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Abstract. In general, faults cannot be prevented; instead, they need
to be tolerated to guarantee certain degrees of software dependability.
We develop a theory for fault tolerance for a distributed pi-calculus,
whereby locations act as units of failure and redundancy is distributed
across independently failing locations. We give formal definitions for fault
tolerant programs in our calculus, based on the well studied notion of
contextual equivalence. We then develop bisimulation proof techniques
to verify fault tolerance properties of distributed programs and show
they are sound with respect to our definitions for fault tolerance.

1 Introduction

One reason for the study of programs in the presence of faults, i.e. defects at
the lowest level of abstractions [2], is to be able to construct more dependable
systems, meaning systems exhibiting a high probability of behaving according
to their specification [13]. System dependability is often expressed through at-
tributes like maintainability, availability, safety and reliability, the latter of which
is defined as a measure of the continuous delivery of correct behaviour, [13]. There
are a number of approaches for achieving system dependability in the presence
of faults, ranging from fault removal, fault prevention and fault tolerance.

The fault tolerant approach to system dependability consist of various tech-
niques that employ redundancy to prevent faults from generating failure, i.e.
abnormal behaviour caused by faults [2]. Two forms of redundancy are space re-
dundancy (replication), i.e. using several copies of the same system components,
and time redundancy, i.e. performing the same chunk of computation more than
once. Certain fault tolerant techniques are based on fault detection which sub-
sequently trigger fault recovery. If enough redundancy is used, fault recovery
can lead to fault masking, where the specified behaviour is preserved without
noticeable glitch.

Fault tolerance is of particular relevance in distributed computing; distribu-
tion yield a natural notion of partial failure, whereby faults affect a subset of
the computation. Partial failure, in turn, gives scope for introducing redundancy
as replication, distributed across independently failing entities such as locations.
In general, the higher the replication, the greater the potential for fault toler-
ance. Nevertheless, fault tolerance also depends on how replicas are managed.
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One classification, due to [13], identifies three classes, namely active replication
(all replicas are invoked for every operation), passive replication (operations are
invoked on primary replicas and secondary replicas are updated in batches at
checkpoints), and lazy replication (a hybrid of the previous two, exploiting the
separation between write and read operations).

In this paper we address fault tolerance in a distributed setting, focussing on
simple examples using stateless (read-only) replicas which are invoked only once.
We code these examples in Dπ [8] with failing locations [5], a simple distributed
version of the standard π-calculus [11], where the locations that host processes
model closely physical network nodes.

Example 1. Consider the systems serveri, three server implementations accepting
client requests on channel req with two arguments, x being the value to process
and y being the reply channel on which the answer is returned.

server1 ⇐ (ν data)
(

l[[req?(x, y).go k1.data!〈x, y, l〉]]
| k1[[data?(x, y, z).go z.y!〈f(x)〉]]

)

server2 ⇐ (ν data)

⎛
⎜⎜⎜⎜⎝

l

⎡
⎣
⎡
⎣req?(x, y).(νsync)

⎛
⎝go k1.data!〈x, sync, l〉

| go k2.data!〈x, sync, l〉
| sync?(x).y!〈x〉

⎞
⎠

⎤
⎦
⎤
⎦

| k1[[data?(x, y, z).go z.y!〈f(x)〉]]
| k2[[data?(x, y, z).go z.y!〈f(x)〉]]

⎞
⎟⎟⎟⎟⎠

server3 ⇐ (ν data)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

l

⎡
⎢⎢⎣

⎡
⎢⎢⎣req?(x, y).(νsync)

⎛
⎜⎜⎝

go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| go k3.data!〈x, sync, l〉
| sync?(x).y!〈x〉

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎤
⎥⎥⎦

| k1[[data?(x, y, z).go z.y!〈f(x)〉]]
| k2[[data?(x, y, z).go z.y!〈f(x)〉]]
| k3[[data?(x, y, z).go z.y!〈f(x)〉]]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Requests are forwarded to internal databases, denoted by the scoped channel
data, distributed and replicated across the auxiliary locations ki. A database
looks up the mapping of the value x using some unspecified function f(−) and
returns the answer, f(x), back on port y. When multiple replicas are used, as in
server2,3, requests are sent to all replicas in an arbitrary fashion, without the use
of failure detection, and multiple answers are synchronised at l on the scoped
channel sync, returning the first answer received on y.

The theory developed in [5] enables us to differentiate between these systems,
based on the different behaviour observed when composed with systems such as

client ⇐ l[[req!〈v, ret〉]]

in a setting where locations may fail. Here we go one step further, allowing
us to quantify in some sense the difference between these systems. Intuitively,
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if locations ki, i = 1, 2, 3, can fail in fail-stop fashion[12] and observations are
limited to location l only, then server2 seems to be more fault tolerant than
server1; observers limited to l, such as client, cannot observe changes in behaviour
in server2 when at most 1 location from ki fails. Similarly, server3 is more fault
tolerant than server1 and server2 because server3 | client preserves its behaviour
at l up to 2 faults occurring at k1..3.

