
Drawing Graphs Using Modular Decomposition

Charis Papadopoulos1 and Constantinos Voglis2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
charis@ii.uib.no

2 Department of Computer Science, University of Ioannina, P.O.Box 1186,
GR-45110 Ioannina, Greece

voglis@cs.uoi.gr

Abstract. In this paper we present an algorithm for drawing an undi-
rected graph G which takes advantage of the structure of the modular
decomposition tree of G. Specifically, our algorithm works by traversing
the modular decomposition tree of the input graph G on n vertices and
m edges, in a bottom-up fashion until it reaches the root of the tree,
while at the same time intermediate drawings are computed. In order
to achieve aesthetically pleasing results, we use grid and circular place-
ment techniques, and utilize an appropriate modification of a well-known
spring embedder algorithm. It turns out, that for some classes of graphs,
our algorithm runs in O(n +m) time, while in general, the running time
is bounded in terms of the processing time of the spring embedder algo-
rithm. The result is a drawing that reveals the structure of the graph G
and preserves certain aesthetic criteria.

1 Introduction

The problem of automatically generating a clear and readable layout of complex
structures inside a graph is receiving increasing attention in the literature [1]. In
this work we present a drawing algorithm which takes advantage of the modular
decomposition of a graph. Our goal is to highlight the global structure of the
graph and reveal the regular structures within it. The usage of the modular
decomposition has been considered by many authors in the past to efficiently
solve other algorithmic problems [4].

Our approach, takes advantage of the modular decomposition of the input
graph G, which is a recursive tree-like partition that reveals modules of G, i.e.
sets of vertices having the same neighborhood. By exploiting the properties of
these modules and especially the properties of the modular decomposition tree
T (G), we are able to draw the modules separately using different techniques for
each one. To achieve aesthetically pleasing results, we utilize a grid placement
technique, a circular drawing paradigm, and a modification of a spring embedder
method, on the appropriate modules. Our algorithm relies on creating interme-
diate drawings in a systematic fashion by traversing the modular decomposition
tree of the input graph from bottom to top, while at the same time certain pa-
rameters are appropriately updated. In the end, the drawing of the graph G is

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 343–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



344 C. Papadopoulos and C. Voglis

obtained by traversing T (G) from the root to the leaves, in order to compute the
final coordinates of the vertices in the drawing area, using the parameters com-
puted in the previous traversal of T (G). It turns out that this way of processing
T (G), enables us to visualize the graph in various levels of abstraction.

Similar approaches for computing the layout of a graph are based on a specific
decomposition of it. Based on this scheme, optimal algorithms have been devel-
oped for drawing a series-parallel digraph [1], and for upward planarity testing
of a single-source digraph [2]. Also, many techniques for drawing hierarchical
clustered graphs, deal with a graph and its tree representation [6, 7, 8]. All these
methods address the problem of visualization, by drawing the non-leaf nodes of
the tree as simple closed curves. Force directed methods have also been devel-
oped to support and show the structure of a clustered graph which is a 2-level
decomposition scheme [13, 18].

2 Definitions and Background Results

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex set and the edge set of G,
respectively. Let S be a subset of the vertex set of a graph G. Then, the subgraph
of G induced by S is denoted by G[S]. A clique is a set of pairwise adjacent
vertices; a stable set is a set of pairwise non-adjacent vertices. The degree of a
vertex x in the graph G, denoted d(x), is the number of edges incident on x. For
a graph G on n vertices and m edges, D(G) = 2m/n is the average degree of G.
The complement of a graph G is denoted by G.

Let T be a rooted tree. For convenience, we refer to a vertex of a tree as
a node. The parent of a node t of T is denoted by p(t), whereas the node set
containing the children of t in T is denoted by ch(t). Let h be the height of the
tree T . Then, we denote by Li the node set containing the nodes of the i-th level
of T , for 0 ≤ i ≤ h.

2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every
vertex outside M is either adjacent to all vertices in M or to none of them.
The emptyset, the singletons, and the vertex set V (G) are trivial modules and
whenever G has only trivial modules it is called a prime (or indecomposable)
graph. It is easy to see that the chordless path on four vertices, P4, is a smallest
non-trivial prime graph, since graphs with three vertices are decomposable [4]. A
non-trivial module is also called homogeneous set. A module M of the graph G
is called a strong module, if for any module M ′ �= M of G, either M ′ ∩ M = ∅
or one module is included into the other. A module M of a graph G is called
parallel if G[M ] is a disconnected graph, series if G[M ] is a disconnected graph
and neighborhood if both G[M ] and G[M ] are connected graphs.

