifiers q′ such that the Rq′
c () relation

holds (according to the axioms in A), as well as all qualifiers q that are “less specific”
than such a q′ as defined by the �∗ relation. In this way, the rule finds all possible qual-
ifiers that can be proven to hold given the user-defined case clauses. The subsumption

Inference of User-Defined Type Qualifiers and Qualifier Rules 269

l1 ⊇ l2
l1int ≤ l2int

l1 ⊇ l2 ρ ≤ ρ′ ρ′ ≤ ρ
l1 ref ρ ≤ l2 ref ρ′

l1 ⊇ l2 ρ2 ≤ ρ1 ρ′
1 ≤ ρ′

2

l1(ρ1 → ρ′
1) ≤ l2(ρ2 → ρ′

2)

Fig. 2. Formal subtyping rules for qualified types

l = {q | Rq′
c ()∧q′ �∗ q}

Γ
 c : l int

Γ
 e1 : l1 int Γ
 e2 : l2 int

l = {q | Rq′

+(q1,q2)∧q1 ∈ l1 ∧q2 ∈ l2 ∧q′ �∗ q}
Γ
 e1 +e2 : l int

Γ(x) = ρ
Γ
 x : ρ

strip(ρ1) = τ1 Γ,x : ρ1
 e : ρ2 ρ2 = l2 φ2

l = {q | Rq′

λ (q2)∧q2 ∈ l2 ∧q′ �∗ q}
Γ
 λx : τ1.e : l(ρ1 → ρ2)

Γ
 e1 : l(ρ2 → ρ) Γ
 e2 : ρ2

Γ
 e1 e2 : ρ

Γ
 e : ρ ρ = l0 φ0

l = {q | Rq′

ref(q0)∧q0 ∈ l0 ∧q′ �∗ q}
Γ
 ref e : l ref ρ

Γ
 e1 : l ref ρ Γ
 e2 : ρ
Γ
 e1 := e2 : ρ

Γ
 e : l ref ρ
Γ
!e : ρ

Γ
 e : ρ ρ = l φ q ∈ l

Γ
 assert(e,q) : ρ
Γ
 e : ρ′ ρ′ ≤ ρ

Γ
 e : ρ

Fig. 3. Formal qualifier inference rules

rule at the end of the figure can then be used to forget some of these qualifiers, via
the subtyping rules in Figure 2. The inference of top-level qualifiers is similar for the
other constructors, except that consultation of the R relation makes use of the top-level
qualifiers inferred for the immediate subexpressions.

3.3 The Constraint System

In this section we describe a constraint-based algorithm for qualifier inference. The
key novelty is the use of a specialized form of conditional constraints to represent the
effects of user-defined qualifier rules. The metavariable α represents qualifier variables,
and we generate constraints of the following forms:

α ⊇ α q ∈ α q ∈ α ⇒�
(
�

q ∈ α)

Given a set C of constraints, let S be a mapping from the qualifier variables in C to sets
of qualifiers. We say that S is a solution to C if S satisfies all constraints in C. We say
that S is the least solution to C if for all solutions S′ and qualifier variables α in the
domain of S and S′, S(α) ⊇ S′(α). It is easy to show that if a set of constraints C in the
above form has a solution, then it has a unique least solution.

Constraint Generation. We formalize constraint generation by a judgment of the form
κ
 e : δ | C. Here C is a set of constraints in the above form, and the metavariable δ
represents qualified types whose qualifiers are all qualifier variables:

δ ::= α ϕ ϕ ::= int | δ1 → δ2 | ref δ

270 B. Chin et al.

α1int α2int ≡ {α1 ⊇ α2}
α1ref δ1 α2ref δ2 ≡ {α1 ⊇ α2}∪δ1 δ2 ∪δ2 δ1

α1(δ1 → δ′
1) α2(δ2 → δ′

2) ≡ {α1 ⊇ α2}∪δ2 δ1 ∪δ′
1 δ′

2

Fig. 4. Converting type constraints into set constraints

α′ fresh δ′ = α′ int δ = refresh(δ′)
κ
 c : δ | δ′ δ∪{Cq

c (α′) | q ∈ Q}

κ
 e1 : α1 int | C1 κ
 e2 : α2 int | C2
α′ fresh δ′ = α′ int δ = refresh(δ′)

