
On the µ-Calculus Augmented with Sabotage

Philipp Rohde

RWTH Aachen, Informatik VII
rohde@informatik.rwth-aachen.de

Abstract. We study logics and games over dynamically changing struc-
tures. Van Benthem’s sabotage modal logic consists of modal logic with
a cross-model modality referring to submodels from which a transition
has been removed. We add constructors for forming least and greatest
monadic fixed-points to that logic and obtain the sabotage µ-calculus.
We introduce backup parity games as an extension of standard parity
games where in addition, both players are able to delete edges of the
arena and to store, resp., restore the current appearance of the arena
by use of a fixed number of registers. We show that these games serve
as model checking games for the sabotage µ-calculus, even if the access
to registers follows a stack discipline. The problem of solving the games
with restricted register access turns out to be PSPACE-complete while
the more general games without a limited access become EXPTIME-
complete (for at least three registers).

1 Introduction

In the classical framework of logics and corresponding model checking games,
one considers changes of system states or movements of agents within a system,
but the underlying structure is assumed to be static. This motivates the study
of more general specification formalisms where we can directly address temporal
changes of structures. In this contribution, we focus on the deletion of objects.
Applications are, for example, (1) computer networks where connections may
break down; (2) car navigation systems that cope with roadworks and traffic
jams; (3) representations of knowledge where an increase in knowledge corre-
sponds to a removal of uncertainty relations; and (4) Euler’s famous problem
of Seven Bridges of Königsberg (edges are removed after they were traversed
for the first time). An algorithmic task for these systems is, for example, the
reachability of designated states.

Van Benthem [2] proposed a modal logic with a transition-deleting modality,
called sabotage modal logic SML. The main limitation of modal logics is the lack
of a mechanism for unbounded iteration or recursion. To overcome this, we aug-
ment SML with constructors for forming least and greatest monadic fixed-points,
which yields the sabotage µ-calculus SLµ. This logic is capable of expressing it-
erative properties like reachability or recurrence as well as basic changes of the
underlying structure, namely, the deletion of transitions.

In Section 2, we define the sabotage µ-calculus SLµ and repeat some known
results about the modal fragment SML. In Section 3, we introduce backup parity

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 142–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the µ-Calculus Augmented with Sabotage 143

games as token-moving games between two players. Depending on the type of
the current vertex, the owner can decide on the further direction, or he can delete
edges, or the current appearance of the arena is stored, resp., restored by use of a
fixed number of registers. As winning condition for infinite plays, we use the well-
known parity condition. In order to keep the complexity of solving these games
low, we additionally require that registers can only be accessed by following a
stack discipline: New values stored in a higher register also overwrite the values
of all lower registers and the restoring of edges out of a higher register also erases
all values of lower registers. The restriction on the register access guarantees that
these games can be solved in polynomial space with respect to the size of the
arena (when the number of registers is fixed). We also show that the problem
of solving the games without this limited access becomes EXPTIME-complete,
even for games with three registers.

In Section 4, we show that the model checking problem for SLµ can be re-
duced to the problem of solving a backup parity game with limited access (by
a polynomial time reduction). In fact, the maximum number of nested fixed-
points of the given formula gives the number of registers in the game, and the
dependency order of inductive fixed-point constructions corresponds to the stack
discipline of register access. We conclude with Section 5 by giving a summary of
the presented results and stating some open questions.

Due to lack of space, proofs are omitted or only sketched. Full proofs can be
found in [10–Chaps. 5–6].

2 Sabotage µ-Calculus

Recall that the µ-calculus Lµ is obtained by adding constructors for forming
least and greatest monadic fixed-points to propositional modal logic [7]. We ex-
tend this logic to the sabotage µ-calculus SLµ by adding a cross-model modality
referring to submodels from which a transition has been removed. For conve-
nience, we define the syntax of SLµ in negation normal form. All results easily
extend to the general case (with the restriction that bounded variables only
occur positively).

In what follows, let Σ be a finite alphabet, Prop a finite set of unary predicate
symbols, and Var = {X, Y, . . .} a set of propositional variables.

Definition 1. A Kripke structure K over Prop is a tuple (S, Σ, R, L), where S
is an (at most countable) set of states, R ⊆ S × Σ × S is a transition relation,
and L : S → 2Prop is a labeling function assigning sets of predicates to states. Its
size is defined by |K| := |S| + |R|. For a set E ⊆ R, we define the substructure
K \ E := (S, Σ, R \ E, L).

Definition 2. Formulae of the sabotage µ-calculus SLµ are inductively defined
by the following grammar. For p ∈ Prop, a ∈ Σ, and X ∈ Var, let

ϕ ::= � | ⊥ | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | �aϕ | �aϕ | �aϕ | �aϕ | µX.ϕ | νX.ϕ .

144 P. Rohde

The fragment of formulae without fixed-point operators is called sabotage modal
logic SML. Let Cl(ϕ) be the set of subformulae, Var(ϕ) the set of variables and
Bd(ϕ) the set of bounded variables of ϕ. Without loss of generality, we only deal
with well-named formulae where every variable is bounded at most once and free
variables are distinct from bounded variables. For each X ∈ Bd(ϕ), there is a
unique binding definition Dfϕ(X) ∈ Cl(ϕ) equal to µX.ψ or νX.ψ.

Let K = (S, Σ, R, L) be a Kripke structure and ϕ an SLµ-formula. A valuation
of ϕ in K is a function V : Var(ϕ) → 2S. The semantics of SLµ is defined as the
set ‖ϕ‖KV of states in which ϕ is true:

‖�‖KV := S, ‖p‖KV := {s ∈ S | p ∈ L(s)},

‖X‖KV := V(X), ‖ϕ1 ∨ ϕ2‖KV := ‖ϕ1‖KV ∪ ‖ϕ2‖KV ,

‖�aϕ‖KV := {s ∈ S | ∃s′ ∈ S : (s, a, s′) ∈ R ∧ s′ ∈ ‖ϕ‖KV },

‖�aϕ‖KV := {s ∈ S | ∃t, t′ ∈ S : (t, a, t′) ∈ R ∧ s ∈ ‖ϕ‖K\{(t,a,t′)}
V }, and

‖µX.ϕ‖KV :=
⋂

{A ⊆ S | ‖ϕ‖KV[X:=A] ⊆ A}.