The modular decomposition of a graph G is a linear-space representation of
all the partitions of V (G) where each partition class is a module. The modular
decomposition tree T (G) of the graph G (or md-tree for short) is a unique labelled



Drawing Graphs Using Modular Decomposition 345

tree associated with the modular decomposition of G in which the leaves of T (G)
are the vertices of G and the set of leaves associated with the subtree rooted
at an internal node induces a strong module of G. Thus, the md-tree T (G)
represents all the strong modules of G. An internal node is labelled by either P
(for parallel module), S (for series module), or N (for neighborhood module). It
is shown that for every graph G on n vertices and m edges, the md-tree T (G) is
unique up to isomorphism, the number of nodes in T (G) is O(n) and it can be
constructed in O(n + m) time [5, 15].

Let t be an internal node of the md-tree T (G) of a graph G. We denote
by M(t) the module corresponding to t which consists of the set of vertices of
G associated with the subtree of T (G) rooted at node t; note that M(t) is a
strong module for every (internal or leaf) node t of T (G). Let t1, t2, . . . , tp be
the children of the node t of md-tree T (G). We denote by G(t) the representative
graph of node t defined as follows: V (G(t)) = {t1, t2, . . . , tp} and titj ∈ E(G(t))
if there exists edge vkv� ∈ E(G) such that vk ∈ M(ti) and v� ∈ M(tj). For the
P-, S-, and N-nodes, the following lemma holds (see [4]):

Lemma 1. Let G be a graph, T (G) its modular decomposition tree, and t an
internal node of T (G). Then, G(t) is an edgeless graph if t is a P-node, G(t) is
a complete graph if t is an S-node, and G(t) is a prime graph if t is an N-node.

2.2 Modular Decomposition Based Drawing Γ (G)

Our drawing algorithm is based on the modular decomposition tree of a given
graph G. We deal with box-shaped vertices with a specific size. For every t ∈
T (G) we define c(t) = (x(t), y(t)) ∈ R2 to be the coordinates of the center of
node t, and b(t) = (w(t), h(t)) ∈ R2 to be the dimensions of the box of node
t, where w(t) and h(t) are the width and the height of the box, respectively.
In other words, c(t) is the center of the box b(t). We adopt the straight-line
drawing convention and we impose the following constraints: (C1) vertices do
not overlap; (C2) vertices in every strong module M(t), induced by an internal
node t of T (G), are drawn close (in terms of their Euclidean distance) to each
other; (C3) vertices in every strong module M(t), induced by an internal node
t of T (G), are drawn according to the structure (edgeless or complete or prime)
of the representative graph G(t).

Definition 1. A drawing with the previous constraints is called a modular de-
composition based drawing Γ (G) of the graph G which is a mapping between the
vertices and the Euclidean space R2: Γ (G) : V (G) → R2.

Definition 2. A relative drawing Γ ′(t, T (G)) is an md-drawing of the represen-
tative graph G(t), relative to c(t).

3 The Algorithm

Let G be a graph on n vertices v1, v2, . . . , vn with non-uniform dimensions
b(v1), b(v2), . . . , b(vn), respectively, and m edges. Our algorithm first computes



346 C. Papadopoulos and C. Voglis

the md-tree T (G) using one of the known linear-time algorithms [5, 15]. In
bottom-up fashion, we traverse the md-tree T (G) and calculate the relative
drawing Γ ′(t, T ) for every internal node t. In order to apply the new coordi-
nates to the subtree rooted at t, and finally to the graph G[M(t)], we store
the displacements from the previous coordinates, dis(ti) for every ti. Finally, we
traverse the md-tree T (G) in a top-down fashion and for every internal node
t ∈ T (G), we add the displacement dis(t) to the centers of the boxes of every
child node ti ∈ ch(t). In this way, all the vertices of G[M(t)] obtain the right
coordinates relative to the center of their ancestor node t.