κ
 e1 +e2 : δ |
C1 ∪C2 ∪δ′ δ∪{Cq

+(α1,α2,α′) | q ∈ Q}

κ(x) = δ′ δ = refresh(δ′)
κ
 x : δ | δ′ δ

κ,x : δ1
 e : δ2 | C δ1 = embed(τ1) δ2 = α2 ϕ2
α′ fresh δ′ = α′(δ1 → δ2) δ = refresh(δ′)
κ
 λx : τ1.e : δ | C ∪δ′ δ∪{Cq

λ(α2,α′) | q ∈ Q}

κ
 e1 : α(δ2 → δ′) | C1 κ
 e2 : δ′
2 | C2

δ = refresh(δ′)
κ
 e1 e2 : δ |

C1 ∪C2 ∪δ′
2 δ2 ∪δ′ δ

κ
 e : δ0 | C δ0 = α0 ϕ0
α′ fresh δ′ = α′ ref δ0 δ = refresh(δ′)

κ
 ref e : δ | C ∪δ′ δ∪{Cq
ref(α0,α′) | q ∈ Q}

κ
 e1 : α ref δ′ | C1 κ
 e2 : δ′′ | C2
δ = refresh(δ′)

κ
 e1 := e2 : δ |
C1 ∪C2 ∪δ′′ δ′ ∪δ′ δ

κ
 e : α ref δ′ | C
δ = refresh(δ′)

κ
!e : δ | C ∪δ′ δ

κ
 e : δ′ | C δ′ = α φ
δ = refresh(δ′)

κ
 assert(e,q) : δ |
C ∪{q ∈ α}∪δ′ δ

Fig. 5. Formal constraint generation rules for qualifier inference

The metavariable κ denotes type environments that map program variables to qualified
types of the form δ.

The inference rules defining this judgment are shown in Figure 5. The embed func-
tion adds fresh qualifier variables to an unqualified type τ in order to turn it into a
qualified type δ, and refresh(δ) is defined as embed(strip(δ)). To keep the constraint
generation purely syntax-directed, subsumption is “built in” to each rule: the refresh
function is used to create a fresh qualified type δ, which is constrained by a subtype
constraint of the form δ′ δ. Subtype constraints are also generated for applications
and assignments, as usual. We treat a subtype constraint as a shorthand for a set of
qualifier-variable constraints, as shown in Figure 4.

Each rule for an expression with top-level constructor p produces one conditional
constraint per qualifier q in Q, denoted Cq

p. Informally, the constraint Cq
p inverts the user-

defined qualifier rules, indicating all the possible ways to prove that an expression with
constructor p can be given qualifier q according to the axioms in A. For example, both
the second and third case clauses in Figure 1 can be used to prove that a product a*b
has the qualifier nonzero, so our implementation of constraint generation in CLARITY

produces the following conditional constraint:

Inference of User-Defined Type Qualifiers and Qualifier Rules 271

nonzero∈ αa∗b ⇒ ((nonzero∈ αa ∧nonzero∈ αb)∨ (pos ∈ αa∗b))

More formally, let zip(Rq
p(q1, . . . ,qm),α1, . . . ,αm) denote the constraint q1 ∈ α1 ∧

. . . ∧ qm ∈ αm. Let {a1, . . . ,au} be all the axioms in A for the relation Rq
p, and let

{q1, . . . ,qv} = {q′ ∈ Q | q′ � q}. Then Cq
p(α1, . . . ,αm,α′) is the following conditional

constraint:
q ∈ α′ ⇒ (

�

1≤i≤u

zip(ai,α1, . . . ,αm)∨
�

1≤i≤v

qi ∈ α′)

We have proven the equivalence of our constraint system with the type system pre-
sented in the previous subsection; details are in our companion technical report [3].

