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Abstract. We present the results of an empirical study evaluating the precision
of subset-based points-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes
analyses that context-sensitively specialize only pointer variables, as well as ones
that also specialize the heap abstraction. We measure both characteristics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinct contexts, and the number of distinct points-to
sets that arise with each context sensitivity variation. To evaluate precision, we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sites, and the number of casts statically provable to be safe.

The results of our study indicate that object-sensitive analysis implementa-
tions are likely to scale better and more predictably than the other approaches;
that object-sensitive analyses are more precise than comparable variations of the
other approaches; that specializing the heap abstraction improves precision more
than extending the length of context strings; and that the profusion of cycles in
Java call graphs severely reduces precision of analyses that forsake context sen-
sitivity in cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1, 4,
8, 11, 17–19, 25, 28–31]), which improve precision the most? Which are most effec-
tive for specific client analyses, and for specific code patterns? For which variations are
we likely to find scalable implementations? Before devoting resources to finding effi-
cient implementations of specific analyses, we should have empirical answers to these
questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3, 12, 29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant

� This work was supported, in part, by NSERC and an IBM Ph.D. Fellowship.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 47–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



48 O. Lhoták and L. Hendren

size. Using the JEDD system [14], we have implemented three different families of
context-sensitive points-to analysis, and we have measured their precision in terms of
several client analyses. Specifically, we compared the use of call-site strings as the con-
text abstraction, object sensitivity [17,18], and the algorithm proposed by Zhu and Cal-
man [31] and Whaley and Lam [29] (hereafter abbreviated ZCWL). Within each family,
we evaluated the effect of different lengths of context strings, and of context-sensitively
specializing the heap abstraction. In our study, we compared the relative precision of
analyses both quantitatively, by computing summary statistics about the analysis re-
sults, and qualitatively, by examining specific code patterns for which a given analysis
variation produces better results than other variations.

Context-sensitive analyses have been associated with very large numbers of con-
texts. We wanted to also determine how many contexts each variation of context sen-
sitivity actually generates, how the number of contexts relates to the precision of the
analysis results, and how likely it is that scalable context-sensitive representations are
feasible. These measurements can be done directly on the BDD representation.

Our results show that although the effect on precision depends on the client analysis,
the benefits of context sensitivity are very significant for some analyses, particularly cast
safety analysis. We also show that object-sensitivity consistently improves precision
most compared to the other variations studied, and that modelling heap objects with
context does significantly improve precision.

The remainder of this paper is organized as follows. In Section 2, we provide back-
ground about the variations of context sensitivity that we have studied. In Section 3, we
list the benchmarks included in our study. We discuss the number of contexts and its
implications on precision and scalability in Section 4. In Section 5, we examine the ef-
fects of context sensitivity on the precision of the call graph. We evaluate opportunities
for static resolution of virtual calls in Section 6. In Section 7, we measure the effect of
context sensitivity on cast safety analysis. We briefly survey related work in Section 8.
Finally, we draw conclusions from our experimental results in Section 9.

2 Background

Like any static analysis, a points-to analysis models the possible run-time features of
the program using some chosen static abstraction. A context-sensitive points-to analysis
requires an abstraction of pointer targets, pointers, and method invocations. We will
denote these three abstractions O, P , and I, respectively. Whenever it is possible for a
run-time pointer p to point to the run-time target o, the may-point-to relation computed
by the analysis must contain the fact O(o) ∈ pt(P(p)). The specific choice of static
abstraction is a key determining factor of the precision of the analysis, and this paper
compares several different abstractions.

Pointer Target Abstraction: In Java, the target of a pointer is always a dynamically
allocated object. A popular abstraction for a pointer target is the program statement at
which the object was allocated. We will write this abstraction as Oas.

Pointer Abstraction: Each run-time pointer corresponds to either some local variable
or some object field in the program. Pointers corresponding to local variables are often
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statically abstracted by the local variable; we will write this abstraction as Pvar. For
pointers corresponding to fields, we will consider only the field-sensitive abstraction in
this paper, because it is more precise than other alternatives (described, for example,
in [13, 23]). The field-sensitive abstraction Pfs(o.f) of the field f of run-time object
o is the pair [O(o), f ], where O(o) is our chosen static abstraction of the run-time
object o.

Method Invocation (Context) Abstraction: Because different invocations of a
method may have different behaviours, it may be useful to distinguish some of them.
A context is a static abstraction of a method invocation; an analysis distinguishes invo-
cations if their abstract contexts are different. In this paper, we compare two families of
invocation abstraction (also called context abstraction), call sites [24, 25] and receiver
objects [17, 18]. In call-site context sensitivity, the context Ics(i) of an invocation i
is the program statement (call site) from which the method was invoked. In receiver-
object context sensitivity, the context of an invocation i is the static abstraction of
the object on which the method is invoked. That is, Iro(i) = O(o), where o is the
run-time object on which the method was invoked.

In either case, the context abstraction can be made even finer by using a string of con-
texts corresponding to the invocation frames on the run-time invocation stack [18, 24].
That is, having chosen a base abstraction Ibase, we can define Istring(i) to be [Ibase(i),
Ibase(i2), Ibase(i3), . . .], where ij is the j’th top-most invocation on the stack during
the invocation i (so i = i1). Since the maximum height of the stack is unbounded, the
analysis must somehow ensure that the static abstraction is finite. A simple, popular
technique is to limit the length of each context string to at most a fixed number k. A
different technique is used by the ZCWL algorithm. It does not limit the length of a
context string, but it excludes from the context string all contexts corresponding to call
edges that are part of a cycle in the context-insensitive call graph. Thus, the number of
contexts is bounded by the number of acyclic paths in the call graph, which is finite.