In this paper we give a formal definition of when a system is deemed to be
fault tolerant up to n-faults, which coincides with this intuition. As in [5] we
need to consider systems M , running on some network, which we will represent
as Γ � M . Then we will say that M is fault-tolerant up to n faults if

Fn[Γ � M ] ∼= Γ � M (1)

where Fn[ ] is some context which induces at most n faults, and ∼= is some
behavioural equivalence between systems descriptions. A key aspect of this be-
havioural equivalence is the implicit separation between reliable locations, which
are assumed not to fail, and unreliable locations, which may fail. In the above ex-
ample l is reliable, at which observations can be made, while the ki are assumed
unreliable, subject to failure. Furthermore it is essential that observers not have
access to to these unreliable locations, at any time during a computation. Other-
wise (1) would no longer represent M being fault tolerant; for example we would
no longer have

F 1[Γ � server2] ∼= Γ � server2

as an observer with access to ki would be able to detect possible failures in
F 1[Γ � server2], not present in Γ � server2.

We enforce this separation between reliable, observable, locations, and unre-
liable, unobservable, locations, using a simple type system in which the former
are called public, and the latter confined. This is outlined in Section 2, where we
also formally define the language we use, DπLoc, give its reduction semantics,
and also outline the behavioural equivalence ∼=; this last is simply an instance
of reduction barbed congruence, [6], modified so that observations can only be
made at public locations. In Section 3 we give our formal definition of fault-
tolerance; actually we give two versions of (1) above, called static and dynamic
fault tolerance; we also motivate the difference with examples. Proof techniques
for establishing fault tolerance are given in Section 4; in particular we give a
complete co-induction characterisation of ∼=, using labelled actions, and some
useful up-to techniques for presenting witness bisimulations. In Section 5 we
refine these proof techniques for the more demanding fault tolerant definition,
dynamic fault tolerance, using simulations. Finally Section 6 outlines the main
contributions of the paper and discusses future and related work.

2 The Language

We assume a set of variables Vars, ranged over by x, y, z, . . . and a separate
set of names, Names, ranged over by n, m, . . . , which is divided into locations,
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Table 1. Syntax of typed DπF

Types
T ::= chv〈P̃〉 | locsv (stateful types) s ::= a | d (status)
U ::= chv〈P̃〉 | locv (stateless types) v ::= p | c (visibility)
P ::= chp〈P̃〉 | locp (public stateless types)

Processes
P,Q ::= u!〈V〉.P (output) | u?(X).P (input)

| if v=u then P else Q (matching) | ∗ u?(X).P (replicated input)
| (ν n :T)P (channel/location definition) | go u.P (migration)
| 0 (inertion) | P|Q (fork)
| ping u.P else Q (status testing)

Systems
M,N,O ::= l[[P]] (located process) | N|M (parallel)

| (ν n :T)N (hiding)

Locs, ranged over by l, k, . . . and channels, Chans, ranged over by a, b, c, . . ..
Finally we use u, v, . . . to range over the set of identifiers, consisting of either
variables and names.

The syntax of our language, DπLoc, is a variation of Dπ [8] and is given
in Table 1. The main syntactic category is that of systems, ranged over by
M, N : these are essentially a collection of located processes, or agents, com-
posed in parallel where location and channel names may be scoped to a sub-
set of agents. The syntax for processes, P, Q, is an extension of that in Dπ:
there is input and output on channels - here V is a tuple of identifiers, and
X a tuple of variables, to be interpreted as a pattern - and standard forms
of parallel composition, inertion, replicated input, local declarations, a test for
equality between identifiers and migration. The only addition on the original
Dπ is ping k.P elseQ, which tests for the status of k in the style of [1, 10]
and branches to P if k is alive and Q otherwise. For these terms we assume
the standard notions of free and bound occurrences of both names and vari-
ables, together with the associated concepts of α-conversion and substitution.
We also assume that systems are closed, that is they have no free variable oc-
currences.

As explained in the Introduction we use a variation (and simplification) of
the type system of Dπ [8] in which the the two main categories, channels and
locations, are now annotated by visibility constraints, giving chv〈P̃〉 and locv,
where v may either be p (i.e. public) or c (i.e. confined); in Table 1 these are
called stateless types, and are ranged over by U. As explained in [5] a simple
reduction semantics can be defined if we also allow types which record the status
of a location, whether it is alive, a, or dead, d; these are refereed to as stateful
types, ranged over by T. Finally P ranges over public types, the types assigned
to all names which are visible to observers.

Type System: Γ denotes a type environment, an unordered list of tuples assigning
a single stateful type to names, and we write Γ � n : T to mean that Γ assigns
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Table 2. Typing rules for typed DπLoc

Processes
(t-out)
Σ � u :ch〈Ũ〉
Σ � V : Ũ
Σ � P
Σ � u!〈V〉.P

(t-in-rep)
Σ � u :ch〈Ũ〉
Σ, X : Ũ � P
Σ � u?(X).P
Σ � ∗u?(X).P

(t-nw)
Σ, ñ : T̃ � P
Σ � (ν ñ : T̃)P

(t-cond)
Σ � u :U, v :U
Σ � P, Q
Σ � if u=v then P else Q

(t-fork)
Σ � P, Q
Σ � P|Q

(t-axiom)