Theorem: /0
 e : ρ if and only if /0
 e : δ | C and there exists a solution S to C such that
S(δ) = ρ.

Constraint Solving. We solve the constraints by a graph-based propagation algorithm,
which either determines that the constraints are unsatisfiable or produces the unique
least solution. Figure 6 shows a portion of the constraint graph generated for the state-
ment int prod = a*b;. On the left side, the graph includes one node for each qualifier
variable, which is labeled with the corresponding program expression. Each node con-
tains a bit string of length |Q| (not shown in the figure), representing the qualifiers that
may be given to the associated expression. All bits are initialized to true, indicating
that all expressions may be given all qualifiers. If bit i for node α ever becomes false
during constraint solving, this indicates that α cannot include the ith qualifier in any
solution.

Because our algorithm propagates the inability for an expression to have a qualifier,
the direction of flow is opposite what one might expect. For each generated constraint
of the form α1 ⊇ α2, the graph includes an edge from α1 to α2. For each conditional
constraint, the graph contains a representation of its contrapositive. For example, the
right side of Figure 6 shows an and-or tree that represents the following constraint:

((nonzero �∈ αa ∨nonzero �∈ αb)∧ (pos /∈ αa∗b)) ⇒ nonzero /∈ αa∗b

The tree’s root has an outgoing edge to the nonzero bit of the node a*b, and the leaves
similarly have incoming nonzero-bit edges. In the figure, edges to and from individual

b

a

prod

a∗b

nonzero
/∈ a nonzero

/∈ b pos
/∈ a∗b

nonzero
/∈ a∗b
∧

∨

Fig. 6. An example constraint graph

272 B. Chin et al.

bits are dotted. The root of each and-or tree maintains a counter of the number of
subtrees it is waiting for before it can “fire.” Our example tree has a counter value of 2.

To solve the constraints, we visit the root of each and-or tree once. If its counter is
greater than 0, we do nothing. Otherwise, the outgoing edge from its root is traversed,
which falsifies the associated bit and propagates this falsehood to its successors recur-
sively until quiescence. For example, if the and-or tree in Figure 6 ever fires, that will
falsify the nonzero bit of a*b, which in turn will falsify the nonzero bit of prod.

After the propagation phase is complete, we employ the constraints of the form q ∈
α to check for satisfiability. For each such constraint, if the bit corresponding to qualifier
q in node α is false, then we have a contradiction and the constraints are unsatisfiable.
Otherwise, the least solution is formed by mapping each qualifier variable α to the set
of all qualifiers whose associated bit in node α is true.

Complexity Analysis. Let n be the size of a program, m be the size of the axioms in
A, and q be the number of user-defined qualifiers. There are O(n) qualifier variables,
O(n2) constraints of the form α ⊇ α, O(qn) constraints of the form q ∈ α, and O(qn)
conditional constraints generated, each with size O(m). Therefore, the constraint graph
has O(n2) edges between qualifier-variable nodes, each of which can be propagated
across q times. There are O(qnm) edges in total for the and-or trees, and there are
O(qnm) edges between the qualifier-variable nodes and the and-or trees, each of which
can be propagated across once. Therefore, the total number of propagations, and hence
the total time complexity, is O(qn(n + m)).

4 Rule Inference

Writing qualifier rules can be tedious and error prone. The qualifier validator that is
part of our framework reduces errors by checking that each user-defined rule respects
its associated qualifier’s invariant. However, other errors are possible. For example, a
user-defined rule may be correct but be overly specific, and there may be useful rules
that are completely omitted. To reduce the burden on qualifier designers and to reduce
these kinds of errors, we have created a technique for automatically inferring correct
case rules from a qualifier’s invariant.