Orthogonal to the choice of context abstraction is the choice of which pointers and
objects to model context-sensitively. That is, having chosen a basic context-insensitive
pointer abstraction Pci and a context abstraction I, we can model a run-time pointer
p context-sensitively by defining P(p) to be [I(ip), Pci(p)], where ip is the method
invocation in which p occurs, or context-insensitively by defining P(p) to be Pci(p).
Similarly, if we have chosen the allocation site abstraction Oas as the basic abstraction
for objects, we can model each object o context-sensitively by defining O(o) to be
[I(io), Oas(o)], where io is the method invocation during which o was allocated, or
context-insensitively by defining O(o) to be Oas(o).

In the tables in the rest of this paper, we report results for the following variations
of points-to analyses. In tables reporting call graph information, the “CHA” column
reports baseline numbers obtained using Class Hierarchy Analysis [6]. The “insens.”
column of each table is a context-insensitive points-to analysis that does not distinguish
different invocations of any method. The “object-sensitive” columns are analyses using
receiver objects as the context abstraction, while the “call site” columns are analyses
using call sites as the context abstraction. Within each of these two sections, in the 1,
2, and 3 columns, pointers are modelled with context strings of maximum length 1, 2,
and 3, but pointer targets are modelled context-insensitively. In the 1H columns, both
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pointers and pointer targets are modelled with context strings of receiver objects or call
sites of maximum length 1. The “ZCWL” column is the ZCWL algorithm, which uses
call sites as the context abstraction, and allows context strings of arbitrary length. The
ZCWL algorithm models pointers with context but pointer targets without context.

In an analysis of an object-oriented language such as Java, there is a cyclic de-
pendency between call graph construction and points-to analysis. In all variations ex-
cept the ZCWL algorithm, we constructed the call graph on-the-fly during the points-to
analysis, since this maintains maximum precision. The ZCWL algorithm requires a
context-insensitive call graph to be constructed before it starts, which it then makes
context-sensitive, and uses to perform the points-to analysis. For this purpose, we used
the call graph constructed by the context-insensitive analysis in the “insens.” column.

Interested readers can find additional information about the analysis variations, as
well as a detailed presentation of the analysis implementation, in [12, Chapter 4].

3 Benchmarks

We performed our study on programs from the SpecJVM 98 benchmark suite [26], the
DaCapo benchmark suite, version beta050224 [5], and the Ashes benchmark suite [27],
as well as on the Polyglot extensible Java front-end [20], as listed in Table 1. Most of
these benchmarks have been used in earlier evaluations of interprocedural analyses for
Java. The middle section of the table shows the total number of classes and methods
comprising each benchmark. These numbers exclude the Java standard library (which
is required to run the benchmark), but include all other libraries that must accompany
the benchmark for it to run successfully. All of the measurements in this paper were

Table 1. Benchmarks

Total number of Executed methods
Benchmark classes methods app. +lib.
compress 41 476 56 463
db 32 440 51 483
jack 86 812 291 739
javac 209 2499 778 1283
jess 180 1482 395 846
mpegaudio 88 872 222 637
mtrt 55 574 182 616
soot-c 731 3962 1055 1549
sablecc-j 342 2309 1034 1856
polyglot 502 5785 2037 3093
antlr 203 3154 1099 1783
bloat 434 6125 138 1010
chart 1077 14966 854 2790
jython 270 4915 1004 1858
pmd 1546 14086 1817 2581
ps 202 1147 285 945
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done with version 1.3.1 01 of the Sun standard library.1 The right-most section of the
table shows the number of distinct methods that are executed in a run of the bench-
mark (measured using the *J tool [7]), both excluding and including methods of the
Java standard library, in the columns labelled “app.” and “+lib.”, respectively. About
400 methods of the standard library are executed even for the smallest benchmarks for
purposes such as class loading; some of the larger benchmarks make heavier use of the
library.

4 Number of Contexts

Context-sensitive analysis is often considered intractable mainly because, if contexts
are propagated from every call site to every called method, the number of resulting
context strings grows exponentially in the length of the call chains. The purpose of this
section is to shed some light on two issues. First, of the large numbers of contexts,
how many are actually useful in improving analysis results? Second, why can BDDs
represent such seemingly large numbers of contexts, and how much hope is there that
they can be represented with more traditional techniques?

4.1 Total Number of Contexts

We begin by comparing the number of contexts that appear in the context-sensitive
points-to relation when the analysis is performed with the different context abstractions.
For this measurement, we treat the method invoked as part of the context. For example,
suppose we are using abstract receiver objects as the context abstraction; if two different
methods are called on the same receiver, we count them as two separate contexts, since
they correspond to two necessarily distinct invocations. In other words, we are counting
method-context pairs, rather than just contexts.