We mention that every relative drawing uses a predefined constant ki as the
preferred edge length of the drawing at the level set Li, 0 ≤ i ≤ h − 1, of
the md-tree T (G). The algorithm, called Module Drawing, is given in detail in
Algorithm 1.

Algorithm. Module Drawing
Input: A graph G on n vertices and m edges.
Output: An md-drawing Γ (G) of the graph G.

1. Construct the modular decomposition tree T of the graph G;
2. Initialize the rectangle boxes b(t) and the centers c(t) for every t ∈ T ;
3. Compute the node sets L0, L1, . . . , Lh of the levels 0, 1, . . . , h of T ,

and assign values to the preferred edge lengths ki;
4. for i = h − 1 down to 0 do { bottom-up fashion}

for every internal node t ∈ Li do
4.1 if t is a P-node then Γ ′(t, T ) ← Draw Edgeless(t, T );
4.2 else if t is a S-node then Γ ′(t, T ) ← Draw Complete(t, T );
4.3 else {t is a N-node} Γ ′(t, T ) ← Draw-Prime(t, T );
4.4 Compute the displacement dis(ti), for each node ti ∈ ch(t),

with respect to their initial placement;
4.5 Update the size of the rectangle box b(t),

according to the frame boundaries of Γ ′(t, T );
5. for i = 0 down to h − 1 do { top-down fashion}

for every internal node t ∈ Li do
for every child ti ∈ ch(t) do
5.1 c(ti) ← c(ti) + dis(t)

6. Return the drawing Γ (G) = Γ ′(r, T ) computed in the root r of T ;

Algorithm 1. Module Drawing

Due to lack of space, the formal description of functions Draw Edgeless and
Draw Complete is omitted, whereas the function Draw-Prime is described in de-
tail in Sect. 4. All these functions are aware of the preferred edge length, denoted
by k, which may be different for each level of T (G). We note here that, one can
use different drawing techniques for each relative drawing to fulfill desired aes-
thetic criteria. Our approach draws edgeless graphs on an underlying grid, com-
plete graphs in a circular way, and prime graphs using a spring embedder method.



Drawing Graphs Using Modular Decomposition 347

Vertices are placed by function Draw Edgeless, keeping in mind that there
are no connecting edges between them. This is achieved by a grid placement of
the nodes in an arbitrary order. The Euclidean distance between the boundaries
of two nodes placed adjacent on the grid is at least k. For symmetry reasons, we
distribute evenly the space between the nodes in each row, so that a complete
alignment is achieved. Each row is then processed one by one and it is placed
below the previous one, keeping distance of at least k from the bottom boundary
of the previous row.

Function Draw Complete is basically a circular drawing algorithm, even
though the representative graph G(t), is a complete graph. We have chosen
to draw complete graphs in this way, in order to expose the structure of a se-
ries module (see constraint C3). Furthermore, a circular drawing satisfies the
aesthetic criterion of symmetry and is the usual way of representing complete
graphs in textbooks. The vertices of the series module are placed in an arbitrary
order on equal arcs, on the circumference of a cycle centered at c(t). The initial
radius is determined by the smallest sized box. Function Draw Complete process
each node ti ∈ ch(t) one by one, and calculates its final radius by considering
the size of the two adjacent nodes on the cycle. For every node ti a value f(ti)
is computed that represents the maximum distance from c(ti) to a point on its
boundary b(ti). Finally, node ti is positioned on the minimum possible radius,
according to f(ti) and the preferred edge length k, so that any overlapping is
avoided. We note that for a complete graph with uniform nodes the drawing is
a perfect cycle.

For the time complexity of functions Draw Edgeless and Draw Complete, the
following holds:

Lemma 2. Let T (G) be a modular decomposition tree of graph G and let ch(t) be
the set of children of a P-node (resp. an S-node) t ∈ T (G). Function Draw Edge-
less (resp. Draw Complete) constructs a relative drawing Γ ′(t, T ) in O(|ch(t)|)
time.

4 Modified Spring Embedder

In this section we describe in detail a spring embedder algorithm for the im-
plementation of function Draw Prime. Recall that this function is applied on a
N-node t ∈ T (G). Since the representative graph G(t) is a prime graph, function
Draw Prime requires the vertex set V (G(t)) and the edge set E(G(t)).