A naive approach to rule inference is to generate each candidate rule and use the
qualifier validator to remove all candidates that do not respect the intended invariant.
However, since qualifier validation is relatively expensive, requiring usage of decision
procedures, and since there are an exponential number of candidates in the number of
qualifiers, it is desirable to minimize the number of candidates that need to be explicitly
considered.4 To efficiently search the space of candidate rules, we define a partial order
� that formalizes the situation when one candidate subsumes another.

The most precise partial ordering on case clauses is logical implication. For exam-
ple, the third case clause in Figure 1 corresponds to the following formula, obtained by
replacing qualifiers with their invariants:

4 Conceptually, there are an infinite number of candidates, due to constants. We handle constants
through a simple heuristic that works well in practice. For each qualifier, we only consider a
single candidate rule (possibly) containing constants, which is derived from the qualifier’s
invariant by replacing all references to value(E) with a metavariable ranging over constants.

Inference of User-Defined Type Qualifiers and Qualifier Rules 273

Fig. 7. An example of �S for four qualifiers

value(E1) �= 0 ∧value(E2) �= 0 ⇒ value(E1∗E2) �= 0

The above clause subsumes a clause that requires both E1 and E2 to be pos instead of
nonzero, since the above formula logically implies the formula associated with the new
clause. Unfortunately, precisely computing this partial order requires an exponential
number of calls to decision procedures to reason about logical implication, which is
exactly what we are trying to avoid.

Instead, our approach is to use logical implication to define a partial ordering on
individual qualifiers, but to then lift this partial ordering to case clauses in a purely
syntactic way. Therefore, we need only make a quadratic number of calls to the deci-
sion procedures in order to compute the partial order. This approximation of the “true”
partial ordering is still guaranteed to completely exhaust the space of candidates, but it
is now possible to produce qualifier rules that are redundant. As we show in Section 5,
however, our approach works well in practice. The rest of this section formalizes our
partial order and describes the rule inference algorithm; more details are in our com-
panion technical report [3].

The Partial Order. We assume that every qualifier q ∈ Q has an invariant, which is a
unary predicate that we also denote q. We also assume that no two qualifiers have logi-
cally equivalent invariants. Then we define a partial order �Q on qualifiers as follows:

q1 �Q q2
∆= ∀x.q1(x) ⇒ q2(x)

This partial order is computed by |Q|2 queries to Simplify. We similarly use |Q|2 Sim-
plify queries to compute mutual exclusivity of pairs of qualifiers:

q1 ⊥Q q2
∆= ∀x.¬(q1(x)∧q2(x))

Let S = P (Q). We lift �Q to sets of qualifiers (or qualsets) s1 and s2 in S as follows:

s1 �S s2
∆= ∀q2 ∈ s2.∃q1 ∈ s1.q1 �Q q2

When considering qualsets for use in a candidate case clause, we restrict our atten-
tion to qualsets that are canonical. We define a set s ∈ S as canonical if the following
condition holds:

274 B. Chin et al.

∀q1,q2 ∈ s.¬(q1 ⊥Q q2)∧ (q1 �Q q2 ⇒ q1 = q2)

It is easy to prove that �S is a partial order on canonical qualsets. An example of the
�S partial order over canonical qualsets that may include any of the four qualifiers
nonzero, pos, neg, and withinThree (whose invariant requires the value to be ≥ −3
and ≤ 3) is shown in Figure 7. We lift �S to tuples of canonical qualsets in the obvious
way:

(s1, . . . ,sk) �T (t1, . . . ,tk)
∆= ∀i ∈ {1, . . . ,k}.si �S ti

Finally, we can describe the partial order on candidate case clauses. A candidate c
can be considered to be a triple containing the constructor p used as the pattern; a tuple
of qualsets (s1, . . . ,sk), one per subexpression of p, representing the clause’s condition;
and the qualifier q that the clause is defined for. We define the partial ordering on case
clauses c1 and c2 as follows:

(p1,(s1, . . . ,sk),q1) � (p2,(t1, . . . ,t j),q2)
∆=

p1 = p2 ∧ k = j ∧ (t1, . . . ,tk) �T (s1, . . . ,sk)∧q1 �Q q2

We have proven that if c1 � c2 then in fact c1 logically implies c2 [3].