The measurements of the total numbers of contexts are shown in Table 2. Each col-
umn lists the number of contexts produced by one of the variations of context-sensitive
analysis described in Section 2. The column labelled “insens.” shows the absolute num-
ber of contexts (which is also the number of methods, since in a context-insensitive
analysis, every method has exactly one context). All the other columns, rather than
showing the absolute number of contexts, which would be very large, instead show
the number of contexts as a multiple of the “insens.” column (i.e. they show the av-
erage number of contexts per method). For example, for the compress benchmark, the
total number of 1-object-sensitive contexts is 2596×13.7 = 3.56×104. The empty spots
in the table (and other tables throughout this paper) indicate configurations in which the
analysis did not complete in the available memory, despite being implemented using
BDDs. We allowed the BDD library to allocate a maximum of 41 million BDD nodes
(820 million bytes).

The large numbers of contexts explain why an analysis that represents each
context explicitly cannot scale to the programs that we analyze here. While a

1 Studying other standard library versions requires models of their native methods. We aim to
write such models for a more recent version as future work.
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Table 2. Total number of abstract contexts

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL (max. k)
compress 2596 13.7 113 1517 13.4 6.5 237 6.5 2.9 × 104 (21)
db 2613 13.7 115 1555 13.4 6.5 236 6.5 7.9 × 104 (22)
jack 2869 13.8 156 1872 13.2 6.8 220 6.8 2.7 × 107 (45)
javac 3780 15.8 297 13289 15.6 8.4 244 8.4 (41)
jess 3216 19.0 305 5394 18.6 6.7 207 6.7 6.1 × 106 (24)
mpegaudio 2793 13.0 107 1419 12.7 6.3 221 6.3 4.4 × 105 (31)
mtrt 2738 13.3 108 1447 13.1 6.6 226 6.6 1.2 × 105 (26)
soot-c 4837 11.1 168 4010 10.9 8.2 198 8.2 (39)
sablecc-j 5608 10.8 116 1792 10.5 5.5 126 5.5 (55)
polyglot 5616 11.7 149 2011 11.2 7.1 144 7.1 10130 (22)
antlr 3897 15.0 309 8110 14.7 9.6 191 9.6 4.8 × 109 (39)
bloat 5237 14.3 291 14.0 8.9 159 8.9 3.0 × 108 (26)
chart 7069 22.3 500 21.9 7.0 335 (69)
jython 4401 18.8 384 18.3 6.7 162 6.7 2.1 × 1015 (72)
pmd 7219 13.4 283 5607 12.9 6.6 239 6.6 (55)
ps 3874 13.3 271 24967 13.1 9.0 224 9.0 2.0 × 108 (29)

Note: columns after the second column show multiples of the context-insensitive number.

1-call-site-sensitive analysis must store and process 6 to 9 times more data than a
context-insensitive analysis, the ratio grows to 1500 or more times for a 3-object-
sensitive analysis.

The ZCWL algorithm essentially performs a k-CFA analysis in which k is the maxi-
mum call depth in the original call graph after merging strongly connected components
(shown in parentheses in the ZCWL column). Because k is different for each bench-
mark, the number of contexts is much more variable than in the other variations of
context sensitivity. On the javac, soot-c, sablecc-j, chart, and pmd benchmarks, the al-
gorithm failed to complete in the available memory.

4.2 Equivalent Contexts

Next, we consider that many of the large numbers of abstract contexts are equivalent
in the sense that the points-to relations computed in many of the abstract contexts are
the same. More precisely, we define two method-context pairs, (m1, c1) and (m2, c2)
to be equivalent if m1 = m2, and for every local pointer variable p in the method, the
points-to set of p is the same in both contexts c1 and c2.

When two contexts are equivalent, there is no point in distinguishing them, because
the resulting points-to relation is independent of the context. In this sense, the number of
equivalence classes of method-context pairs reflects how worthwhile context sensitivity
is in improving the precision of points-to sets.

The measurements of the number of equivalence classes of contexts are shown in
Table 3. Again, the “insens.” column shows the actual number of equivalence classes
of contexts, while the other columns give a multiple of the “insens.” number (i.e. the
average number of equivalence classes per method).
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Table 3. Number of equivalence classes of abstract contexts

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 2597 8.4 9.9 11.3 12.1 2.4 3.9 4.9 3.3
db 2614 8.5 9.9 11.4 12.1 2.4 3.9 5.0 3.3
jack 2870 8.6 10.2 11.6 11.9 2.4 3.9 5.0 3.4
javac 3781 10.4 17.7 33.8 14.3 2.7 5.3 5.4
jess 3217 8.9 10.6 12.0 13.9 2.6 4.2 5.0 3.9
mpegaudio 2794 8.1 9.4 10.8 11.5 2.4 3.8 4.8 3.3
mtrt 2739 8.3 9.7 11.1 11.8 2.5 4.0 4.9 3.4
soot-c 4838 7.1 13.7 18.4 9.8 2.6 4.2 4.8
sablecc-j 5609 6.9 8.4 9.6 9.5 2.3 3.6 3.9
polyglot 5617 7.9 9.4 10.8 10.2 2.4 3.7 4.7 3.3
antlr 3898 9.4 12.1 13.8 13.2 2.5 4.1 5.2 4.3
bloat 5238 10.2 44.6 12.9 2.8 4.9 5.2 6.7
chart 7070 10.0 17.4 18.2 2.7 4.8
jython 4402 9.9 55.9 15.6 2.5 4.3 4.6 4.0
pmd 7220 7.6 14.6 17.0 11.0 2.4 4.2 4.2
ps 3875 8.7 9.9 11.0 12.0 2.6 4.0 5.2 4.4

Note: columns after the second column show multiples of the context-insensitive number.