Σ � 0

(t-go)
Σ � u : loc
Σ � P
Σ � go u.P

(t-ping)
Σ � u : loc
Σ � P, Q
Σ � ping u.P else Q

Systems Observers

(t-rest)
Γ, ñ : T̃ � N
Γ � (ν ñ : T̃)N

(t-par)
Γ � N, M
Γ � N |M

(t-proc)
Γ � l : loc
Γ � P
Γ � l[[P]]

(t-obs)
pub(Γ) � O
Γ �obs O

the type T to n; when it is not relevant to the discussion we will sometimes drop
the various annotations on these types; for example Γ � n : ch〈U〉 signifies that
chv〈U〉 for some visibility status v. Typing judgements take the form Γ � N and
defined by the rules in Table 2. In these rules, we use an extended form of type
environment, Σ, which, in addition to names, also maps variables to stateless
types. Note that none of the rules depend on the status (dead or alive) of names
in the environment. Also the visibility constraints are enforced indirectly, by
virtue of the formation rules for valid types, given in Table 1.

In this extended abstract we omit even the statement of the Subject Reduction
and appropriate Type Safety result for our language.

Reduction Semantics: We call pairs Γ � N configurations, whenever Γ � N .
Reductions then take the form of a binary relation over configurations

Γ � N −→ Γ � N ′

defined in terms of the reduction rules in Table 3, whereby systems reduce with
respect to the status of the locations in Γ ; we write Γ � l :alive as a shorthand
for Γ � l : loca. So all reduction rules assume the location where the code is
executing is alive. Moreover, (r-go), (r-ngo), (r-ping) and (r-nping) reduce according
to the status of the remote location concerned. The reader is refered to [5]
for more details; but note that here the status of locations is unchanged by
reductions.

Behavioural equivalence: First note that the type system does indeed enforce
the intuitive separation of concerns discussion in the Introduction. For example
let Γe denote the environment
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Table 3. Reduction Rules for DπLoc

Assuming Γ � l :alive

(r-comm)

Γ � l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ � l[[P]] | l[[Q{V/X}]]

(r-rep)

Γ � l[[∗a?(X).P]] −→ Γ � l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Γ � l[[P|Q]] −→ Γ � l[[P]] | l[[Q]]

(r-eq)

Γ � l[[if u=u then P else Q]] −→ Γ � l[[P]]

(r-neq)

Γ � l[[if u=v then P else Q]] −→ Γ � l[[Q]]
u � v

(r-go)

Γ � l[[go k.P]] −→ Γ � k[[P]]
Γ � k : alive

(r-ngo)

Γ � l[[go k.P]] −→ Γ � k[[0]]
Γ � k : alive

(r-ping)

Γ � l[[ping k.P else Q]] −→ Γ � l[[P]]
Γ � k : alive

(r-nping)

Γ � l[[ping k.P else Q]] −→ Γ � l[[Q]]
Γ � k : alive

(r-new)

Γ � l[[(ν n :T)P]] −→ Γ � (ν n :T) l[[P]]

(r-str)
Γ � N′ ≡ Γ � N Γ � N −→ Γ′ � M Γ′ � M ≡ Γ′ � M′

Γ � N′ −→ Γ′ � M′

(r-ctxt-rest)
Γ + n : T � N −→ Γ′ + n : U � M
Γ � (ν n : T)N −→ Γ′ � (ν n : U)M

(r-ctxt-par)
Γ � N −→ Γ′ � N′

Γ � N |M −→ Γ′ � N′|M
Γ � M|N −→ Γ′ � M|N′

Table 4. Structural Rules for DπLoc

(s-comm) N|M ≡ M|N
(s-assoc) (N |M)|M′ ≡ N |(M|M′)
(s-unit) N |l[[0]] ≡ N
(s-extr) (ν n :T)(N |M) ≡ N |(ν n :T)M n � fn(N)
(s-flip) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N
(s-inact) (ν n :T)N ≡ N n � fn(N)

Γe= l:locap, k1 :locac, k2 :locac, k3 :locac, req :chp〈T, chp〈T〉〉, a:chp〈A〉, ret :chp〈T〉

where T is an arbitrary public type; Then one can check

Γe � serveri

where serveri is defined in the Introduction, provided the locally declared chan-
nels data and sync are declared at the types ch〈T, chp〈T〉, locp〉 and ch〈T〉
respectively. Now consider
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serverBad ⇐ server1 | l[[a!〈k1〉]]

which attempts to export a confined location k1, which could subsequently could
be tested for failure by a public observer. Once more one can check that Γe ��
serverBad.

Intuitively an observer is any system which only uses public names. Formally
let pub(Γ ) be the environment obtained by omitting from Γ any name not
assigned a public type. Then pub(Γ ) � O ensures that O can only use public
names. For example consider

observer ⇐ l[[req!〈v, ret〉]]
observerBad ⇐ l[[go k1.go l.ok!〈〉]]

Here one can check that pub(Γe) � observer and pub(Γe) �� observerBad.
Our behavioural equivalence will in general relate arbitrary configurations;

but we would expect equivalent configurations to have the same public interface,
and be preserved by public observers.