The Algorithm. Consider generating all valid case rules for a single qualifier q.
Further, fix a particular constructor p to use in the rule’s pattern, and assume that
this constructor has exactly one subexpression. Let W be a worklist of pairs of the
form (s, l) where s is a qualset and l is a list of qualifiers. Initialize the set W to
{(/0, [q1,q2,q3, . . .])}, where [q1,q2,q3, . . .] is an ordered list of all the qualifiers in re-
verse topological order according to �Q. Using reverse topological order ensures we
will generate qualsets for use in a case rule from most-general to most-specific, which
is necessary given the contravariance in the definition of �. We similarly maintain W in
sorted order according to a reverse topological sort of the first component of each pair.
We also maintain a set T of valid case rules, initialized to /0.

1. If W is empty, we are done and T contains all the valid non-redundant rules. Oth-
erwise, remove the first pair (s, l) in W .

2. If there is some candidate (p′,s′,q′) ∈ T such that (p′,s′,q′) � (p,s,q) then s is
redundant, so we drop the pair (s, l) and return to the previous step. Otherwise, we
continue to the next step.

3. We run our framework’s qualifier validator on (p,s,q). If it passes, we add (p,s,q)
to T . If not, then we need to check less-specific candidates. For each q ∈ l, we add
the pair (s∪{q}, l′) to W , where l′ is the suffix of l after q. These pairs are placed
appropriately in W to maintain its sortedness, as described earlier.

In the case when the constructor p has k > 1 subexpressions, we need to enumerate
k-ary multisets. To do so, the worklist W now contains k-tuples of pairs of the form (s, l).
When adding new elements to W , we apply the procedure described in Step 3 above to
each component of the k-tuple individually, keeping all other components unchanged.
The only subtlety is that we want to avoid generating redundant tuples. For example,
if q1 �Q q2, then the tuple ({q2},{q2}) could be a successor of both ({q1},{q2}) and

Inference of User-Defined Type Qualifiers and Qualifier Rules 275

Table 1. Qualifier inference results

qualifier sets nonnull nonnull/pos/neg/nz
program kloc vars cons gen solv cons gen solv

(s) (s) (s) (s)
identd-1.0 0.19 624 1381 0.09 0.01 2757 0.15 0.01
mingetty-0.9.4 0.21 488 646 0.04 0.01 1204 0.06 0.01
bftpd-1.0.11 2.15 1773 3768 0.39 0.05 6426 0.58 0.08
bc-1.04 4.75 4769 14913 1.21 0.13 27837 5.78 0.18
grep-2.5 10.43 4914 15719 0.75 0.55 28343 7.84 0.71
snort-2.06 52.11 29013 99957 36.39 46.81 176852 290.24 58.07

({q2},{q1}). To avoid this duplication, we only augment a component of a k-tuple
when generating new candidates for W in Step 3 if it is either the component that was
last augmented along this path of the search, or it is to the right of that component.
This rule ensures that once a component is augmented, the search cannot “go back” and
modify components to its left. In our example, ({q2},{q2}) would not be generated
from ({q1},{q2}) in Step 3, because the last component to have been augmented must
have been the second one (since all components begin with the empty set).

Finally we describe the full algorithm for candidate generation. We enumerate each
qualifier q in topological order according to �Q. For each such qualifier, we enumerate
each constructor p in any order and use the procedure described above to generate all
the valid non-redundant rules of the form (p,(s1, . . . ,sk),q). The set T is initialized to
/0 at the beginning of this algorithm and is augmented throughout the entire process. In
this way, candidates shown to be valid for some qualifier q can be used to find a later
candidate for a target q′ to be redundant. For example, a rule allowing the sum of two
pos expressions to be considered pos will be found to subsume a rule allowing the sum
of two pos expressions to be considered nonzero. When this algorithm completes, the
set T will contain all valid rules such that none is subsumed by any other valid rule
according to �. Finally, we augment T with rules that reflect the specificity relation
among qualifiers, such as the second case rule in Figure 1. These rules are derived
directly from the computed �Q relation.

