
A New Method for Efficiently Generating
Planar Graph Visibility Representations

John M. Boyer

IBM Victoria Software Lab, Victoria, BC Canada
boyerj@ca.ibm.com, jboyer@acm.org

1 Introduction

A planar graph visibility representation maps each vertex to a horizontal
segment at a vertical position and each edge to a vertical segment at a horizontal
position such that each edge segment terminates at the vertical positions of its
endpoint vertices and intersects no other horizontal vertex segments. The first
O(n) algorithms for producing visibility representations were presented in [4, 5].
These were based on pre-processing to compute both an st-numbering and the
dual of the planar graph, which were then used with the combinatorial planar
embedding to produce a visibility representation. Greater efficiency is obtained
in [3] by eliminating the need for the planar graph dual and by re-using the
pre-computed st-numbering in the PQ-tree [1] algorithm.

Recently, the Boyer-Myrvold edge addition planarity method was
presented [2]. The benefits relative to many prior methods, including simpler
proof of correctness and O(n) implementation, are due in part to eliminating
the PQ-tree’s st-numbering. Hence, a new approach was required in order to
extend the efficiency and simplicity of edge addition planarity into the realm of
generating visibility representations.

2 Computing Vertical Positions of Vertices

During the execution of the edge addition planarity algorithm, the vertices are
assigned a relative position of ‘between’ or ‘beyond’ the depth first search (DFS)
parent relative to some selected DFS ancestor. Each time a back edge is embed-
ded, if its endpoints are in separate biconnected components of the partial planar
embedding, then all components that become biconnected by the new edge are
merged. Each edge along the external face that is incident to a merge point is
marked so that when the edge is moved off of the external face (by embedding
another back edge around it), the relative position of the merge point and one of
its DFS children can be assigned. Figure 1 shows how the edge marks are made,
and Figure 2 depicts how they are resolved into relative vertex placements.

The relative vertex placements assigned during planar embedding are con-
verted in a post-processing step into a vertical vertex order using pre-order
DFS tree traversal. When a vertex is visited, its ancestors have already been

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 508–511, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Method for Efficiently Generating Planar Graph 509

Fig. 1. When merging biconnected components, the external face edges incident to the
merge points are marked with the identity of a DFS child. The children f and g are
‘tied’ with parent r in vertical placement until these marks are resolved.

Fig. 2. (a) In a step ux of the embedding, traversing from the descendant x of f to
the parent r of f means that f is placed between the parent r and the ancestor ux.
Traversing from the parent r of g to the descendant y of g means that g is placed
beyond parent r relative to ancestor ux. (b) External activity at r can result in both
children f and g being placed between r and some ancestor.

added to the vertex order. The localized information includes a marking of ‘be-
tween’ the DFS parent and a given ancestor or ‘beyond’ the DFS parent relative
to the given ancestor. This is converted to be ‘above’ or ‘below’ the DFS parent,
then the vertex is inserted immediately above or below its parent in the vertex

510 J.M. Boyer

order. More information is required to perform this conversion without resorting
to non-linear time techniques like dynamic topological sorting. Each vertex v is
positioned relative to its DFS parent p and an ancestor a, and both are added to
the vertex order beforehand, but the relative positions of a and p in the vertex
order are needed. Fortunately, we already store the placement of each vertex rel-
ative to its parent, and the placement of a vertex relative to its parent controls
the placement of the entire DFS subtree rooted by that vertex relative to the
DFS parent. Hence, the child c of a that roots the subtree containing p and v
is stored during planar embedding when the relationship between v, p and a is
made. Then, during this post-processing step, the relative order of p and a is
obtained by query of the relative order of c and a.

3 Computing Horizontal Positions of Edges

A sweep algorithm is performed on the combinatorial planar embedding, using
the vertical positions of the vertices to advance a horizontal sweep line, a data
structure in which the edge order is developed. Also, each vertex keeps track
of its generator edge in the edge order, which is just the first edge incident
to the vertex that is added to the edge order. The generator edge provides an
insertion point along the horizontal sweep line for the edges emanating from the
vertex to the vertices that are below it (which have a greater vertex position
number).

For starters, each edge e incident to the DFS tree root is added to the edge
order according to the cyclic order in the embedding, and the generator edge
of the child endpoint is set to e. For each vertex v below the DFS tree root in
vertex order, we obtain the generator edge e as the starting point of the cyclic
traversal of the adjacency list. The subset of edges emanating from v to vertices
with greater vertex positions (i.e. below v) are added in cyclic order immediately
after e. Also, for each such edge (v, w) that is added, if w has no generator edge,
then (v, w) becomes the generator edge of w.

4 Conclusion

This research has yielded a new method for generating planar graph visibility
representations. A linear-time reference implementation is available from the au-
thor based on the edge addition reference implementation that accompanies [2].
A pre-computed st-numbering was found to not be necessary, though the ver-
tex ordering method produces an st-numbering as an output. It would be of
theoretical interest to determine whether the notions of visibility representation
and st-numbering could be completely decoupled, but first appearances suggest
there would be little practical benefit as the sweep algorithm for edge ordering
appears to become much more complicated with multiple source vertices. Future
work would more easily find ways to compact the drawings via refinement of the
algorithm presented in this paper.

A New Method for Efficiently Generating Planar Graph 511

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and
Systems Sciences, 13:335–379, 1976.

2. J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.

3. R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. Planar embedding: Linear-
time algorithms for vertex placement and edge ordering. IEEE Transactions on
Circuits and Systems, 35(3):334–344, 1988.

4. P. Rosenstiehl and R. Tarjan. Rectilinear planar layouts and bipolar orientations of
planar graphs. Discrete and Computational Geometry, 1(4):343–353, 1986.

5. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of
planar graphs. Discrete and Computational Geometry, 1(4):321–341, 1986.

	Introduction
	Computing Vertical Positions of Vertices
	Computing Horizontal Positions of Edges
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