Definition 1 (p-Contextual). A relation over configurations is called
p-Contextual if, whenever Γ �M R Γ ′�N

– (p-Interfaces:) pub(Γ ) = pub(Γ ′)
– (Parallel:) Γ �M | O R Γ ′�N | O and Γ �M | O R Γ ′�N | O whenever

pub(Γ ) � O
– (Fresh extensions:) Γ, n ::P�M R Γ ′, n ::P�N whenever n is fresh

Definition 2 (p-Barb). Γ � N ⇓p
a@l denotes a p-observable barb by configura-

tion Γ � N , on channel a at location l, defined as:

∃N′. Γ�N −→∗ Γ�N′ such that N′ ≡ (ν ñ : T̃)M|l[[a!〈V〉.Q]] where Γ � l : locap, a : chp〈P̃〉
Using this concept, we can now modify the standard definition of reduction barbed
equivalence, [6]:

Definition 3 (Reduction barbed congruence). Let ∼= be the largest rela-
tion between configurations which is p-contextual, reduction-closed (see [6]) and
preserves p-barbs.

3 Defining Fault Tolerance

Our first notion of n-fault-tolerance, formalising the intuitive (1), is when the
faulting context induces at most n location failures, prior to the execution of the
system; of course these failures must only be induced on locations which are not
public. Formally for any set of location names l̃ let F l̃

S be the function which
maps any configuration Γ � N to Γ − l̃ � N , where Γ − l̃ is the environment
obtained from Γ by changing the status of every li to dead. We say F l̃

S is a valid
static n-fault context with respect to Γ , if the size of l̃ is at most n, and for every
li ∈ l̃, li is confined and alive (Γ � li : locac).
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Definition 4 (Static Fault Tolerance). A configuration Γ�N is n-static fault
tolerant if

Γ � N ∼= F l̃
S(Γ ) � N

for every static n-fault context F l̃
S which is valid with respect to Γ .

With this formal definition we can now examine the systems serveri, using the
Γe defined above. We can easily check that Γ � server1 is not 1-fault tolerant,
by considering the fault context F k1

S . Similarly we can show that Γe � server2 is
not 2-fault tolerant, by considering F k1,k2

S . But establishing positive results, for
example that Γe � server2 is 1-fault tolerant, is difficult because the definition of
∼= quantifies over all valid observers. This point will be addressed in the next
section, when we give a co-inductive characterisation of ∼=.

Instead let us consider another manner of inducing faults. Let l[[kill]] be a
system which asynchronously kills a confined location l. Its operation is defined
by the rule

(r-kill)

Γ � l[[kill]] −→ (Γ − l) � l[[0]]

For any set of locations l̃ let F l̃
D denote the function which maps the system M

to M | l1[[kill]] | . . . | ln[[kill]]. It is said to be a valid dynamic n-fault context with
respect to Γ if again the size of l̃ is at most n and Γ � li : locac, for every li in l̃.

Definition 5 (Dynamic Fault Tolerance). A configuration Γ�N is n-dynamic
fault tolerant if

Γ � F l̃
D(M) ∼= Γ � M

for every dynamic n-fault context which is valid with respect to Γ .

Example 2. The system sPassive defined below uses two identical replicas of
the distributed database at k1 and k2, but treats the replica at k1 as pri-
mary replica and the one at k2 as a secondary (backup) replica - once again
W = ch〈T, chp〈T〉, locp〉.

sPassive ⇐ (ν data :W)

⎛
⎜⎜⎝

l

[[
serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉

]]

| k1[[data?(x, y, z).go z .y!〈f(x)〉]]
| k2[[data?(x, y, z).go z .y!〈f(x)〉]]

⎞
⎟⎟⎠

The coordinating interface at l uses the ping construct to detect failures in the
primary replica: if k1 is alive, the request is sent to the primary replica and the
secondary replica at k2 is not invoked ; if, on the other hand, the primary replica
is dead, then the passive replica at k2 is promoted to a primary replica and the
request is sent to it. This implementation saves on time redundancy since, for
any request, only one replica is invoked. Another passive replication server is
sMonitor, defined as
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sMonitor⇐ (ν data :W)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
serv?(x, y).(ν sync :ch〈〉)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

go k1.data!〈x, sync, l〉
| mntr k1.go k2.data!〈x, sync, l〉
| sync?(z).y!〈z〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where again, W = ch〈T, chp〈T〉, locp〉. It uses a monitor process for failure
detection

mntr k.P ⇐ (ν test :ch〈〉)( test!〈〉 | ∗ test?().ping k. test!〈〉 elseP )

instead of a single ping test on the primary replica at k1; mntr k.P repeatedly
tests the status of the monitored location (k) and continues as P when k becomes
dead. Similar to server2..3, sMonitor synchronises multiple answers from replicas
with channel sync.