5 Experiments

5.1 Qualifier Inference

We implemented qualifier inference in CLARITY and ran it on six open-source C pro-
grams, ranging from a few hundred to over 50,000 lines of code, as shown in Table 1.
Each test case was run through the inferencer twice. The first time, the inferencer was
given a definition only for a version of nonnull, with a case clause indicating that an
expression of the form &E can be considered nonnull and a restrict clause requiring
dereferences to be to nonnull expressions. The second time, the inferencer was addi-
tionally given versions of the qualifiers pos, neg, and nonzero for integers, each with
5 case rules similar to those in Figure 1. For each run, the table records the number

276 B. Chin et al.

of constraints produced as well as the time in seconds for constraint generation and
constraint solving.

Several pointer dereferences fail to satisfy the restrict clause for nonnull, caus-
ing qualifier inference to signal inconsistencies. We analyzed each of the signaled errors
for bc and inserted casts to nonnull where appropriate to allow inference to succeed.
In total, we found no real errors and inserted 107 casts. Of these, 98 were necessary due
to a lack of flow-sensitivity in our type system. We plan to explore the incorporation of
targeted forms of flow-sensitivity to handle commonly arising situations. Despite this
limitation, the qualifier rules were often powerful enough to deduce interesting invari-
ants. For example, on bc, 37% (163/446) of the integer lvalues were able to be given
the nonzero qualifier and 5% (24/446) the pos qualifier. For snort, 8% (561/7103) of
its integer lvalues were able to be given the nonzero qualifier, and 7% (317/4571) of
its pointer lvalues were able to be given the nonnull qualifier (without casts).

5.2 Rule Inference

We implemented rule inference in the context of CLARITY and performed two experi-
ments. First, we inferred rules for pos, neg, and nonzero, given only their invariants. In
the second experiment, we additionally inferred rules for withinThree. For the first ex-
periment, our rule inference algorithm automatically generated all of the case rules we
had originally hand-written for the three qualifiers. In addition, rule inference generated
several valid rules that we had not written. For example, one new rule allows the nega-
tion of a nonzero expression to also be nonzero. The second experiment produced no
new rules for nonzero, pos, and neg, indicating their orthogonality to the withinThree
qualifier. However, it did generate several nontrivial rules for withinThree that we had
not foreseen. For example, one rule allows a sum to be considered withinThree if one
operand is withinThree and pos while the other operand is withinThree and neg. In
both experiments, no redundant rules were generated.

The first experiment required 18 queries to the decision procedures in order to com-
pute the �Q and ⊥Q relations, for use in the overall � partial order, and 142 queries
to validate candidate rules. In contrast, the naive generate-and-test algorithm would re-
quire 600 queries. The second experiment required 32 queries to compute �Q and ⊥Q

as well as 715 queries for candidate validation, while the naive algorithm would require
3136 queries. The first experiment completed in under six minutes, and the second ex-
periment in under 26 minutes. The running times are quite reasonable, considering that
rule inference need only be performed once for a given set of qualifiers, independent of
the number of programs that employ these qualifiers.

6 Related Work

Our framework is most closely related to the CQUAL system, which also allows users to
define new type qualifiers for C programs [6]. The main novelty in our approach is the
incorporation of user-defined qualifier rules, which are not supported in CQUAL. Our
qualifier inference algorithm extends the technique used for inference in CQUAL [6]
to handle such user-defined rules via a form of conditional constraints. Our notion of

Inference of User-Defined Type Qualifiers and Qualifier Rules 277

rule inference has no analogue in CQUAL. CQUAL includes a form of qualifier poly-
morphism, and follow-on work extended CQUAL’s type system to be flow sensitive [7],
while CLARITY currently lacks both of these features.