The semantics for the other operators is defined dually. For convenience, we set
(K, s, V) |= ϕ iff s ∈ ‖ϕ‖KV .

We need to justify the definition of fixed-point formulae. Let ϕ be an SLµ-
formula. Then the function A �→ ‖ϕ‖KV[X:=A] is monotone and thus, it has a

unique least fixed-points by Knaster-Tarski, which is equal to ‖µX.ϕ‖KV .

Remark 1. There is a fundamental difference between �a and �a with respect
to fixed-points. When least and greatest fixed-points are constructed inductively,
then movements are passed to the next stage, while the deletion of transitions is
‘encapsulated’ within a stage: The deletion is always restored when we proceed
to the next step. This is due to the fact that, if we have determined Fi =
‖ψ‖KV[X:=Fi−1] for some formula ψ with deletion modalities and proceed to Fi+1,

then we calculate ‖ψ‖KV[X:=Fi] over K and not over the substructure that results
from the deletion of transitions.

Before we turn to the investigation of SLµ, we repeat some results about the
fragment SML. We start with an example:

Example 1. Consider the SML-formula ϕ := �a�a� ∧ �a�a⊥. It is easy to see
that every model of ϕ has exactly one a-transition and that it is a loop at the
origin. In particular, SML is not bisimulation-invariant.

In [8, 9], it was shown that the sabotage modality already strengthens modal
logic in such a way that all nice model-theoretic properties and algorithmic
complexities get lost. In fact, from the viewpoint of complexities, SML much
more resembles first-order logic than modal logic (with the exception that the
formula complexity remains in PTIME):

On the µ-Calculus Augmented with Sabotage 145

Theorem 1 ([8, 9]). For every SML-formula ϕ, there is an effectively con-
structible equivalent FO-formula with a size polynomial in |ϕ|. The model check-
ing problem for SML is PSPACE-complete. Further, SML lacks the finite model
property and the satisfiability problem becomes undecidable. �

We proceed with two examples dealing with fixed-points and sabotage.

Example 2. For a given Kripke structure K = (S, Σ, R, L) and state s ∈ S let
K̂s be the unraveling of K at s. For convenience, we assume a unary alphabet Σ.
We say that K̂s contains a perfect subtree if there is a non-empty subtree of K̂s

such that each path of this subtree contains infinitely many splitting points. Let
ϕ := νX.µY.(��X ∨ �Y) and suppose that R �= ∅. We claim that (K, s) |= ϕ
iff K̂s contains a perfect subtree. The Lµ-formula µY.(ψ ∨ �Y) expresses that
there is a finite path to a state where ψ holds. The subformula ��X guarantees
that there are at least two successors of the current state that belong to (the
interpretation of) X . Let G ⊆ S be the outer, greatest fixed-point according to
X . If s ∈ G, then G is a perfect subtree of K̂s. Conversely, if P ⊆ S witnesses a
perfect subtree of K̂s, then P ⊆ G by construction. Since P is prefix-closed, it
follows that s ∈ P and hence also s ∈ G.

The next example shows that we can ensure an infinite ‘depth’ of models:

Example 3. Let ψ := �b�∧�b(�b⊥∧νY.(�a(�b�∧Y))) and ϕ := νX.(�aX∧ψ).
Let K = (S, Σ, R, L) be a Kripke structure. Suppose that (K, t) |= ψ for some
t ∈ S. Then t has exactly one outgoing b-transition and if this b-transition is
removed, then every state that is reachable from t by a non-empty path along
a-transitions still has a b-successor (due to the greatest fixed-point according to
Y). In particular, every state that is reachable from t by a non-empty a-path is
distinct from t. Suppose now that (K, s) |= ϕ. Due to the greatest fixed-point
according to X , there is an infinite path π = s0

a−→ s1
a−→ s2

a−→ . . . with s0 = s
and (K, si) |= ψ for every i ∈ N. It follows that si �= sj for every i < j and thus,
π consists of infinitely many pairwise distinct elements.

The complexity of model checking SLµ can be readily determined.

Lemma 1. The model checking problem for SLµ is PSPACE-complete. The
model checking problem for SLµ with a fixed formula is PTIME-complete (pro-
gram complexity).

Proof. The hardness of combined model checking follows from the fact that SML
is a fragment of SLµ. Further, we can extend the embedding of SML into FO (cf.
Theorem 1) to an embedding of SLµ into LFPmon, the first-order logic with least
fixed-points over monadic relations. The model checking problem of the latter
logic is known to be PSPACE-complete [13].

Further, the program complexity of Lµ is PTIME-complete [3] and Lµ is a
fragment of SLµ. Again, we can embed SLµ into (full) LFP as above and we
obtain equivalent LFP-formulae that are polynomial with respect to the sizes of
the SLµ-formulae. Since the program complexity of LFP is known to be PTIME-
complete [12], the statement follows. �

146 P. Rohde

3 Backup Parity Games

Recall that parity games are closely related to Lµ: They serve as model checking
games for Lµ [5] and conversely, the winning condition of a parity game can
be expressed by an Lµ-formula [14]. Despite the aforementioned solution of the
model checking problem for SLµ via LFP, we want to define a model checking
game for SLµ in the style of parity games. The games are defined as token-
moving games between two players (called 0 and 1). Depending on the type of
the current vertex, the owner of the vertex can decide on the further direction,
or he can delete edges, or the current arena is stored, resp., restored. We use
the parity condition as winning condition for infinite plays. To obtain a lower
complexity, we require that the storing and restoring operations follow a stack
discipline: New values stored in a higher register also overwrite the values of all
lower registers and the restoring of edges out of a higher register erases all values
of lower registers.

Definition 3. Let (V, E) be a graph. For v ∈ V , let vE be the set of E-successors
of v. If vE is a singleton set, then scc(v) denotes its unique element. For a set
A ⊆ V , let AE :=

⋃
v∈A vE be the set of E-successors of elements in A. Finally,

let Out(A) := {(v, v′) ∈ E | v ∈ A, v′ ∈ V } be the set of edges with sources in
A. A backup parity game of index n with m registers, (n, m)-backup game for
short, is given by G = (A, vin), where A is an arena and vin is an initial vertex
of A. An arena is a labeled graph A = (V, E, ∆, Ω) where V is a non-empty,
finite set of vertices that can be partitioned into the following sets: (1) movement
vertices Mi of player i; (2) deletion vertices Di of player i; (3) storing vertices
Sj for j ∈ [1, m]; and (4) restoring vertices Rj for j ∈ [1, m]. In this case, we
write V = (Mi, Di, Sj , Rj). Let M := M0 ∪ M1 be the set of movement vertices
and D := D0 ∪ D1 the set of deletion vertices. For the edge relation E ⊆ V ×V ,
we require that |vE| = 1 for each v ∈ V \ M . Finally, ∆ ⊆ D × 2Out(M) is a
deletion relation and Ω : V → {0 . . . n} is a priority function.