Using the techniques of the next section, one can show that both Γe � sPassive
and Γ �sMonitor, are 1-static fault tolerant, similar to server2. However there is a
difference between these two systems;if k1 fails after sPassive tests for its status,
then an answer will never reach l. Thus sPassive is not 1-dynamic fault tolerant;
formally one can show Γe � F k1

D (sPassive) �∼= Γe � sPassive. But, as we will see in
the next section, sMonitor can be shown to be 1-dynamic fault tolerant, just like
server2..3.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) for DπLoce, which consists of a
collection of actions over (closed) configurations, Γ � N

µ−→ Γ ′ � N ′, where µ
can be an internal action, τ , a bound input, (ñ : T̃)l : a?(V ) or bound output,
(ñ : T̃)l : a!〈V 〉. These actions are defined by transition rules given in Table 5,
inspired by [7, 6, 5]. In accordance with Definition 2 (observable barbs) and Def-
initions 1 (valid observers), (l-in) and (l-out) restrict external communication to
public channels at public locations (Γ �obs l, a). Furthermore, in (l-in) we require
that the type of the values inputted, V , match the object type of channel a;
since a is public and configurations are well-typed, this also implies that V are
public values defined in Γ . The restriction on output action, together with the as-
sumption of well-typed configurations also means that, in (l-open), we only scope
extrude public values. Contrary to [5], the lts does not allow external killing of
locations (through the label kill : l) since public locations are reliable and never
fail. Finally, the transition rule for internal communication, (l-par-comm), uses
an overloaded function ↑ () for inferring input/output capabilities of the sub-
systems: when applied to types, ↑(T) transforms all the type tags to public (p);
when applied to environments, ↑(Γ ) changes all the types to public types in the
same manner. All the remaining rules are a simplified version of the rules in [5].

Definition 6 (Weak bisimulation equivalence). This is denoted as ≈, and
is defined to be the largest typed relation over configurations such that if Γ �M ≈
Γ ′ � N then
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Table 5. Operational Rules for Typed DπLoc

Assuming Γ � l : alive

(l-in)

Γ � l[[a?(X).P]]
l:a?(V)−−−−→ Γ � l[[P{V/X}]]

Γ �obs l, Γ � a : chp〈W̃〉, V : W̃
(l-fork)

Γ � l[[P|Q]]
τ−→ Γ � l[[P]] | l[[Q]]

(l-out)

Γ � l[[a!〈V〉.P]]
l:a!〈V〉−−−−→ Γ � l[[P]]

Γ �obs l, a

(l-in-rep)

Γ � l[[∗a?(X).P]]
τ−→ Γ � l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(l-eq)

Γ � l[[if u=u then P else Q]]
τ−→ Γ � l[[P]]

(l-neq)

Γ � l[[if u=v then P else Q]]
τ−→ Γ � l[[Q]]

u � v

(l-new)

Γ � l[[(νn : T)P]] −→ Γ � (ν n : T) l[[P]]

(l-kill)

Γ � l[[kill]]
τ−→ (Γ − l) � l[[0]]

(l-go)

Γ � l[[go k.P]]
τ−→ Γ � k[[P]]

Γ � k : alive
(l-ngo)

Γ � l[[go k.P]]
τ−→ Γ � k[[0]]

Γ � k : alive

(l-ping)

Γ � l[[ping k.P else Q]]
τ−→ Γ � l[[P]]

Γ � k : alive
(l-nping)

Γ � l[[ping k.P else Q]]
τ−→ Γ � l[[Q]]

Γ � k : alive

(l-open)

Γ + n : T � N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Γ′ � N′

Γ � (ν n : T)N
(n:T,ñ:T̃)l:a!〈V〉−−−−−−−−−−→ Γ′ � N′

l, a � n ∈ V

(l-weak)

Γ + n : T � N
(ñ:T̃)l:a?(V)−−−−−−−−→ Γ′ � N′

Γ � N
(n:T,ñ:T̃)l:a?(V)−−−−−−−−−−→ Γ′ � N′

l, a � n ∈ V

(l-rest)

Γ + n : T � N
µ−→ Γ′ + n : U � N′

Γ � (ν n : T)N
µ−→ Γ′ � (ν n : U)N′

n � fn(µ)

(l-par-ctxt)

Γ � N
µ−→ Γ′ � N′

Γ � N |M µ−→ Γ′ � N′ |M
Γ � M |N µ−→ Γ′ � M |N′

(l-par-comm)

↑ (Γ) � N
(ñ:↑(T̃))l:a!〈V〉−−−−−−−−−→ Γ′ � N′ ↑ (Γ) � M

(ñ:↑(T̃))l:a?(V)−−−−−−−−−→ Γ′′ � M′

Γ � N |M τ−→ Γ � (ν ñ : T̃)(N′ |M′)
Γ � M |N τ−→ Γ � (ν ñ : T̃)(M′ |N′)

– Γ �M
µ−→ Γ ′′ �M ′ implies Γ ′ �N

µ̂
=⇒ Γ ′′′ �N ′ such that Γ ′′ �M ′ ≈ Γ ′′′ �N ′

– Γ ′ �N
µ−→ Γ ′′ �N ′ implies Γ �M

µ̂
=⇒ Γ ′′ �M ′ such that Γ ′′ �M ′ ≈ Γ ′′′ �N ′

Theorem 1 (Full Abstraction). For any DπLoc configurations Γ�M, Γ ′�N :

Γ � M ∼= Γ ′�N if and only if Γ � M ≈ Γ ′�N
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Table 6. β-Transition Rules for Typed DπLoc