The relatively small size of these numbers compared to the total numbers of con-
texts in Table 2 explains why a BDD can effectively represent the analysis information,
since it automatically merges the representation of equal points-to relations, so each
distinct relation is only represented once. If we had some idea before designing an
analysis which abstract contexts are likely to be equivalent, we could define a new con-
text abstraction in which these equivalent contexts are merged. Each equivalence class
of old abstract contexts would be represented by a single new abstract context. With
such a context abstraction, the context-sensitive analysis could be implemented without
requiring BDDs.

It is interesting that in the 1-, 2-, and 1H-object-sensitive analysis, the number of
equivalence classes of contexts is generally about 3 times as high as in the correspond-
ing 1-, 2-, and 1H-call-site-string analysis. This indicates that receiver objects better
partition the space of concrete calling contexts that give rise to distinct points-to rela-
tions. That is, if at run time, the run-time points-to relation is different in two concrete
calls to a method, it is more likely that the two calls will correspond to distinct abstract
contexts if receiver objects rather than call sites are used as the context abstraction. This
observation leads us to hypothesize that object-sensitive analysis should be more pre-
cise than call-site-string analysis; we will see more direct measurements of precision in
upcoming sections.

In both object-sensitive and call-site-string analyses, making the context string
longer increases the number of equivalence classes of contexts by only a small amount,
while it increases the absolute number of contexts much more significantly. Therefore,
increasing the length of the context string is unlikely to result in a large improvement
in precision, but will significantly increase analysis cost.
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It was initially rather surprising that in the analysis using the ZCWL algorithm,
the number of equivalence classes of abstract contexts is so small, often even smaller
than in the 2-call-site-sensitive analysis. The algorithm essentially performs a k-CFA
analysis, where k is the maximum call depth in the original call graph; k is always
much higher than 2. The number of equivalence classes of contexts when using the
ZCWL algorithm is small because the algorithm merges strongly connected compo-
nents (SCCs) in the call graph, and models all call edges in each such component
in a context-insensitive way. In contrast, the 2-call-site-sensitive analysis models all
call edges context-sensitively, including those in SCCs. Indeed, a very large number of
methods are part of some SCC. The initial call graph for each of our benchmarks con-
tains a large SCC of 1386 to 2926 methods, representing 36% to 53% of all methods in
the call graph. In particular, this SCC always includes many methods for which context-
sensitive analysis would be particularly useful, such as the methods of the String class
and the standard collections classes. These methods are used extensively within the Java
standard library, and contain many calls to each other. We examined this large SCC and
found many distinct cycles; there was no single method that, if removed, would break
the component. In summary, the reason for the surprisingly small number of equiva-
lence classes of abstract contexts when using the ZCWL algorithm is that it models a
large part of the call graph context-insensitively.

4.3 Distinct Points-to Sets

Finally, we measure the number of distinct points-to sets that appear in the points-to
analysis result. This number is an indication of how difficult it would be to efficiently
represent the context-sensitive points-to sets in a non-BDD-based analysis implemen-
tation, assuming there was already a way to represent the contexts themselves. An in-
crease in the number of distinct points-to sets also suggests an increase in precision, but
the connection is very indirect [10, Section 3.2]. We therefore present the number of
distinct points-to sets primarily as a measure of analysis cost, and provide more direct
measurements of the precision of clients of the analysis later in this paper. In traditional,
context-insensitive, subset-based points-to analyses, the representation of the points-to
sets often makes up most of the memory requirements of the analysis. If the traditional
analysis stores points-to sets using shared bit-vectors as suggested by Heintze [9], each
distinct points-to set need only be stored once. Therefore, the number of distinct points-
to sets approximates the space requirements of such a traditional representation.

The measurements of the number of distinct points-to sets arising with each context
abstraction are shown in Table 4. In this table, all numbers are the absolute count of
distinct points-to sets, not multiples of the “insens.” column.

The numbers of distinct points-to sets are fairly constant in most of the analysis
variations, including object-sensitive analyses, call-site-string analyses, and the analy-
sis using the ZCWL algorithm. Therefore, in a traditional points-to analysis imple-
mented using shared bit-vectors, representing the individual points-to sets should not
be a source of major difficulty even in a context-sensitive analysis. Future research in
traditional implementations of context-sensitive analyses should therefore be directed
more at the problem of efficiently representing the contexts, rather than representing the
points-to sets.
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Table 4. Total number of distinct points-to sets in points-to analysis results

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 3178 3150 3240 3261 34355 3227 3125 38242 3139
db 3197 3170 3261 3283 34637 3239 3133 38375 3173
jack 3441 3411 3507 3527 37432 3497 3377 40955 3541
javac 4346 4367 4579 4712 55196 4424 4303 54866
jess 3834 4433 4498 4514 51452 4589 4426 42614 4644
mpegaudio 4228 4179 4272 4293 36563 4264 4157 67565 4175
mtrt 3349 3287 3377 3396 35154 3387 3263 38758 3282
soot-c 4683 4565 4670 4657 45974 4722 4550 52937
sablecc-j 5753 5777 5895 5907 52993 5875 5694 59748
polyglot 5591 5556 5829 5925 50587 5682 5516 59837 5575
antlr 4520 5259 5388 5448 54942 4624 4535 54176 4901
bloat 5337 5480 5815 55309 5452 5342 49230 6658
chart 9608 9914 10168 233723 9755 9520
jython 4669 5111 5720 74297 4968 4857 46280 8587
pmd 7368 7679 7832 7930 94403 7671 7502 103990
ps 4610 4504 4639 4672 47244 4656 4521 58513 4802

However, when abstract heap objects are modelled context-sensitively, the elements
of each points-to set are pairs of abstract object and context, rather than simply abstract
objects, and the number of distinct points-to sets increases about 11-fold. In addition,
it is likely that the points-to sets themselves are significantly larger. Therefore, in order
to implement such an analysis without using BDDs, it would be worthwhile to look for
an efficient way to represent points-to sets of abstract objects with context.