Work on refinement types [8] allows programmers to create subtypes of ML datatype
definitions. Intersection types allow a function to have multiple type signatures with
varying refinements, playing a role analogous to our case rules. A refinement inference
algorithm is provided for a functional subset of ML. Later work [4] considered the
interaction of intersection types with computational effects, and recent work extends
these ideas to a flow-sensitive setting [10]. These two systems are more powerful than
our type qualifiers, but they do not support full type inference.

HM(X) [11] is a Hindley-Milner-style type inference system that is parameterized
by the form of constraints. Our situation is dual to that one: while HM(X) has a fixed
type system that is parameterized by a constraint system, qualifier inference in our
framework uses a fixed form of constraints but is parameterized by the qualifier rules.

Rule inference is related to work on predicate abstraction [9, 1] and on finding
the best transformer [12, 13]. These algorithms use decision procedures to precisely
abstract a program with respect to a set of predicates. Rule inference is similar, as it
produces an abstraction automatically from the user-defined invariants. However, this
abstraction is produced once, independent of any particular program.

7 Conclusions

We have described two forms of inference that reduce the burden on users of our ap-
proach to user-defined type qualifiers. Qualifier inference employs user-defined rules
to infer qualifiers on programs, obviating the need for manual program annotations.
We described an algorithm for qualifier inference based on generating and solving a
system of conditional set constraints. Rule inference employs decision procedures to
automatically produce qualifier rules that respect a qualifier’s user-defined invariant,
reducing the burden on qualifier designers. We described a partial order on candidate
qualifier rules that allows us to search the space of candidates efficiently without losing
completeness. We have implemented both qualifier and rule inference in the CLARITY

system for C, and our experimental results illustrate their utility in practice.

Acknowledgments

This research was supported in part by NSF ITR award #0427202 and by a generous gift
from Microsoft Research. Thanks to Craig Chambers, Vass Litvinov, Scott Smith, and
Frank Tip for discussions that led to a simplification of the presentation of the constraint
system. Thanks to Rupak Majumdar for useful feedback on the paper.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C
programs. In Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 203–213. ACM Press, 2001.

278 B. Chin et al.

2. B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 85–95, New York, NY, USA, 2005. ACM Press.

3. B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-defined type qualifiers
and qualifier rules. Technical Report CSD-TR-050041, UCLA Computer Science Depart-
ment, October 2005.

4. R. Davies and F. Pfenning. Intersection types and computational effects. In ICFP ’00:
Proceedings of the ACM SIGPLAN International Conference on Functional Programming,
pages 198–208. ACM Press, 2000.

5. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, 2003.

6. J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers. In Proceedings of the
1999 ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 192–203, Atlanta, Georgia, May 1999.

7. J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implementation,
pages 1–12. ACM Press, 2002.

8. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI ’91: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation,
pages 268–277, New York, NY, USA, 1991. ACM Press.

9. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In CAV 97: Computer-
aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

10. Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refinements. In Pro-
ceedings of the eighth ACM SIGPLAN international conference on Functional programming,
pages 213–225. ACM Press, 2003.

11. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types. Theor.
Pract. Object Syst., 5(1):35–55, 1999.

12. T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer. In
5th International Conference on Verification, Model Checking, and Abstract Interpretation,
pages 252–266, 2004.

13. G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computing most-precise abstract opera-
tions for shape analysis. In 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 530–545, 2004.

	Introduction
	An Overview of $ {\sc Clarity}$
	Qualifier Rules and Qualifier Checking
	Qualifier Invariants and Qualifier Validation

	Qualifier Inference
	Formal Qualifier Rules
	The Type System
	The Constraint System

	Rule Inference
	Experiments
	Qualifier Inference
	Rule Inference

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