Assuming Γ � l : alive

(b-in-rep)

Γ � l[[∗a?(X).P]]
τ�−→β Γ � l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(b-fork)

Γ � l[[P|Q]]
τ�−→β Γ � l[[P]] | l[[Q]]

(b-eq)

Γ � l[[if u=u then P else Q]]
τ�−→β Γ � l[[P]]

(b-neq)

Γ � l[[if u=v then P else Q]]
τ�−→β Γ � l[[Q]]

u � v

(b-ngo)

Γ � l[[go k.P]]
τ�−→β Γ � k[[0]]

Γ � k : alive
(b-nping)

Γ � l[[ping k.P else Q]]
τ�−→β Γ � l[[Q]]

Γ � k : alive

(b-new)

Γ�l[[(ν n :T)P]]
τ�−→β Γ�(ν n :T)l[[P]]

(b-rest)

Γ, n :T�N
τ�−→β Γ′, n :W�N′

Γ�(ν n :T)N
τ�−→β Γ′�(ν n :W)N′

(b-par)

Γ � N
τ�−→β Γ′ � N′

Γ�N |M τ�−→β Γ′�N′|M
Γ�M|N τ�−→β Γ′�M|N′

Theorem 1 allows us to prove positive fault tolerance results by giving a bisim-
ulation for every reduction barbed congruent pair required by Definitions 4 and
5. We next develop up-to bisimulation techniques that can relieve some of the
burden of exhibiting the required bisimulations. We identify a number of τ ac-
tions, which we refer to as β-actions or β-moves, inspired by the work in [3].
These are denoted as Γ � N

τ�−→β Γ ′ � N and are defined in Table 6. With these
β-moves we develop up-to bisimulation techniques, by showing that our witness
bisimulations can abstract away from matching configurations that denote β-
moves. Our details are more complicated than in [3] because we deal with failure:
apart from local rules ((b-eq) and (b-fork)) and context rules ((b-rest) and (b-par)),
Table 6 includes rules dealing with failed locations such as (b-ngo) and (b-nping).
To obtain the required results for β-moves with failure, we define a new struc-
tural equivalence ranging over configurations, denoted as ≡f and defined by the
rules in Table 7, which takes into consideration location status as well. This en-
ables us to obtain confluence for β-moves with respect to actions that change the
status of locations. The only rule worth highlighting is (bs-dead), which allows
us to ignore dead code.

Lemma 1 (Confluence of β-moves). τ�−→β observes the diamond property:

Γ � N

µ

��

� τ

β
�� Γ � M

Γ′ � N′ Γ′ � M′

implies Γ � N

µ

��

� τ

β
�� Γ � M

µ

��
Γ′ � N′

�� τ
β
�� ≡f Γ

′ � M′

or µ=τ and Γ�M = Γ′�N′
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Table 7. β-Equivalence Rules for Typed DπLoc

(bs-comm) Γ |= N |M ≡f M|N
(bs-assoc) Γ |= (N |M)|M′ ≡f N |(M|M′)
(bs-unit) Γ |= N|l[[0]] ≡f N
(bs-extr) Γ |= (ν n :T)(N|M) ≡f N |(ν n :T)M n � fn(N)
(bs-flip) Γ |= (ν n :T)(νm :U)N ≡f (νm :U)(ν n :T)N
(bs-inact) Γ |= (ν n :T)N ≡f N n � fn(N)
(bs-dead) Γ |= l[[P]] ≡f l[[Q]] Γ � l : alive

Proof. The proof proceeds by case analysis of the different types of µ and then
by induction on the derivation of the β-move.

Proposition 1. Suppose Γ � N |==⇒β Γ ′ � M . Then Γ � N≈Γ ′ � M .

Proof. We prove the above statement by defining R={Γ �N, Γ ′�M|Γ �N |==⇒β

Γ ′�M} and showing that R is a bisimulation, which follows as a consequence of
Lemma 1.

Definition 7 (Bisimulation up-to β-moves). Bisimulation up-to β-moves,
denoted as ≈β, is the largest typed relation between configurations such that
Γ1�M1 ≈β Γ2�M2 and

– Γ1 � M1
µ−→ Γ ′

1 � M ′
1 implies Γ2 � M2

µ̂
=⇒ Γ ′

2 � M ′
2 such that Γ ′

1 � M ′
1 Al ◦ ≈β

◦ ≈ Γ ′
2 � M ′

2

– Γ2 � M2
µ−→ Γ ′

2 � M ′
2 implies Γ1 � M1

µ̂
=⇒ Γ ′

1 � M ′
1 such that Γ ′

2 � M ′
2 Al ◦ ≈β

◦ ≈ Γ ′
1 � M ′

1

where Al is the relation |==⇒β ◦ ≡.