5 Call Graph

We now turn our attention to the effect of context sensitivity on call graph construc-
tion. For the purposes of comparison, we have constructed context-sensitive call graphs,
projected away their contexts, and measured differences in their context-insensitive pro-
jections. We adopted this methodology because context-sensitive call graphs
using different context abstractions are not directly comparable. Each node in the graph
represents a pair of method and abstract context, but the set of possible abstract contexts
is different in each context variation. In the context-insensitive projection, each node is
simply a method, so the projections are directly comparable. The context-insensitive
projection preserves the set of methods reachable from the program entry points, as
well as the set of possible targets of each call site in the program; it is these sets that
we measure. The set of reachable methods is particularly important because any con-
servative interprocedural analysis must analyze all of these methods, so a small set of
reachable methods reduces the cost of other interprocedural analyses.

We have not included the ZCWL algorithm in our study of call graph construc-
tion, because the context-insensitive projection of the context-sensitive call graph that
it produces is the same as the context-insensitive call graph that we originally give it as
input.
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5.1 Reachable Methods

Table 5 shows the number of methods reachable from the program entry points when
constructing the call graph using different variations of context sensitivity, excluding
methods from the standard Java library. In Table 5 and all subsequent tables in this pa-
per, the most precise entry for each benchmark has been highlighted in bold. In the case
of a tie, the most precise entry that is least expensive to compute has been highlighted.

Table 5. Number of reachable benchmark (non-library) methods in call graph

object-sensitive call site actually
Benchmark CHA insens. 1 2 3 1H 1 2 1H executed
compress 90 59 59 59 59 59 59 59 59 56
db 95 65 64 64 64 64 65 64 65 51
jack 348 317 313 313 313 313 316 313 316 291
javac 1185 1154 1147 1147 1147 1147 1147 1147 1147 778
jess 683 630 629 629 629 623 629 629 629 395
mpegaudio 306 255 251 251 251 251 251 251 251 222
mtrt 217 189 186 186 186 186 187 187 187 182
soot-c 2395 2273 2264 2264 2264 2264 2266 2264 2266 1055
sablecc-j 1904 1744 1744 1744 1744 1731 1744 1744 1744 1034
polyglot 2540 2421 2419 2419 2419 2416 2419 2419 2419 2037
antlr 1374 1323 1323 1323 1323 1323 1323 1323 1323 1099
bloat 2879 2464 2451 2451 2451 2451 2451 2451 138
chart 3227 2081 2080 2080 2031 2080 2080 854
jython 2007 1695 1693 1693 1683 1694 1693 1694 1004
pmd 4997 4528 4521 4521 4521 4509 4521 4521 4521 1817
ps 840 835 835 835 835 834 835 835 835 285

For the simple benchmarks like compress and db, the context-insensitive call graph
is already quite precise (compared to the dynamic behaviour), and any further improve-
ments due to context sensitivity are relatively small. For the more significant bench-
marks, call graph construction benefits slightly from 1-object sensitivity. The largest
difference is 13 methods, in the bloat benchmark. All of these methods are visit meth-
ods in an implementation of the visitor design pattern, in the class AscendVisitor. This
class traverses a parse tree from a starting node upwards toward the root of the tree,
visiting each node along the way. Some kinds of nodes have no descendants that are
ever the starting node of a traversal, so the visit methods of these nodes can never be
called. However, in order to prove this, an analysis must analyze the visitor dispatch
method context-sensitively in order to keep track of the kind of node from which it was
called. Therefore, a context-insensitive analysis fails to show that these visit methods
are unreachable.

In jess, sablecc-j, polyglot, chart, jython, pmd, and ps, modelling abstract heap ob-
jects object-sensitively further improves the precision of the call graph. In the sablecc-j
benchmark, 13 additional methods are proved unreachable. The benchmark includes an
implementation of maps similar to those in the standard library. The maps are instan-
tiated in a number of places, and different kinds of objects are placed in the different
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maps. Methods such as toString() and equals() are called on some maps but not others.
Calling one of the methods on a map causes it to be called on all elements of the map.
Therefore, these methods are called on some kinds of map elements, but not others.
However, the map elements are kept in generic map entry objects, which are allocated
at a single point in the map code. When abstract heap objects are modelled without
context, all map entries are modelled by a single abstract object, and the contents of all
maps are conflated. When abstract heap objects are modelled with context, the map en-
tries are treated as separate objects depending on which map they were created for. Note
that distinguishing the map entries requires receiver objects to be used as context, rather
than call-site strings. The code that allocates a new entry is in a method that is always
called from the same call site, in another method of the map class. In general, although
modelling abstract heap objects with context improved the call graph for some bench-
marks in an object-sensitive analysis, it never made any difference in analyses using
call-site strings as the context abstraction (i.e. the 1-call-site and 1H-call-site columns
are the same).