The main task of Draw Prime is to combine the aesthetic properties of a spring
embedder algorithm, with the constraint that no vertex-to-vertex overlapping oc-
curs. The fact that Draw Prime is applied on the representative graph G(t) that
contains verticeswith non-uniform sizes,makes the drawing task more demanding.

The function Draw Prime falls in the category of force-integration approaches
[14, 12, 11]. It is based on the Fruchterman & Reingold (FR) spring embedder al-
gorithm [9] and follows the general guidelines of Harel & Koren [12]. Draw Prime
consists of a main iteration loop, that is repeated until some termination criteria
are met. There are three basic steps to each iteration: (i) calculate the effect



348 C. Papadopoulos and C. Voglis

of the edge-attractive forces (ii) calculate the effect of vertex-to-vertex repulsive
forces and (iii) limit the total displacement by a quantity called temperature
which is decreased over the iterations. The temperature is decreased by a cool-
ing schedule, the choice of which greatly affects the quality of the drawing. To
summarize, Draw Prime starts with an initial random placement of the vertices
and an initial temperature, and performs the main iteration loop, until the un-
derlying physical system reaches an equilibrium state. As presented in [9], we
choose a two phase cooling scheme: the first phase starts with a constant initial
temperature and reduces it using an exponential cooling scheme, and the sec-
ond phase, which starts after a number of iterations, maintains a constant low
temperature.

As already mentioned, we must take into account the size of the children ti
of a node t so that vertices of G(t) would not overlap. To achieve this, we have
modified the formulas for the attractive and the repulsive forces between the
vertices of the graph. The final formulas for the forces will be presented later in
the section. We will first describe the heuristics that we use to avoid overlapping.
According to [12], the first modification to the original FR algorithm will result
the following formulas for the attractive fa and the repulsive fr forces:

Modified FR : fa(rMFR) =
r2
MFR

k
and fr(rMFR) =

k2

max(rMFR, ε)
,

where rMFR = f(ti, tj) and f(ti, tj) is the shortest distance between the bound-
aries of the boxes b(ti) and b(tj). The variable k is the preferred edge length for
the drawing and ε is a small positive number.

The next extension is to impose the vertex size constraints gradually. Specif-
ically, at the early iterations of our spring embedder the vertices of the prime
graph are considered dimensionless, and thus, we use the forces of the FR algo-
rithm. This policy, combined with a large initial temperature, allows the layout
to escape possible local optimum states. In this way a possible cluttered layout
is found at early stages of the algorithm, and then, we use the Modified FR
repulsive and attractive forces to fully prevent overlaps (see also [12]).

We noticed that the large number of attractive forces, combined with a small
value of k, do not allow large vertices to be in a certain distance in order to
avoid overlapping. To overcome this problem, we decide to use a factor w in the
calculation of the edge attractive forces, inversely proportional to the graph’s
density. In this manner, we weaken edge attractive forces and allow the algorithm
to position vertices without overlaps.

Hereafter we will denote by G the representative graph G(t). To compute the
reducing factor w, we use the average degree D(G) that can be thought as a
measure for the connectivity of G. To be more precise, we use D−1(G) as the
factor in the Modified FR edge attractive force calculation fa. It follows that the
use of D−1(G) as a multiplicative factor weakens the attractive forces between
vertices. Note that, since the smallest prime graph is a P4, for a prime graph G
we have: 0 < D−1(G) ≤ 0.57.

Using the previous inequality of D−1(G), we set a threshold in the middle of
the interval and consider dense the graphs G s.t. D−1(G) < 0.28 and sparse the



Drawing Graphs Using Modular Decomposition 349

                 

0 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 11 12 
13 

14 

15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

                 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

(a) (b)

Fig. 1. Drawings of a 5 × 5 grid using (a) w = D−1(G) = 0.31 and (b) w = 1

graphs s.t. D−1(G) > 0.28. If a graph is considered sparse, after a certain point
in the algorithm we use D(G) as the multiplicative factor.