Proposition 1 provides us with a powerful method for approximating bisimula-
tions. In the approximate bisimulation ≈β , an action Γ1 � M1

µ−→ Γ ′
1 � M ′

1 can
be matched by a β-derivative of Γ ′

1 � M ′
1, that is Γ ′

1 � M ′
1 |==⇒β Γ ′

1 � M ′′
1 , and a

weak matching action Γ2 � M2
µ̂

=⇒ Γ ′
2 � M ′

2 such that, up to structural equiva-
lence on the one side and up-to bisimilarity on the other, the pairs Γ ′

1 � M ′′
1 and

Γ ′
2 � M ′

2 are once more related. Intuitively then, in any relation satisfying ≈β ,
a configuration can represent all the configurations to which it can evolve using
β-moves. We justify the use of ≈β by proving Proposition 2.

Proposition 2 (Inclusion of bisimulation up-to β-moves). If Γ1 � M1 ≈β

Γ2 � M2 then Γ1 � M1 ≈ Γ2 � M2

Proof. We prove the above proposition by defining the relation R as

R =
{

Γ1 � M1 , Γ2 � M2 Γ1 � M1 ≈ ◦ ≈β ◦ ≈ Γ2 � M2
}

and show that R ⊆≈. The required result can then be extracted from this result
by considering the special cases where the ≈ on either side are the identity
relations.
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Example 3. We are now in a position to prove positive fault tolerance result.
For instance to show that Γ � sPassive is 1-static fault tolerant we just need to
provide 3 witness bisimulations up-to β-moves to prove

∏3
i=1 Γ � sPassive ∼= (Γ − ki) � sPassive

We here give the witness relation for the most involving case (where i = 1), and
leave the simpler relations for the interested reader. Thus, the witness relation
is R defined as

R def= {〈Γ � sPassive, Γ − k1 � sPassive〉} ∪

⎛
⎝ ⋃

u,v∈Names

R′(u, v)

⎞
⎠

R′(u, v)
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ � (νd)l[[Png(u, v)]] | R1 | R2 , Γ − k1 � (νd)l[[Png(u, v)]] | R1 | R2

Γ � (νd)l[[Q1(u, v)]] |R1 |R2 , Γ − k1 � (νd)l[[Q2(u, v)]] |R1 |R2

Γ � (νd)k1[[d!〈u, v, l〉]] |R1 |R2 , Γ − k1 � (νd)k2[[d!〈u, v, l〉]] |R1 |R2

Γ � (νd)k1[[go l .v!〈 f (u)〉]] |R2 , Γ − k1 � (νd)R1 | k2[[go l .v!〈 f (u)〉]]
Γ � (νd)l[[v!〈 f (u)〉]] |R2 , Γ − k1 � (νd)R1 | l[[v!〈 f (u)〉]]
Γ � (νd)R2 , Γ − k1 � (νd)R1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where d stands for data and
Png(x, y) ⇐ ping k1.Q1(x, y) else Q2(x, y)
Qi(x, y) ⇐ go ki.d !〈x, y, l〉

Ri ⇐ ki[[d?(x, y, z).go z .y!〈f(x)〉]]

5 Generic Techniques for Dynamic Fault Tolerance

Despite the fault tolerance proof techniques developed in Section 4, proving
positive fault tolerance results entails a lot of unnecessary repeated work because
Definition 4 and Definition 5 quantify over all valid fault contexts: to prove that
server3 is 2-dynamic fault tolerant, we need to provide 6 relations, one for every
different case in

∏3
i�=j=1 Γ � server3 ∼= Γ � server3|ki[[kill]]|kj [[kill]]

A closer inspection of the required relations reveals that there is a lot of overlap
between them: these overlapping states would be automatically circumvented if
we require a single relation that is somewhat the merging of all of these separate
relations. Hence we reformulate our fault tolerance definition for dynamic fault
tolerance (the most demanding), to reflect such a merging of relations; a similar
definition for the static case should not be more difficult to construct. The new
definition is based on the actions given earlier in Section 4 together with a new
action, fail, defined as

(l-fail)

Γ � N
fail−→ (Γ − l) � N

Γ � l :locac
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permitting external killing of confined locations. Intuitively, this action allow us
to count the number of failures, but prohibits us from determining which specific
location failed.1 The asymmetric relation �n

D, defined below, is parameterised
with an integer n, denoting the number of confined locations that can still be
killed on the right hand side: the additional third clause states that a fail move
on the right hand side may be matched by a weak τ -move on the left hand side
and the two residuals need to be related in �n−1

D .

Definition 8 (Dynamic Fault Tolerance Simulation). Dynamic n-fault
tolerant simulation, denoted �n

D, is the largest asymmetric typed relation over
configurations such that whenever Γ1 � M1 �n

D Γ2 � M2,

– Γ1�M1
γ−→ Γ ′

1�M ′
1 implies Γ2�M2

�γ
=⇒ Γ ′

2�M ′
2 such that Γ ′

1�M ′
1 �n

D Γ ′
2�M ′

2

– Γ2�M2
γ−→ Γ ′

2�M ′
2 implies Γ1�M1

�γ
=⇒ Γ ′

1�M ′
1 such that Γ ′

1�N ′
1 �n

D Γ ′
2�M ′

2

– if n > 0, Γ2 � M2
fail−→Γ ′

2 � M ′
2 implies Γ1 � M1 =⇒Γ ′

1 � M ′
1 such that Γ ′

1 � M ′
1

�n−1
D Γ ′

2 � M ′
2

Before we can use Definition 8 to prove dynamic fault tolerance, we need to show
that the new definition is sound with respect to Definition 5.