Overall, object-sensitive analysis results in slightly smaller call graphs than call-
site-string analysis. The 1-object-sensitive call graph is never larger than the 1-call-site-
sensitive call graph, and it is smaller on db, jack, mtrt, soot-c, and jython. On the db, jack,
and jython benchmarks, the call-site-sensitive call graph can be made as small as the 1-
object-sensitive call graph, but it requires 2-call-site rather than 1-call-site analysis.

Even the most precise context-sensitive analyses produce a much bigger call graph
than the dynamic one, shown in the rightmost column of the table. This difference
is largely due to unused but complicated features of the Java Runtime Environment
(such as network class loading and Jar File signing) which are controlled by external
configuration parameters unknown to the analysis.

5.2 Call Edges

Table 6 shows the size of the call graph in terms of call edges rather than reach-
able methods. Only call edges originating from a benchmark (non-library) method are
counted.

In general, context sensitivity makes little difference to the size of the call graph
when measured this way, with one major exception. In the sablecc-j benchmark, the
number of call edges is 17925 in a context-insensitive analysis, but only 5175 in a
1-object-sensitive analysis. This could make a significant difference to the cost of a
client analysis whose complexity depends on the number of edges in the call graph. The
large difference is caused by the following pattern of code. The sablecc-j benchmark
contains code to represent a parse tree, with many different kinds of nodes. Each kind
of node implements a method called removeChild(). The code contains a large number
of calls of the form this.getParent().removeChild(this). In a context-insensitive analysis,
getParent() is found to possibly return any of hundreds of possible kinds of nodes.
Therefore, each of these many calls to removeChild(this) results in hundreds of call
graph edges. However, in a context-sensitive analysis, getParent() is analyzed in the
context of the this pointer. For each kind of node, there is a relatively small number of
kinds of nodes that can be its parent. Therefore, in a given context, getParent() is found
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Table 6. Number of call edges in call graph originating from a benchmark (non-library) method

object-sensitive call site actually
Benchmark CHA insens. 1 2 3 1H 1 2 1H executed
compress 456 270 270 270 270 270 270 270 270 118
db 940 434 427 427 427 427 434 427 434 184
jack 1936 1283 1251 1251 1251 1250 1276 1251 1276 833
javac 13146 10360 10296 10296 10296 10296 10318 10301 10318 2928
jess 4700 3626 3618 3618 3618 3571 3618 3618 3618 919
mpegaudio 1182 858 812 812 812 812 812 812 812 400
mtrt 925 761 739 739 739 739 746 746 746 484
soot-c 20079 14611 14112 14112 14112 13868 14185 14112 14185 2860
sablecc-j 24283 17925 5175 5140 5140 5072 5182 5140 5182 2326
polyglot 19898 11768 11564 11564 11564 11374 11566 11566 11566 5440
antlr 10769 9553 9553 9553 9553 9553 9553 9553 9553 4196
bloat 36863 18586 18143 18143 17722 18166 18143 18166 477
chart 24978 9526 9443 9443 9178 9443 9443 2166
jython 13679 9382 9367 9367 9307 9367 9365 9367 2898
pmd 29401 18785 18582 18582 18580 18263 18601 18599 18601 3879
ps 13610 11338 11292 11292 11292 10451 11298 11292 11298 705

to return only a small number of kinds of parent node, so each call site of removeChild()
adds only a small number of edges to the call graph.

6 Virtual Call Resolution

Table 7 shows the number of virtual call sites for which the call graph contains more
than one potential target method. Call sites with at most one potential target method can
be converted to cheaper static instead of virtual calls, and they can be inlined, possibly
enabling many other optimizations. Therefore, an analysis that proves that call sites are
not polymorphic can be used to significantly improve run-time performance.

In the benchmarks written in an object-oriented style, notably javac, soot-c,
sablecc-j, polyglot, bloat, and pmd, many more call sites can be devirtualized using
object-sensitive analysis than context-insensitive analysis. In some cases, call-site-
string analysis gives the same improvement, but never any more, and in soot-c and
sablecc-j, the improvement from 1-object-sensitive analysis is much greater than from
1-call-site string analysis.

In sablecc-j, there are three sets of call sites that can be devirtualized using context-
sensitive analysis. Any context-sensitive analysis is sufficient to devirtualize the first set
of call sites. Devirtualization of the second set of call sites requires an object-sensitive
analysis; an analysis using call sites as the context abstraction cannot prove them to
be monomorphic. Devirtualization of the third set of call sites not only requires an
object-sensitive analysis, but it also requires that abstract heap objects be modelled
with context.

The first set of call sites are the calls to the removeChild() method mentioned in
Section 5.2. Object sensitivity reduces the number of potential target methods at each
of these call sites. At many of them, it reduces the number down to one, so the calls
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Table 7. Total number of potentially polymorphic call sites in benchmark (non-library) code

object-sensitive call site
Benchmark CHA insens. 1 2 3 1H 1 2 1H
compress 16 3 3 3 3 3 3 3 3
db 36 5 4 4 4 4 5 4 5
jack 474 25 23 23 23 22 24 23 24
javac 908 737 720 720 720 720 720 720 720
jess 121 45 45 45 45 45 45 45 45
mpegaudio 40 27 24 24 24 24 24 24 24
mtrt 20 9 7 7 7 7 8 8 8
soot-c 1748 983 913 913 913 913 938 913 938
sablecc-j 722 450 325 325 325 301 380 325 380
polyglot 1332 744 592 592 592 585 592 592 592
antlr 1086 843 843 843 843 843 843 843 843
bloat 2503 1079 962 962 961 962 962 962
chart 2782 254 235 235 214 235 235
jython 646 347 347 347 346 347 347 347
pmd 2868 1224 1193 1193 1193 1163 1205 1205 1205
ps 321 304 303 303 303 300 303 303 303

can be devirtualized. The same improvement is obtained with call-site-string context
sensitivity.