In Fig. 1 we show two drawings of a 5 × 5 grid with random dimensioned
vertices. The preferred edge length is set to k = 60, which is a small number,
with respect to the dimensions of the vertices. In Fig. 1(a) the factor w =
D−1(G) = 0.31 is used, in the early iterations, for the calculation of the attractive
forces. Since the graph is considered sparse, this factor is reversed (w = D(G))
at final iterations and so the layout becomes more compact. In Fig. 1(b) the
multiplicative factor w is set to one in all iterations.

Having describe the two main features of our spring embedder algorithm, we
can present the attractive and repulsive forces of function Draw Prime (DP) as
follows:

DP : fa(rDP ) =
w · r2

DP

k
and fr(rDP ) =

k2

max(rDP , ε)

where, rDP =

{
||c(ti) − c(tj)||, at early iterations
f(ti, tj), at final iterations

and w =

⎧⎪⎨
⎪⎩

D−1(G), at early iterations

D(G),
at final iterations, and
if D−1(G) > 0.28.

We mention that the early and the final iterations coincide with the first and
the second part of the cooling schedule, respectively. We denote by � the number
of the main iterations needed by our spring embedder algorithm. We conclude
with the following lemma.

Lemma 3. Let T (G) be a modular decomposition tree of graph G and let ch(t)
be the set of children of an N-node t ∈ T (G). Function Draw Prime constructs
a relative drawing Γ ′(t, T ) in O(� · |ch(t)|2) time, where � is the number of main
iterations that a spring embedder algorithm performs.



350 C. Papadopoulos and C. Voglis

5 Time Complexity

Next, we introduce the definition of the prime cost of a graph which we will need
in our analysis. Let G be a graph and T (G) be its modular decomposition tree.
We denote by α(G) = {t1, t2, . . . , ts} the set of the N -nodes of T (G). We define
the prime cost of G as the value φ(G) =

∑
t∈α(G)

� · |ch(t)|2, where ch(t) denotes

the set of children of node t in T (G).
It is not difficult to see that for any n-vertex graph G, we have φ(G) = O(�·n2);

for an n-vertex P4-free graph (also known as cograph) G we have φ(G) = 0, since
its md-tree (also known as cotree) does not contain any N-node [4]. It follows
that in other classes of graphs their prime cost is constant. For example, any
N-node of the md-tree of a P4-reducible graph1 contains at most five children
[4]. Hence for an n-vertex P4-reducible graph G we have φ(G) = O(1). We notice
that these classes of graphs arise in applications such as examination scheduling
problems and semantic clustering of index terms [4].

Theorem 1. Let G be a graph on n vertices and m edges. Algorithm Mod-
ule Drawing constructs an md-drawing Γ (G) in O(n + m + φ(G)) time, where
φ(G) is the prime cost of the input graph G.

6 Implementation and Examples

We have implemented our algorithm in C++. The implementation takes as input
an undirected graph G in GraphML format [3]. The vertices are thought of as
rectangles with a predefined size, i.e. with a specific height and width. Three
files are produced in GraphML format: a file that contains the final drawing of
G; a file that contains the md-tree T (G); a file that contains all the relative
drawings computed in each level of T (G). For visualization purposes, we use the
yEd environment [16].

6.1 An Example of Module Drawing

In this section, we illustrate how our algorithm produces a final drawing, by
showing level-by-level relative drawings, on the md-tree of the input graph. For
this purpose we use an input graph from a real life application, which describes
a protein interaction network (see [10] for details). More specifically, the input
graph, which we will call Trans graph, describes a network of proteins that define
transcriptional regulator complexes. The md-tree of the Trans graph contains 1
P-node, 6 S-nodes, and 1 N-node. We label the 51 vertices of the graph and
assign an additional label, besides P or S or N label, to the 8 internal nodes
of the md-tree. In Fig. 2(a) we present the final drawing of Trans graph using
Module Drawing, in Fig. 2(b) we show its modular decomposition tree and in
Fig. 2(c) we present level-by-level relative drawings and how they are combined
to result the final layout.
1 A P4-reducible graph is a graph for which no vertex belongs to more than one P4.