Proposition 3 (Soundness of �n
D). If Γ |=M1 �n

D M2 then for any dynamic
n-fault context F l̃

D that is valid with respect to Γ we have Γ |= M1 ∼= F l̃
D(M2)

Proof. Let Rn be a relation parameterised by a number n and defined as

Rn
def=
�

Γ1 � M1 , Γ2 � M2 | F i
D Γ1 � M1�i

DΓ2 � M2,
�2

j=1 Γj � F i
D and 0 ≤ i ≤ n

�

By showing Rn ⊆≈ we prove that �n
D is sound with respect to n-dynamic fault

tolerance

It would be ideal if we could reuse up-to techniques and give relations satisfying
�n

D that abstract away from β-moves. Similar to Section 4, we define a fault
tolerance simulation up-to β-moves and show that this is sound with respect
to �n

D. This definition uses a weak bisimulation (Definition 6) that ranges over
α actions, that is µ and the new action fail. We refer to this bisimulation as a
counting bisimulation over configurations, denoted as ≈cnt, because it allows us
to count failing confined locations on each side and match subsequent observable
behaviour.

Definition 9 (Fault Tolerant Simulation up-to β-moves). An n-fault tol-
erant simulation up-to β-moves, denoted as �n

β, is the largest typed relation R
between configurations parameterised by the number n, such that whenever we
have Γ1 � M1 �n

β Γ2 � M2

– Γ1�M1
µ−→ Γ ′

1 � M ′
1 implies Γ2�M2

µ̂
=⇒ Γ ′

2 � M ′
2 such that Γ ′

1 � M ′
1 Al ◦ �n

β

◦ ≈cnt Γ ′
2 � M ′

2

1 This point differs from [5], where labels for external killing carried the location name,
kill:l.
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– Γ2 � M2
µ−→ Γ ′

2 � M ′
2 implies Γ1 � M1

µ̂
=⇒ Γ ′

1 � M ′
1 such that Γ ′

2 � M ′
2 Al ◦ �n

β

◦ ≈ Γ ′
1 � M ′

1

– If n > 0 then Γ2 � M2
fail−→ Γ ′

2 � M ′
2 implies Γ1 � M1 =⇒ Γ ′

1 � M ′
1 such that

Γ ′
2 � M ′

2 �n−1
β ◦ ≈ Γ ′

1 � M ′
1

where Al is the relation |==⇒β ◦ ≡. We highlight the use of ≈cnt for matching
configurations in the first clause.

The work required to show that �n
β is sound with respect to �n

D is similar to
earlier up-to β-moves work discussed in Section 4: we have to show that β-
move confluence (similar to Lemma 1) is also preserved for the new action fail;
we also have to show that after a β-move, the redex and reduct configurations
are counting-bisimilar (similar to Proposition 1). Finally we prove the following
proposition

Proposition 4 (Inclusion of fault tolerant simulation up-to β-moves).
If Γ1 � M1 �n

β Γ2 � M2 then Γ1 � M1 �n
D Γ2 � M2

Proof. We prove the above proposition by defining the relation Rn as

Rn =
{

Γ1 � M1 , Γ2 � M2 Γ1 � M1 ≈ ◦ �i
β ◦ ≈cnt Γ2 � M2 and 0 ≤ i ≤ n

}
and show that Rn ⊆�n

D. The required result can then be extracted from this
result by considering the special cases where ≈ and ≈cnt on either side are the
identity relations.

Example 4. The results of Proposition 3 and Proposition 4 allow us to prove that
the configuration Γ � server2 is 1-dynamically fault tolerant by providing a single
witness fault tolerance simulation up-to β-moves showing that Γ � server2 �1

β

Γ � server2 Due to lack of space, we relegate the presentation of this relation to
the full paper [4].

6 Conclusions and Related Work

We adopted a subset of [5] and developed a theory for system fault tolerance
in the presence of fail-stop node failure. We formalised two definitions for fault
tolerance based on the well studied concept of observational equivalence. Sub-
sequently, we developed various sound proof techniques with respect to these
definitions.

Future Work. The immediate next step is to apply the theory to a wider spec-
trum of examples, namely using replicas with state and fault tolerance techniques
such as lazy replication: we postulate that the existing theory should suffice. An-
other avenue worth considering is extending the theory to deal with link failure
and the interplay between node and link failure [5]. In the long run, we plan to
develop of a compositional theory of fault tolerance, enabling the construction
of fault tolerant systems from smaller component sub-systems. For both cases,
this paper should provide a good starting point.
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Related Work. To the best of our knowledge, Prasad’s thesis [9] is the closest
work to ours, addressing fault tolerance for process calculi. Even though similar
concepts such as redundancy (called ”duplication”) and failure-free execution
are identified, the setting and development of Prasad differs considerably form
ours. In essence, three new operators (”displace”, ”audit” and ”checkpoint”) are
introduced in a CCS variant; equational laws for terms using these operators are
then developed so that algebraic manipulation can be used to show that terms in
this calculus are, in some sense, fault tolerant with respect to their specification.
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