A position of the game is an element of V × (2E)m+1. The initial position
is (vin, E . . .E). Let (v, Y, X1 . . . Xm) be the current position. Depending on v, a
legal successor position is defined as follows. Assume that v ∈ Mi for i ∈ {0, 1}. If
vY = ∅, then Player i has lost the play. Otherwise, Player i chooses v′ ∈ vY and
the new position becomes (v′, Y, X1 . . . Xm). Assume that v ∈ Di for i ∈ {0, 1}.
If there is no Ξ with (v, Ξ) ∈ ∆ and ∅ �= Ξ ⊆ Y , then Player i has lost
the play. Otherwise, Player i chooses such a set Ξ and the new position becomes
(scc(v), Y \Ξ, X1 . . .Xm). If v ∈ Sj for j ∈ [1, m], then the new position becomes
(scc(v), Y, Y . . . Y, Xj+1 . . .Xm). Finally, if v ∈ Rj for j ∈ [1, m], then the new
position becomes (scc(v), Xj , Xj . . .Xj , Xj+1 . . .Xm).

If the game goes on infinitely and the greatest number appearing infinitely
often in the sequence Ω(v0)Ω(v1)Ω(v2) . . . is even, then Player 0 wins the play;
otherwise Player 1 wins. Finally, the size of a game is defined as |A| := |V | +
|E| +

∑
v∈D

∑
Ξ:(v,Ξ)∈∆ |Ξ|.

Remark 2. By definition, a player gets stuck if either the current vertex is a
moving vertex, but it has no successors with respect to the current set of edges.

On the µ-Calculus Augmented with Sabotage 147

Or it is a deletion vertex, but an appropriate deletion is not possible. Further,
one has Y ⊆ X1 ⊆ . . . ⊆ Xm ⊆ E for any position (v, Y, X1 . . . Xm) that is
reachable from the initial position.

We say that a game is in normal form, if ∆ is a function ∆ : D → Out(M) (in
which case we also write δ) and Ω(v) = 0 for each v ∈ V \M . It is straightforward
to show that for every (n, m)-backup game there is an equivalent (n, m)-backup
game in normal form with a size linear in the size of the original game. For
backup games in normal form, player-based choices are only made at movement
vertices while for all other vertices, the successor position is uniquely determined
(provided that the play does not end). Note that it suffices to consider only n
and m that are bounded by some term in O(|V |).

There is a straightforward transformation of backup parity games into stan-
dard parity games, but at the cost of an exponential blow-up of the arena. To
this end, the current appearance of the arena and the content of registers are
encoded within the vertices of the new game.

Lemma 2. For any (n, m)-backup game G = (A, vin), there is an equivalent
parity game G′ = (A′, v′in) of same index such that |A′| ∈ O(|A| · 2(m+1)|E|),
where E is the set of edges in A. �

In fact, due to the restricted access to registers, the size of an equivalent parity
game can be improved to O(|A| · (m+2)|E|). Since parity games are determined
[4], we immediately obtain that for any (n, m)-backup game over the arena
(V, E, ∆, Ω), the set of positions V ×(2E)m+1 can be partitioned into the winning
regions W0 and W1 such that Player τ has a positional winning strategy on Wτ .
Note that positional strategies for backup games can be easily transformed into
automaton strategies over the arena using deterministic Mealy automata.

We turn to the algorithmic complexity of the problem of solving backup
games, that is, the problem of deciding whether Player 0 can win the game
G = (A, vin) starting from the initial position (vin, E . . .E), no matter how Player
1 moves (E is the set of edges in A).

Theorem 2. For a fixed number of registers, the problem of solving backup
games is PSPACE-complete.

Proof (Sketch). In [8], it was shown that the so-called sabotage game, where one
player moves along edges of a finite graph and the other player removes an arbi-
trary edge in each round, is PSPACE-hard when the reachability of designated
vertices is considered as game objective. Since the sabotage game is a special
backup game, it follows that the problem of solving backup games is PSPACE-
hard, even when restricted to games without priorities and without registers.

Let G = (A, vin) be an (n, m)-backup game with A = (V, E, δ, Ω) and V =
(Mi, Di, Sj, Rj). Without loss of generality, we assume that G is in normal form.
In what follows, we show that it can be decided whether Player 0 wins the game
from (vin, E . . .E) in a space polynomial with respect to |A|. To this end, we
sketch a recursive alternating procedure with a running time polynomial in |A|

148 P. Rohde

(for m fixed). By APTIME = PSPACE (cf. [1]), it follows that for a fixed number
of registers, the problem of solving the games belongs to PSPACE.

The algorithm is called with the current position (v, Y, X1 . . .Xm) as parame-
ter (among some other data that is explained below). If v is a movement vertex,
but a sink, or v is a deletion vertex, but the demanded edge is not present, then
the algorithm immediately stops. In this case, it accepts or rejects subject to the
player to which vertex v belongs. In all other cases, a successor vertex v′ is cho-
sen and the procedure is recursively called with parameter (v′, Y ′, X ′

1 . . . X ′
m) de-

pending on the type of v. If v ∈ M0, then the successor v′ is non-deterministically
guessed. If v ∈ M1, then v′ is chosen universally. If v is a deletion, storing, or
restoring vertex, then its successor v′ is uniquely determined. The parameters
Y ′, X ′

1 . . .X ′
m are then chosen according to the update rules of positions.

Beside the current position, the algorithm remembers for each vertex from
V \ D whether it was already visited and if so, which was the highest priority
since then. This information is partly reset whensoever vertices are visited that
alter the set of edges or the value of registers. The memory is realized by the
functions τ : M → [−1, n] as well as σj : Sj → [−1, n] and ρj : Rj → [−1, n]
for j ∈ [1, m]. A function value of −1 means that this vertex was not seen yet
or that this information was reset in the meantime. A function value greater or
equal 0 gives the highest priority since the last visit of the respective vertex. The
functions are updated depending on the type of the current vertex v:

– v ∈ M : If τ(v) ≥ 0, then the algorithm terminates. Otherwise, τ(v) is set
to be 0. The value of τ(w) for each w in the domain of τ is updated to
Ω(v) if 0 ≤ τ(w) < Ω(v). The functions σ1 . . . σm and ρ1 . . . ρm are updated
analogously.