The second set of call sites are calls to methods of iterators over lists. The sablecc-
j benchmark contains several implementations of lists similar to those in the standard
Java library. A call to iterator() on any of these lists invokes iterator() on the AbstractList
superclass, which in turn invokes the listIterator() method specific to each list. The ac-
tual kind of iterator that is returned depends on which listIterator() was invoked, which
in turn depends on the receiver object of the call to iterator(); it is independent of the
call site of listIterator(), which is always the same site in iterator(). Therefore, calls to
hasNext() and next() on the returned iterator can be devirtualized only with an object-
sensitive analysis.

The third set of call sites are calls to methods such as toString() and equals() on
objects stored in maps. As we explained in Section 5.1, object-sensitive modelling of
abstract heap objects is required to distinguish the internal map entry objects in each
separate use of the map implementation. The map entry objects must be distinguished
in order to distinguish the objects that are stored in the maps. Therefore, devirtualization
of these calls to methods of objects stored in maps requires an object-sensitive analysis
that models abstract heap objects with context.

7 Cast Safety

We have used the points-to analysis results in a client analysis that proves that some
casts cannot fail. A given cast cannot fail if the pointer that it is casting can only point
to objects whose type is a subtype of the type of the cast. Table 8 shows the num-
ber of casts in each benchmark that cannot be statically proven safe by the cast safety
analysis.
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Table 8. Number of casts potentially failing at run time

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 145 145 145 104 146 145 146 146
javac 405 370 370 370 363 391 370 391
jess 130 130 130 130 86 130 130 130 130
mpegaudio 42 38 38 38 38 40 40 40 42
mtrt 31 27 27 27 27 27 27 27 29
soot-c 955 932 932 932 878 932 932 932
sablecc-j 375 369 369 369 331 370 370 370
polyglot 3539 3307 3306 3306 1017 3526 3443 3526 3318
antlr 295 275 275 275 237 276 275 276 276
bloat 1241 1207 1207 1160 1233 1207 1233 1234
chart 1097 1086 1085 934 1070 1070
jython 501 499 499 471 499 499 499 499
pmd 1427 1376 1375 1375 1300 1393 1391 1393
ps 641 612 612 612 421 612 612 612 612

Context sensitivity improves precision of cast safety analysis in jack, javac, mpe-
gaudio, mtrt, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, and ps. Object
sensitive cast safety analysis is never less precise and often significantly more precise
than the call-site-string context sensitive variations. The improvements due to context
sensitivity are most significant in the polyglot and javac benchmarks. In db, jack, javac,
jess, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, and ps, modelling ab-
stract heap objects with receiver object context further improves precision of cast safety
analysis.

The improvement is most dramatic in the polyglot benchmark, which contains a
hierarchy of classes representing different kinds of nodes in an abstract syntax tree. At
the root of this hierarchy is the Node c class. This class implements a method called
copy() which, like the clone() method of Object, returns a copy of the node on which
it is called. In fact, the copy() method first uses clone() to create the copy of the node,
and then performs some additional processing on it. The static return type of copy() is
Object, but at most sites calling it, the returned value is immediately cast to the static
type of the node on which it is called. In our analysis, the clone() native method is
modelled as returning its receiver; that is, the original object and the cloned version are
represented by the same abstract object. Therefore, given a program that calls clone()
directly, the cast safety analysis correctly determines that the run-time type of the clone
is the same as that of the original. However, in polyglot, the call to clone() is wrapped
inside copy(), and the casts appear at sites calling copy(). When copy() is analyzed in a
context-insensitive way, it is deemed to possibly return any of the objects on which it is
called throughout the program, so the casts cannot be proven to succeed. In an object-
sensitive analysis, however, copy() is analyzed separately in the context of each receiver
object on which it is called, and in each such context, it returns only an object of the
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same type as that receiver object. Therefore, the cast safety analysis proves statically
that the casts of the return value of copy() cannot fail.

The number of potentially failing casts in the polyglot benchmark decreases even
more dramatically between the 1-object-sensitive and 1H-object-sensitive columns of
Table 8, from 3307 to 1017. The majority of these casts are in the parser generated by
JavaCUP. The parser uses a Stack as the LR parse stack. Each object popped from the
stack is cast to a Symbol. The generated polyglot parser contains about 2000 of these
casts. The Stack class extends Vector, which uses an internal elementData array to store
the objects that have been pushed onto the stack. In order to prove the safety of the
casts, the analysis must distinguish the array implementing the parse stack from the
arrays of other uses of Vector in the program. Since the array is allocated in one place,
inside the Vector class, the different array instances can only be distinguished if abstract
heap objects are modelled with context. Therefore, modelling abstract heap objects with
object sensitivity is necessary to prove that these 2000 casts cannot fail.