Drawing Graphs Using Modular Decomposition 351

S (59)

15

17

S (58)

0

1

27

26 16

14

12

S (57)

50

37

36

35

24

22 21

18

13

10

3

S (56)

9
49

48

47

46

45

44

43

42

41
38

33

32

31

30

29

28

23

11

2

S (55)

20

19

P (54)

S (55)

S (56) S (57)

S (53)

40

34

25

8

7

6

5

4

N (52)

S (53)P (54)

S (58)

39

S (59)

40342587654

201994948474645444342413833323130292823112503736352422211813103

012726161412

39

1517

N (52)

S (53)

403425 8 7 6 54

P (54)

S (55)

20 19

S (56)

94948474645 44 43 42 41 38 33 32 31 30 292823112

S (57)

50373635 24 22 21 18 13103

S (58)

0127 26 16 1412

39 S (59)

15 17

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

(a)

(b) (c)

Fig. 2. Illustration of Module Drawing on Trans graph

Starting from level 3 of the tree in Fig. 2(c), we notice three S-nodes. The
application of the function Draw Series results the relative drawings as shown
in the corresponding boxes. Their parent, which is a P-node, causes them to
be drawn on a 1 × 3 grid. Finally, the root of the md-tree is an N-node; in
particular G(root) is an A-shaped graph, that consists of 1 parallel module, 3
series modules, and 1 simple vertex. The final drawing reveals all modules and
gives a useful insight of the structure of the Trans graph. Moreover, function
Draw Prime, which is the most expensive part of our algorithm, in terms of
time complexity, is applied on a graph of 5 vertices instead of 51.

6.2 Drawing Examples

In all the examples we choose to draw the vertices of a graph over its edges. The
height and width of all the vertices are set to 30 points. As already mentioned
in the description of Module Drawing, we increase the preferred edge length ki

of the i-th level, starting from the level h − 1 of T (G). Thus, we set kh−1 to a
constant and ki = (h − i) · kh−1, for i = h − 2, h − 3, . . . , 0. Obviously, ki < ki−1.
We note that an alternative scheme for increasing the preferred edge length
between levels is presented in [17].

For each example drawn by our algorithm, we present an additional drawing
created by a spring embedder method. For this purpose we apply the Smart
Organic Layout (SOL) utility of yEd [16] with desired parameters. We make
clear that, there is no reason to compare our method to any spring embedder
algorithm, since their drawing goals are different. We use a general purpose



352 C. Papadopoulos and C. Voglis

                 

0 1 2 3 

4 5 6 7 8 

9 10 11 

12 

13 

14 15 16 

17 

                 

0 

1 

2 3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

(a) (b)

Fig. 3. Drawings of K9,9 using (a) Module Drawing and (b) Smart Organic Layout

                 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

22 
23 

24 

25 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 79 

80 

81 

82 

83 

84 

85 

86 

87 

                 

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 52 

53 54 

55 
56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 
69 

70 

71 

72 

73 
74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 
86 

87 

(a) (b)

Fig. 4. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout

                 

0 
1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 13 

14 

15 

16 

17 18 

19 

                 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 12 

13 

14 

15 

16 

17 

18 

19 

(a) (b)

Fig. 5. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout

drawing algorithm, such as spring embedder, to obtain a reference layout of a
graph. Note also that we incorporate a spring embedder method in the general
framework of our approach.

In Figs. 3–5 the final drawings of our algorithm are shown on the left side
whereas the drawings of the same graph using SOL are shown on the right side.
Notice that our algorithm manage to expose underlying structures (smaller grids,
circles, paths e.t.c) in all the examples. This observation arises from the fact that
we apply a spring embedder algorithm without the force impact of the vertices
that belong to other modules.



Drawing Graphs Using Modular Decomposition 353

                 

0 1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 24 

25 

26 27 

28 

29 30 

31 32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 80 

81 

82 

83 

84 

                 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 
51 

52 

53 54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 
76 

77 

78 

79 

80 

81 

82 

83 

84 

(a) (b)

Fig. 6. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout

                 

7776757473 72 71 706968676665 64 63 62 81828478 83

80 79 612017 15 5

133 122 0

32 3130 2924 33

23

19181614121110 9 8 7 6 4 2

0 1 

3 13 

21 

23 

78 

81 

82 

83 

84 
62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

79 80 

25 

26 27 

28 

2 

4 

6 
7 

8 

9 

10 

11 

12 
14 

16 

18 

19 

24 

29 30 

31 32 

33 

5 

15 

17 

20 

61 

22 

21

4346 444549 4751 50 483437 353640 3842 41 39

52 5553 54 5856 60595727 2625 28

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

Fig. 7. The md-tree of the graph depicted in Fig. 6

In Fig. 6 we show a graph with an md-tree of 3 levels. Notice that our method
reveals three underlying structures: a gear graph2, an A-shaped graph and a
complex of grids. In Fig. 7, we show the md-tree of the graph, in order to
illustrate the intermediate steps of our method. It is useful to consider the md-
tree representation, as a visualization abstraction of the input graph.