– v ∈ D: The entire function τ is reset.
– v ∈ Sj for j ∈ [1, m]: If Y = Xj and σj(v) ≥ 0, then the algorithm termi-

nates. Otherwise, the entire functions τ , σ1 . . . σj−1 and ρ1 . . . ρj−1 are reset.
Additionally, if Y � Xj, then the functions σj and ρj are also reset. Finally,
the value σj(v) is set to be 0.

– v ∈ Rj for j ∈ [1, m]: If ρj(v) ≥ 0, then the algorithm terminates. Otherwise,
the entire functions τ , σ1 . . . σj and ρ1 . . . ρj−1 are reset and the value ρj(v)
is set to be 0.

For the correctness of the algorithm, one shows that the following statements
hold. First, each computation branch corresponds to an admissible prefix of a
play. In fact, by the choice of parameters for recursive calls, the computation
tree forms a complete prefix of a game tree according to a strategy of Player
0. Second, if the algorithm terminates, then one of two cases have occurred:
Either the current position is a sink (with respect to movement or deletion)
or the corresponding prefix of a play can be extended to a loop, where the
highest priority of this loop is known to the algorithm. Note that in this case, by
the update of the functions τ , σ1 . . . σm and ρ1 . . . ρm, exactly the same position
from V ×(2E)m+1 is repeated. Hence, the algorithm can decide the winner of the
play that is constituted by infinitely many repetitions of the loop. By positional
determinacy, a player wins the game iff he wins by moving always identical

On the µ-Calculus Augmented with Sabotage 149

at same positions. Therefore, the validation of loops suffices to determine the
winner.

We use a binary encoding of the parameters. Then each call of the procedure
takes a time polynomial in A. Regarding the running time, one shows that
each computation branch of the alternating algorithm terminates after at most
O(|V |4m+2) calls. There are four properties of backup games that are responsible
for termination and that play a key role for estimating the running time. (1)
Without deletion, storing, or restoring, a position is repeated after at most |V |
steps. (2) The deletion of edges is a one-way process: Without restoring, deletion
vertices may occur at most |D| times. If some deletion vertex is visited for the
second time, then the related edge is no longer available and the corresponding
player loses. (3) The storing of data by overwriting a register value with a properly
smaller set is also bounded: Without storing or restoring by accessing higher
registers, proper storing cannot be carried out more often than the number of
edges. (4) Due to the dependency order, the algorithm is allowed to forget all
information regarding lower registers when data is stored or restored. It follows
that the alternating algorithm accepts its initial input iff Player 0 has a winning
strategy in the game starting from (vin, E . . .E). This concludes the proof. �

Next, we settle the complexity of backup parity games when we skip the restric-
tion that storing and restoring has to a follow stack discipline.

Definition 4. An (n, m)-RAM game is defined analogously to an (n, m)-backup
game, but the update of game positions for storing and restoring vertices is mod-
ified as follows. Let (v, Y, X1 . . . Xm) be the current position in the game. If
v ∈ Sj for j ∈ [1, m], then the new position becomes (scc(v), Y, X ′

1 . . . X ′
m),

where X ′
i := Y if i = j and X ′

i := Xi otherwise. If v ∈ Rj for j ∈ [1, m],
then the new position becomes (scc(v), Xj , X1 . . . Xm). Thus, registers are ac-
cessed independently of each other. The updates for the other vertices remain
unchanged.

Theorem 3. For n ≥ 1 and m ≥ 3, the problem of solving (n, m)-RAM games
is EXPTIME-complete.

Proof (Sketch). Let G = (A, vin) be an (n, m)-RAM game. We can use the same
transformation of Lemma 2 to obtain an equivalent parity game G′ = (A′, v′in) of
index n such that |A′| ∈ O(|A| · 2(m+1)|E|), where E is the set of edges in A. By
a result of Jurdziński [6], parity games can be solved in a time polynomial with
respect to the size of the arena and exponential with respect to the index of the
game. It follows that G can be solved in time exponential with respect to the size
of the arena, the index of the game, and the number of registers. Since we can
assume that n, m ∈ O(|A|), it follows that the problem of solving (n, m)-RAM
games belongs to EXPTIME.

To establish the EXPTIME-hardness, we give a reduction from a two-player
game introduced by Stockmeyer and Chandra [11], which is called block game
and which is known to be EXPTIME-hard. It consists of an undirected graph
A, where each edge is labeled by a, b, or c, together with two sets F0 and

150 P. Rohde

F1 of winning vertices. The players move alternatingly. A position is a tuple
(τ, N0, N1) where τ ∈ {0, 1} signifies whose turn it is, and N0, N1 are disjoint
sets of markers (i.e., sets of vertices) that belong to Player 0 and Player 1. Assume
that (0, N0, N1) is the current position. Player 0 chooses one of his markers from
N0 and an edge label x ∈ {a, b, c}. Then he moves the chosen marker to a new
vertex along a finite, non-empty path subject to the following conditions: (1) all
traversed edges are labeled by x, and (2) no passed vertex (including the last
one) carries a marker of either player. Player 0 immediately wins if he places his
chosen marker on a vertex in F0. The moves of Player 1 are defined analogously.
The players are not permitted to pass. In order to cover plays where never any
marker of Player τ is placed on a vertex in Fτ , we agree that Player 1 wins every
infinite play.