8 Related Work

The most closely related work is the evaluation of object-sensitive analysis by Mi-
lanova, Rountev, and Ryder [17, 18]. They implemented a limited form of object sen-
sitivity within their points-to analysis framework based on annotated constraints [21]
and built on top of the BANE toolkit [2]. In particular, they selected a subset of pointer
variables (method parameters, the this pointer, and the method return value) which they
modelled context-sensitively using the receiver object as the context abstraction. All
other pointer variables and all abstract heap objects were modelled without context.
The precision of the analysis was evaluated on benchmarks using version 1.1.8 of the
Java standard library, and compared to a context-insensitive and to a call-site context-
sensitive analysis, using call graph construction, virtual call resolution, and mod-ref
analysis as client analyses. Our BDD-based implementation has made it feasible to eval-
uate object-sensitive analysis on benchmarks using the much larger version 1.3.1 01
of the Java standard library. Thanks to the better scalability of the BDD-based im-
plementation, we have performed a much broader empirical exploration of the design
space of object-sensitive analyses. In particular, we have modelled all pointer variables
context-sensitively, rather than only a subset, we have used receiver object strings of
length up to three, rather than only one, and we have modelled abstract heap objects
context-sensitively.

Whaley and Lam [29] suggest several client analyses of the ZCWL algorithm, but
state that “in-depth analysis of the accuracy of the analyses . . . is beyond the scope
of this paper.” They do, however, provide some preliminary data about thread escape
analysis and a “type refinement analysis” for finding variables whose declared type
could be made more specific. In this paper, we have compared the precision of the
ZCWL algorithm against object-sensitive and call-site-string context-sensitive analyses
using several client analyses, namely call graph construction, virtual call resolution, and
cast safety analysis.

Liang, Pennings and Harrold [16] evaluated the effect of context sensitivity on the
size of pointed-to-by sets (the inverse of points-to sets), normalized using dynamic



62 O. Lhoták and L. Hendren

counts. Instead of using BDDs to allow their analyses to scale to benchmarks using
the large Java standard library, they simulated the library with a hand-crafted model.
Their results agree with our findings that context sensitivity improves precision for
some benchmarks, and that a context-sensitive heap abstraction is important for pre-
cision. However, they found that call sites are sometimes more precise than receiver
objects. This difference could be caused by several factors, including their different
choice of benchmarks, their very different precision metric (pointed-to-by sets), or their
simulation of the standard library.

Several context-sensitive points-to analyses other than the subset-based analyses
studied in this paper have been proposed. Wilson and Lam [30] computed summary
functions summarizing the effects of functions, which they then inlined into summaries
of their callers. Liang and Harrold [15] proposed an equality-based context-sensitive
analysis; its precision relative to subset-based context-sensitive analysis remains to be
studied. Ruf [22] compared context-insensitive analysis to using “assumption sets” as
the context abstraction, and concluded that on C benchmarks, context sensitivity had
little effect on the points-to sets of pointers that are actually dereferenced. Like object
sensitivity, the Cartesian Product Algorithm [1, 28] uses abstract objects as the context
abstraction, but includes all method parameters as context, rather than only the receiver
parameter. In the future, it would be interesting to empirically compare these additional
variations of context-sensitive analysis with those studied in this paper.

9 Conclusions

We have performed an in-depth empirical study of the effects of variations of context
sensitivity on the precision of Java points-to analysis. In particular, we studied object-
sensitive analysis, context-sensitive analysis using call sites as the context abstraction,
and the ZCWL algorithm. We evaluated the effects of these variations on the number
of contexts generated, the number of distinct points-to sets constructed, and on the
precision of call graph construction, virtual call resolution, and cast safety analysis.

Overall, we found that context sensitivity improved call graph precision by a small
amount, improved the precision of virtual call resolution by a more significant amount,
and enabled a major precision improvement in cast safety analysis.

Object-sensitive analysis was clearly better than the other variations of context sen-
sitivity that we studied, both in terms of analysis precision and potential scalability.
Client analyses based on object-sensitive analyses were never less precise than those
based on call-site-string context-sensitive analyses or on the ZCWL algorithm, and in
many cases, they were significantly more precise. As we increased the length of con-
text strings, the number of abstract contexts produced with object-sensitive analysis
grew much more slowly than with the other variations of context sensitivity, so object-
sensitive analysis is likely to scale better. However, the number of equivalence classes
of contexts was greater with object sensitivity than with the other variations, which in-
dicates that object sensitivity better distinguishes contexts that give rise to differences
in points-to sets.

Of the object-sensitive variations, extending the length of context strings caused
very few additional improvements in analysis precision compared to 1-object-sensitive
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analysis. However, modelling abstract heap objects with context did improve precision
significantly in many cases. Therefore, we conclude that 1-object-sensitive and 1H-
object-sensitive analyses provide the best tradeoffs between precision and analysis effi-
ciency. Our measurements of the numbers of abstract contexts and distinct points-to sets
suggest that it should be feasible to implement an efficient non-BDD-based 1-object-
sensitive analysis using current implementation techniques such as shared bit vectors.
Efficiently implementing a 1H-object-sensitive analysis without BDDs will require new
improvements in the data structures and algorithms used to implement points-to analy-
ses, and we expect that our results will motivate and help guide this future research.

Although the ZCWL algorithm constructs call-site strings of arbitrary length, client
analyses based on it were never more precise than those based on object-sensitive analy-
sis. In many cases, analyses based on the ZCWL algorithm were even less precise than
those based on 1-call-site-sensitive analysis. The key cause of the disappointing results
of this algorithm was its context-insensitive treatment of calls within SCCs of the initial
call graph — a large proportion of call edges were indeed within SCCs.
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