7 Concluding Remarks

In this paper we have presented a divide-and-conquer technique for drawing undi-
rected graphs, based on their modular decomposition tree, where each disjoint
induced subgraph (module) is drawn according to its corresponding structure
(edgeless, complete or prime). For certain classes of graphs, the structure of
their modular decomposition trees ensures that each tree node can be processed
in linear time. It turns out that our algorithm, besides its efficiency in terms of
time, also exposes the structure of a graph. Revealing the structure of a graph
by drawing it, can prove to be helpful in identifying, and thus, recognizing, in
which certain class the graph belongs.
2 A gear graph is a wheel graph with a vertex added between each pair of adjacent

vertices of the outer cycle.



354 C. Papadopoulos and C. Voglis

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for the Visual-
ization of Graphs, Prentice-Hall, 1999.

2. P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia, Optimal upward
planarity testing of single-source digraphs, SIAM J. Comput. 27 (1998) 132–169.

3. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M.S. Marshall: GraphML
progress report: structural layer proposal, Proc. 9th Int. Symp. Graph Drawing
(GD’01), LNCS 2265 (2001) 501–512.

4. A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

5. E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algorithms
for sequential modular decomposition, J. Algorithms 41 (2001) 360–387.

6. P. Eades and Q.W Feng, Drawing clustered graphs on an orthogonal grid. Proc.
5th Int. Symp. Graph Drawing (GD’97), LNCS 1353 (1997) 146-157.

7. P. Eades, Q.W. Feng, and X Lin, Straight-line drawing algorithms for hierarchical
graphs and clustered graphs, Proc. 4th Int. Symp. Graph Drawing (GD’96), LNCS
1190 (1996) 113-128.

8. Q.-W. Feng, R. F. Cohen, and P. Eades, Planarity for clustered graphs. Proc. 3rd
European Symp. Algorithms (ESA’95), LNCS 979 (1995) 213-226.

9. T. Fruchterman and E. Reingold, Graph drawing by force-directed placement,
Software-Practice and Experience, 21 (1991) 1129–1164.

10. J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari, Modular decomposition
of protein-protein interaction networks, Genome Biology 5:R57 (2004).

11. E. R. Gansner and S. C. North, Improved force-directed layouts, Proc. 6th Int.
Symp. Graph Drawing (GD’98), LNCS 1547 (1998) 364–373.

12. D. Harel and Y. Koren, Drawing graphs with non-uniform vertices, Proc. of Work-
ing Conference on Advanced Visual Interfaces (AVI’02), ACM Press 2002, 157–166.

13. M.L. Huang and P. Eades, A fully animated interactive system for clustering and
navigating huge graphs, Proc. 6th Int. Symp. Graph Drawing (GD’98), LNCS 1547
(1998) 374-383.

14. W. Li, P. Eades, and N. Nikolov, Using spring algorithms to remove node overlap-
ping, Proc. Asia Pacific Symp. Information Visualization (APVIS’05), 2005.

15. R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation,
Discrete Math. 201 (1999) 189–241.

16. yEd - Java Graph Editor, http://www.yworks.com/en/products_yed_about.htm.
17. C. Walshaw, A multilevel algorithm for force-directed graph drawing, J. Graph

Algorithms Appl. 7 (2003) 253–285.
18. X. Wang and I. Miyamoto, Generating customized layouts, Proc. 3rd Int. Symp.

Graph Drawing (GD’95), LNCS 1027 (1995) 504–515.


	Introduction
	Definitions and Background Results
	Modular Decomposition
	Modular Decomposition Based Drawing Γ(G)

	The Algorithm
	Modified Spring Embedder
	Time Complexity
	Implementation and Examples
	An Example of Module_Drawing
	Drawing Examples

	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