We present an equivalent (1, 3)-RAM game G′ = (A′, vin) for a given block
game G = (A, pin) with initial position pin that can be computed in polynomial
time with respect to |A|. Let V be the set of vertices of A. The arena A′ consists
of several copies of A and special components in between. The first register of
G′ always contains the edge set of the original arena A′ and is used to guarantee
a ‘clean board’ at the beginning of each round. Positions of G are encoded in
the second register of G′ (see below). The arena A′ contains an initial part that
encodes the position pin. It follows a loop that simulates two successive moves in
G. Let p be the encoded position of G at the beginning of the loop. Without loss
of generality, we assume that a turn of Player 0 is simulated first. By deletion
of edges, Player 0 chooses a candidate p′ for a successor position of p and its
encoding is stored into the third register. Then it is verified whether p′ is indeed
a legal successor of p by alternatingly restoring the second and the third register
and checking all conditions separately. Note that for RAM games, the restoring
does not affect the value of the other registers. If the check was successful and p′

is a winning position for Player 0 in the block game, then Player 0 also wins the
RAM game. If p′ is not winning, then the value of the third register is shifted
to the second register (by restoring out of the third register and immediately
storing into the second register). Afterwards, the same procedure is repeated,
but now Player 1 is the one who chooses the candidate for a successor position.
At the end of the loop, the second register contains the encoding of a position
and it is again Player 0’s turn.

Markers are simulated by sets of edges. Assume that the current position of
G is p = (0, N0, N1). Player 0’s choice of a successor position p′ is simulated
as follows. First, the original set of edges is restored out of the first register.
Second, both players propose the sets N ′

0 and N ′
1 by deleting |V | − |Ni| edge

sets each of which corresponds to a marker. The result is stored into register 3.
Third, it is checked whether N ′

1 = N1: If they differ, then Player 0 can choose
some edge that is present in register 2, but not in register 3 and lead the play
towards a sink of Player 1. And last, if N ′

1 = N1, then it is verified that exactly
one marker in N0 was moved according to the rules of the block game. This
is done by the following steps: (1) By entering a special component, Player 0
asserts that a marker at vertex v ∈ V was moved; (2) it is checked whether v

On the µ-Calculus Augmented with Sabotage 151

carried a marker in N0, but not in N ′
0; (3) by entering a special component,

Player 0 asserts that the marker at v was moved along a x-labeled path for some
x ∈ {a, b, c}; (4) it is checked whether there is a non-empty x-labeled path from
v to a vertex w ∈ V such that no intermediate vertex carries a marker of either
player: Player 0 chooses the edges that are traversed; if there is a marker from
N0 ∪ N1 at intermediate vertices, then Player 1 can lead the play to a sink of
Player 0; (5) finally, it is checked whether no other marker than the one at v was
moved (otherwise, Player 1 can lead the play to a sink of Player 0).

The priorities 0 and 1 are used to ensure that players do not move ad infinitum
when they simulate the movement of markers. If the game does not end, then
Player 1 wins, because priority 1 is visited infinitely often. �
Note that a RAM game with only one register necessarily follows a stack dis-
cipline and thus, it is already a backup game that can be solved in polynomial
space. It remains open whether this is true for RAM games with two registers.

4 A Model Checking Game for SLµ

In this section, we show that the model checking problem for SLµ can be reduced
to the problem of solving a backup game. We present a backup game GK,ϕ,V for
a finite Kripke structure K, an SLµ-formula ϕ, and a valuation V such that for
every state s: Player 0 wins the game from some designated vertex iff (K, s, V) |=
ϕ. The construction is an adaptation of the one for Lµ, which is based on a
transformation of the model checking problem for Lµ into the emptiness problem
for parity tree automata [5].

In what follows, we fix a finite Kripke structure K = (S, Σ, R, L) and an SLµ-
formula ϕ over Σ, both over the set Prop of predicates symbols. Further, we
assume that λ �∈ Σ. Let V : Var(ϕ) → 2S be a valuation for ϕ.

The structure Kϕ = (Sϕ, Σ ∪ {λ}, Rϕ, ∅) is induced by the structure of ϕ:
First, there is a state for each subformula in Cl(ϕ). For simplicity, we name the
states after subformulae. Second, there are two additional states sX and rX for
each X ∈ Bd(ϕ). Third, we add an extra state qa for each a ∈ Σ. The latter
states are needed for deletion purposes and are independent of the structure of
ϕ. Let init : Cl(ϕ) → Sϕ be defined by init(ψ) := rX if ψ = X and X ∈ Bd(ϕ),
init(ψ) := sX if ψ = µX.ψ′ or ψ = νX.ψ′, and init(ψ) := ψ otherwise.

We define Rϕ by giving a list of transitions for each type of subformula. Let
ψ ∈ Cl(ϕ). (1) The states �, ⊥, p, ¬p, and X for X ∈ Var(ϕ) \ Bd(ϕ) are sinks;
(2) if ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2, then there are the transitions ψ

λ−→ init(ψ1)
and ψ

λ−→ init(ψ2); (3) if ψ = �aψ′ or ψ = �aψ′ for a ∈ Σ, then there is the
transition ψ

a−→ init(ψ′); (4) if ψ = �aψ′ or ψ = �aψ
′ for a ∈ Σ, then there

is the transition ψ
λ−→ init(ψ′); (5) if ψ = µX.ψ′ or ψ = νX.ψ′, then there are

the transitions sX
λ−→ ψ, ψ

λ−→ init(ψ′), rX
λ−→ X , and X

λ−→ ψ; (6) there is a
transition qa

a−→ qa for every a ∈ Σ.
Let K ⊗ Kϕ be the synchronized product of K and Kϕ where predicates are

ignored: for a ∈ Σ, we have (s, t) a−→ (s′, t′) iff s
a−→ s′ in K and t

a−→ t′ in Kϕ as

152 P. Rohde

well as (s, t) λ−→ (s′, t′) iff t
λ−→ t′ in Kϕ. Let G = (V, E) be the transition graph

of K ⊗ Kϕ without transition labels. Let m be the fixed-point depth of ϕ. The
game GK,ϕ,V has then m registers. We start with the declaration of the vertices
in V as movement, deletion, storing, or restoring vertices. Each (s, qa) for s ∈ S
and a ∈ Σ belongs to M0. Let s ∈ S, ψ ∈ Cl(ϕ), and a ∈ Σ. Then (s, ψ) ∈ M0 if
(1) ψ = ⊥, ψ = ψ1 ∨ ψ2, ψ = �aψ′, or ψ = νX.ψ′, or (2) ψ = p and p �∈ L(s), or
ψ = ¬p and p ∈ L(s), or (3) ψ = X and s �∈ V(X). The movement vertices M1
of Player 1 are defined dually. We set (s, ψ) ∈ D0 if ψ = �aψ′ and (s, ψ) ∈ D1
if ψ = �aψ′. Finally, let fhϕ(X) to be the maximum number of nested fixed-
point operators in Dfϕ(X) for X ∈ Bd(ϕ). Then we set (s, sX) ∈ Sfhϕ(X) and
(s, rX) ∈ Rfhϕ(X) for X ∈ Bd(ϕ).

Next, we define the deletion relation ∆. For t, t′ ∈ S and a ∈ Σ, let Ξϕ
t,a,t′ be

the following set:

{((t, ψ), (t′, init(ψ′))) | ψ ∈ Cl(ϕ) ∧ (ψ = �aψ′ or �aψ′)} ∪ {((t, qa), (t′, qa))}.

Note that, if (t, a, t′) ∈ R, then we have Ξϕ
t,a,t′ ⊆ Out(M). By the synchronized

product, we have ((t, qa), (t′, qa)) ∈ E iff (t, a, t′) ∈ R. Thus, Ξϕ
t,a,t′ is non-empty

for (t, a, t′) ∈ R, regardless of the structure of ϕ. For a ∈ Σ and ψ ∈ Cl(ϕ)
with ψ = �aψ′ or ψ = �aψ′, we set for every s ∈ S: ((s, ψ), Ξϕ

t,a,t′) ∈ ∆ iff
t, t′ ∈ S ∧ (t, a, t′) ∈ R.

We conclude the definition of the arena AK,ϕ,V by specifying the priority
function Ω : V → N. We first define a function Ω′ for Kϕ and then we extend
Ω′ to V . For X ∈ Bd(ϕ), let Bϕ(X) := Bd(Dfϕ(X)) \ {X} ⊆ Var(ϕ). Then
we define Ω′ : Sϕ → N by Ω′(s) := 0 for every s ∈ Sϕ \ Bd(ϕ), and Ω′(X) :=
min{c ∈ N | c odd ∧ c > max{0, {Ω′(Y) | Y ∈ Bϕ(X)}}} if X is a µ-variable of
ϕ, and Ω′(X) := min{c ∈ N | c even ∧ c > max{0, {Ω′(Y) | Y ∈ Bϕ(X)}}} if X
is a ν-variable of ϕ.

We set Ω((s, ψ)) = Ω′(ψ) for every s ∈ S and ψ ∈ Sϕ. Finally, let n :=
max{Ω′(X) | X ∈ Bd(ϕ)}. This concludes the definition of the arena AK,ϕ,V
= (V, E, ∆, Ω) and the (n, m)-backup game GK,ϕ,V . Note that n and m depend
on ϕ only. Regarding the size of the game, it is straightforward to check that
|AK,ϕ,V | is quadratic with respect to |K| · |ϕ|.

Before we show that GK,ϕ,V indeed serves as a model checking game for SLµ,
we observe that the initial content of registers has no effect on plays starting ‘at
the top’ of the game.

Lemma 3. With the same notation as before, one has for each state s ∈ S and
for each X1 . . .Xm ∈ 2E that Player τ wins GK,ϕ,V from position ((s, init(ϕ)), E,
X1 . . .Xm) iff he wins GK,ϕ,V from position ((s, init(ϕ)), E, E . . . E). �
We need two auxiliary results concerning backup games. The first one deals
with winning regions of subgames. The second one provides an unfolding of the
parity condition, which we need for the fixed-point operators. The unfolding is
a classical construction based on Knaster-Tarski.

Lemma 4. Let A = (V, E, ∆, Ω) be the arena of an (n, m)-backup game G with
V = (Mτ , Dτ , Sj, Rj). Suppose that V ′ ⊆ V such that V ′E ⊆ V ′ and that

On the µ-Calculus Augmented with Sabotage 153

for each v ∈ V ′, if (v, Ξ) ∈ ∆ and Ξ �= ∅, then Ξ ∩ (V ′ × V ′) �= ∅. Let
u ∈ V ′ and X0 . . . Xm ⊆ E be fixed. We define V ′ = (Mτ ∩ V ′, Dτ ∩ V ′, Sj ∩
V ′, Rj ∩ V ′), E′ := E ∩ (V ′ × V ′), X ′

i := Xi ∩ E′ for each i ∈ [0, m], and
∆′ := {(v, Ξ ∩E′) | v ∈ V ′ ∧ (v, Ξ) ∈ ∆}. Let G′ be the (n, m)-backup game with
arena A′ = (V ′, E′, ∆′, Ω|V ′). Then Player τ wins G from (u, X0 . . . Xm) iff he
wins G′ from (u, X ′

0 . . . X ′
m). �

We turn to the unfolding of the parity condition. Let A = (V, E, ∆, Ω) be the
arena of an (n, m)-backup game G with V = (Mτ , Dτ , Sj , Rj). Let Ωmax :=
maxv∈V Ω(v), T := Ω−1(Ωmax), U := TE and κ := |T | + 1. We make the
following assumptions: (1) Ωmax is even; (2) T ⊆ M ; (3) every v ∈ T has a
unique successor scc(v); (4) for every u ∈ U and every play π that starts from
(u, E . . . E), if πi = (v, X0 . . .Xm) for some v ∈ T , then Xj = E for every
j ∈ [0, m]; (5) if (v, Ξ) ∈ ∆ for some v ∈ V , then Ξ ∩ (T × U) = ∅.

Under this assumptions, the unfolding of G is a sequence of (n, m)-backup
games Gi for i ∈ [0, κ]. Let E− := E \ (T × U) and A− := (V, E−, ∆, Ω). Note
that the vertices in T become terminal in A−. The arena of Gi coincides with A−

up to the winning condition for T . For every i ∈ [0, κ], we define a decomposition
T = T i

0 ∪ T i
1 and declare Player τ to be the winner of the game Gi when a play

reaches v ∈ T i
τ . Let W i

τ ⊆ V × (2E−
)m+1 be the winning region of Player τ

in the game Gi. Clearly, W i
τ depends on the decomposition T = T i

0 ∪ T i
1. In

turn, the decomposition of T for i + 1 depends on W i
τ : We define T 0

0 := T and
T i+1

0 := {v ∈ T | (scc(v), E− . . . E−) ∈ W i
0}.

It is easy to check that T 0
1 ⊆ T 1

1 ⊆ . . . ⊆ T κ
1 and W 0

1 ⊆ W 1
1 ⊆ . . . ⊆ Wκ

1 . By
determinacy, we also have T 0

0 ⊇ T 1
0 ⊇ . . . ⊇ T κ

0 and W 0
0 ⊇ W 1

0 ⊇ . . . ⊇ Wκ
0 .

Since κ = |T | + 1 and T i
1 ⊆ T for each i ∈ [0, κ], there exists α < κ such that

T α
1 = T α+1

1 (and then also T α
0 = T α+1

0 , Wα
τ = Wα+1

τ). We claim that we can
determine the winner of a play in the original game G that starts from a vertex
u ∈ U by considering this fixed-point of winning regions for the unfolding of G:

Lemma 5. Let G, U , and κ be as before and let G0 . . .Gκ be the unfolding of
G. Then for every u ∈ U , Player τ wins G from (u, E . . . E) iff he wins Gκ from
(u, E− . . . E−). �

If G is as before, but Ωmax is odd, then we can proceed to the dual game where
the roles of the players are swapped and the priority function is increased by
one. We are now prepared to prove the main result of this section:

Theorem 4. Suppose that K = (S, Σ, R, L) is a finite Kripke structure with
state s ∈ S, ϕ is an SLµ-formula over Σ, and V : Var(ϕ) → 2S is a valuation.
Then (K, s, V) |= ϕ iff Player 0 wins GK,ϕ,V from ((s, init(ϕ)), E . . . E), where E
is the edge relation of the arena of GK,ϕ,V .

Proof (Sketch). The proof is by induction on the structure of ϕ. We only present
some interesting cases. Case ϕ = �aψ. Let A = (V, E, ∆, Ω) be the arena of
G := GK,ϕ,V and A′ = (V ′, E′, ∆′, Ω′) be the arena of G′ := GK,ψ,V . It is easy
to see that G′ is a subgame of G that meets the requirements of Lemma 4. It
follows that for each t ∈ S, Player 0 wins G from ((t, init(ψ)), E . . . E) iff he

154 P. Rohde

wins G′ from ((t, init(ψ)), E′ . . . E′). We have init(ϕ) = ϕ and (s, ϕ) ∈ M0. By
definition of A, there is an edge from (s, ϕ) to (t, init(ψ)) iff (s, a, t) ∈ R. Thus

Player 0 wins G from ((s, ϕ), E . . .E)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and Player 0 wins G from ((t, init(ψ)), E . . .E)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and Player 0 wins G′ from ((t, init(ψ)), E′ . . . E′)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and (K, t, V) |= ψ [by induction]
⇐⇒ (K, s, V) |= ϕ.

Case ϕ = �aψ. Let A = (V, E, ∆, Ω) be the arena of G := GK,ϕ,V . We have
init(ϕ) = ϕ, (s, ϕ) ∈ D0, and (s, ϕ) has the unique E-successor (s, init(ψ)).
By definition, there is ((s, ϕ), Ξ) ∈ ∆ with ∅ �= Ξ ⊆ E iff there are t, t′ ∈ S
with (t, a, t′) ∈ R and Ξ = Ξϕ

t,a,t′ . Thus, it follows that Player 0 wins G from
((s, ϕ), E . . .E) iff there are t, t′ ∈ S with (t, a, t′) ∈ R such that Player 0 wins
G from ((s, init(ψ)), E \ Ξϕ

t,a,t′ , E . . .E). Let E− := E \ Ξϕ
t,a,t′ . By Lemma 3,

we have that Player 0 wins G from ((s, init(ψ)), E−, E . . . E) iff he wins G from
((s, init(ψ)), E−, E− . . . E−).

The arena (V, E−, ∆, Ω) is identical with the arena A′ := (V ′, E′, ∆′, Ω′) of
the game G′ := GK\{(t,a,t′)},ϕ,V up to the deletion relation ∆′. In particular,
we have E− = E′. But for any play in G starting at ((s, init(ψ)), E− . . . E−),
neither player can choose Ξϕ

t,a,t′ at deletion vertices without losing immedi-
ately. It follows that Player 0 wins G from ((s, init(ψ)), E− . . . E−) iff he wins
G′ from ((s, init(ψ)), E′ . . . E′). Finally, let G′′ := GK\{(t,a,t′)},ψ,V with arena
A′′ = (V ′′, E′′, ∆′′, Ω′′). Again, G′′ is a subgame of G′ that contains the state
(s, init(ψ)) and that meets the requirements of Lemma 4. It follows that Player 0
wins G′ from ((s, init(ψ)), E′ . . . E′) iff he wins G′′ from ((s, init(ψ)), E′′ . . . E′′).
By induction, this is equivalent to (K\{(t, a, t′)}, s, V) |= ψ. Together, we get that
Player 0 wins G from ((s, ϕ), E . . .E) iff there exists t, t′ ∈ S with (t, a, t′) ∈ R
and (K \ {(t, a, t′)}, s, V) |= ψ. The latter is equivalent to (K, s, V) |= ϕ.

Case ϕ = νX.ψ. Let A = (V, E, ∆, Ω) be the arena of the game G := GK,ϕ,V
with V = (Mτ , Dτ , Sj , Rj). By definition, we have that Ωmax = Ω′(X) is even.
Let T := Ω−1(Ωmax). By definition of A, we have T = {(t, X) | t ∈ S} ⊆ M ,
|(t, X)E| = 1 for each t ∈ S, and U := TE = {(t, ϕ) | t ∈ S}. Let κ := |T | + 1 =
|S| + 1. We have fhϕ(X) = m and thus, register fhϕ(X) is the highest register
of G. Further, we have Sm = {(t, init(ϕ)) | t ∈ S} and each of these vertices
has a single E-successor, namely (t, ϕ), and no incoming E-edge. In particular,
Player 0 wins G from ((s, init(ϕ)), E . . . E) iff he wins G from ((s, ϕ), E . . .E).
Every vertex (t, X) occurs in combination with the restoring vertex (t, rX). Let
t, t′ ∈ S and π be a play that starts from ((t, ϕ), E . . .E) and that reaches
some πi = ((t′, X), X0 . . . Xm). Note that no storing vertex from Sm can occur
in π. Thus, we have Xm = E and πi−1 visits vertex (t′, rX). Be definition of
the restoring process, it follows that Xj = E for every j ∈ [0, m]. Finally, the
edges (t, X) → (t, ϕ) for t ∈ S do not occur in ∆. It follows that G meets the
requirements of Lemma 5.

On the µ-Calculus Augmented with Sabotage 155

Before we proceed, we fix some notation. Let W : Var(ϕ) → 2S be a valuation
of ϕ. Note that the definitions of the edge relation, the deletion relation, and
the priority function of a game GK,χ,W do not depend on the valuation W . Let
AW = (VW , E, ∆, Ω) be the arena of GW := GK,ϕ,W . The game GW is identical
to G up to the assignment of vertices (t, Y) for t ∈ S, Y ∈ Var(ϕ) to one of the
players. Let E− := E \ (T ×U) and G−

W be the game with arena (VW , E−, ∆, Ω).
Finally, we define the game G∗

W := GK,ψ,W with arena A∗
W = (V ∗

W , E∗, ∆∗, Ω∗).
The variable X occurs free in ψ. Thus, the vertices (t, X) for t ∈ S have no
outgoing edges in A∗

W .
The game G∗

W is a subgame of G−
W that contains the vertices (t, init(ψ)) for

every t ∈ S and that meets the requirements of Lemma 4. In A−
W , each ver-

tex (t, ϕ) for t ∈ S has the unique successor (t, init(ψ)). Together with the
induction hypothesis, it follows for every t ∈ S that Player 0 wins G−

W from
((t, ϕ), E− . . . E−) iff he wins G−

W from ((t, init(ψ)), E− . . . E−) iff he wins G∗
W

from ((t, init(ψ)), E∗ . . . E∗) iff (K, t, W) |= ψ.
For i ∈ [0, κ + 1], let F0 := S and Fi+1 := ‖ψ‖KV[X:=Fi]. Since κ = |S| + 1,

it follows by Knaster-Tarski that ‖ϕ‖KV = Fκ+1. In particular, (K, s, V) |= ϕ iff
(K, s, V [X := Fκ]) |= ψ. Let G0 . . . Gκ be the unfolding of G. It is straightforward
to check by induction on i that Gi is identical to G−

V[X:=Fi]
for each i ∈ [0, κ].

By Lemma 5, we therefore obtain that Player 0 wins G from ((s, ϕ), E . . .E)
iff he wins Gκ from ((s, ϕ), E− . . . E−). We can now conclude the case of great-
est fixed-points: Player 0 wins G from ((s, init(ϕ)), E . . . E) iff he wins G from
((s, ϕ), E . . .E) iff he wins Gκ from ((s, ϕ), E− . . . E−) iff he wins G−

V[X:=Fκ] from
((s, ϕ), E− . . . E−) iff (K, s, V [X := Fκ]) |= ψ iff (K, s, V) |= ϕ.

Note that the cases ϕ = ϕ1 ∧ ϕ2, ϕ = �aψ, ϕ = �aψ, and ϕ = µX.ψ are dual
to the cases ϕ = ϕ1 ∨ ϕ2, ϕ = �aψ, ϕ = �aψ, and ϕ = νX.ψ. �

5 Conclusion

We augmented the µ-calculus with a transition-deleting modality, which yields
the fixed-point logic SLµ over dynamically changing structures. We have seen
that model checking is not algorithmically harder than model checking the sabo-
tage modal logic without fixed-points. We introduced backup games as extended
parity games with the feature of edge deletion and of storing and restoring the
current arena in a fixed number of registers. Even when the access to regis-
ters has to follow a stack discipline, these games serve as model checking games
for SLµ. The problem of solving these games is PSPACE-complete. The games
without limited access become EXPTIME-complete.

Model checking for SLµ via backup games is not optimal yet: We could only
show that the problem of solving backup games belongs to PSPACE for a fixed
number of registers. But the number of registers of the game GK,ϕ,V is equal to
the fixed-point depth of ϕ. Our result yields, so far, only a PSPACE-procedure
for formulae with bounded fixed-point depth. Note that we already know that
the model checking with a fixed formula can be done in polynomial time with
respect to the size of the structure, cf. Lemma 1. It remains an open question

156 P. Rohde

whether backup games can be solved in polynomial space, regardless of the
number of registers. If we can answer this question positively, then we would
obtain an optimal model checking procedure for SLµ. Otherwise, there may be a
subclass of games that serve as model checking games, but which can be solved
in polynomial space regardless of the number of registers. Finally, it remains
open whether we can express the winning condition for backup games as SLµ-
formulae. Recall that this is the case for standard parity games and Lµ [14]. If
such a translation yields SLµ-formulae with a size polynomial in the size of the
arena, then this would also give a positive answer to the above question.

Note that SLµ does not provide a way to express, for example, a general
reachability while transitions are deleted (due to the restoration in inductive
fixed-point constructions). It is worth to study logics that allow such an overlap
of fixed-points and deletion. Finally, sabotage logics that allow to address the
deletion of objects are only a first step towards a general theory of logics over
dynamically changing structures.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity II. Springer 1990
2. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathe-

matical Reasoning. LNAI 2605 (2005), 268–276
3. Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to

branching-time model checking. In: CAV ’94. LNCS 818 (1994), 142–155
4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In:

FOCS ’91 (1991), 368–377
5. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of

µ-calculus. In: CAV ’93. LNCS 697 (1993), 385–396
6. Jurdziński, M.: Small progress measures for solving parity games. In: STACS ’00.

LNCS 1770 (2000), 290–301
7. Kozen, D.: Results on the propositional µ-calculus. TCS 27 (1983), 333–354
8. Löding, Ch., Rohde, Ph.: Solving the sabotage game is PSPACE-hard. In: MFCS

’03. LNCS 2747 (2003), 531–540
9. Löding, Ch., Rohde, Ph.: Model checking and satisfiability for sabotage modal

logic. In: FSTTCS ’03. LNCS 2914 (2003), 302–313
10. Rohde, Ph.: On Games and Logics over Dynamically Changing Structures. Tech-

nical report submitted as dissertation thesis at RWTH Aachen (2005). Available
under www-i7.informatik.rwth-aachen.de/∼rohde/thesis.pdf

11. Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM
Journal on Computing 8 (1979), 151–174

12. Vardi, M.Y.: The complexity of relational query languages. In: STOC ’83 (1982),
137–146

13. Vardi, M.Y.: On the complexity of bounded-variable queries. In: PODS ’95 (1995),
266–276

14. Walukiewicz, I.: Monadic second-order logic on tree-like structures. TCS 275
(2002), 311–346

	Introduction
	Sabotage μ-Calculus
	Backup Parity Games
	A Model Checking Game for SL_μ
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

