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Abstract. In this paper, we present a new fingerprint matching algorithm based
on graph matching principles. We define a new representation called K-plet to
encode the local neighborhood of each minutiae. We also present CBFS (Cou-
pled BES), a new dual graph traversal algorithm for consolidating all the local
neighborhood matches and analyze its computational complexity. The proposed
algorithm is robust to non-linear distortion. Ambiguities in minutiae pairings are
solved by employing a dynamic programming based optimization approach. We
present an experimental evaluation of the proposed approach and showed that it
exceeds the performance of the NIST BOZORTH3 [3]] matching algorithm.

1 Introduction

Clearly the most important stage of a fingerprint verification system is the matching
process. The purpose of the matching algorithm is to compare two fingerprint images
or templates and return a similarity score that corresponds to the probability of match
between the two prints. Minutiae features are the most popular of all the existing rep-
resentation for matching and also form the basis of the process used by human experts
[7]. Each minutiae may be described by a number of attributes such as its position (X,y)
its orientation 0, its quality etc. However, most algorithms consider only its position and
orientation. Given a pair of fingerprints, their minutiae features may be represented as
an unordered set given by

I = {m1,ma...mp} where m; = (x;,y:,0;) (1

I = {m,m}...m'y} where m; = (z},y;,6,) 2)

Usually points in I is related to points in I; through a geometric transformation 7°().
Therefore, the technique used by most minutiae matching algorithms is to recover the
transformation function T() that maps the two point sets . While there are several well
known techniques for doing this, several challenges are faced when matching the minu-
tiae point sets. The fingerprint image is obtained by capturing the three dimensional
ridge pattern on the finger on to a two-dimensional surface. Therefore apart from skew
and rotation assumed under most distortion models, there is also considerable stretch-
ing. Most matching algorithms assumed the prints to be rigidly transformed(strictly
rotation and displacement) between different instances and therefore perform poorly
under such situations. (See Figure [I).
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Fig. 1. An illustration of the non-linear distortion

Prior Related Work

A large number of recognition algorithms have been proposed in literature to date. The
problem of matching minutiae can be treated as an instance of generalized point pattern
matching problem. It is assumed that the two points sets are related by some geometrical
relationship and the problem reduces to finding the most optimal geometrical transfor-
mation that relates these two sets. Most existing algorithms can be broadly classified as
follows

1.

Global Matching: In this approach, the matching process tries to simultaneously
align all points at once. The global matching approach can be further categorized
into

(a)Implicit Alignment: Here the process of finding the point correspondences and
finding the optimal alignment are performed simultaneously. This includes the iter-
ative approach proposed by Ranade and Rosenfield and the generalized Hough
Transform based approach of Ratha et al. [9]

(b)Explicit Alignment In this approach, the optimal transformation is obtained af-
ter explicitly aligning one of more corresponding points. The alignment may be
absolute (based on singular point such as core and delta) or relative(based on a
minutiae pair). Absolute alignment approaches are not very accurate since singular
point location in poor quality prints is unreliable. Jain et al [4] proposed a relative
alignment approach based on alignment of ridges.

Local Matching: In local matching approaches, the fingerprint is matched by accu-
mulating evidence from matching local neighborhood structures. Each local neigh-
borhood is associated with structural properties that are invariant under translation
and rotation. Therefore, local matching algorithms are more robust to non-linear
distortion and partial overlaps when compared to global approaches. However, local
neighborhood do not sufficiently capture the global structural relationships making
false accepts very common. Thefore in practice, matching algorithms that rely on
local neighborhood information are implemented in two stages (a) Local structure
matching: In this step, local structures are compared to derive candidate matches
for each structure in the reference print. (b) Consoldiation: In this step, the candi-
date matches are validated based on how it agrees to the global match and a score is
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generated by consolidating all the valid matches. Examples of matching algorithm
based on local properties can be found in Jian and Yau [6],Jea and Govindaraju [3]
and Ratha et al. [10].

2 Proposed Approach: Graph Based Matching

We propose a novel graph based algorithm for robust fingerprint recognition. We de-
fine a new representation called K-plet to represent local neighorhood of a minutiae
that is invariant under translation and rotation. The local neighborhoods are matched
using a dynamic programming based algorithm. The consolidation of the local matches
is done by a novel Coupled Breadth First Search algorithm that propagates the local
matches simultaneously in both the fingerprints. In the following section, we describe
our approach using the following three aspects (i)Representation, (ii)Local Matching
and (iii)Consolidation.

Table 1. Left: An illustration of K-plets defined in a fingerprint, Right:Local co-ordinate system
of the K-plet

2.1 Representation: K-plet

The K-plet consists of a central minutiaec m; and K other minutiae {mq, mz...mg}
chosen from its local neighborhood. Each neigbhorhood minutiae is defined in terms of
its local radial co-ordinates (¢;;,0;;,7:;) (See Table [[) where 7, represents the Eu-
clidean distance between minutiae 1, and my. 6;; is the relative orientation of minutia
m; w.r.t the central minutiae m;. ¢;; represents the direction of the edge connecting
the two minutia. The angle measurement is made w.r.t the X-axis which is now aligned
with the minutia direction of m;. Unlike the star representation, the K-plet does not
specify how the K neighbors are chosen. We outline two different approaches of doing
this althought this is not meant to be an exhaustive enumeration of ways to construct
the K-plet. (i)In the first approach we construct the K-plet by considering the K-nearest
neighbors of each minutia. This is not very effective if the minutia are clustered since
it cannot propagate matches globally. (ii) In the second approach, in order to maintain
high connectivity between different parts of the fingerprint, we chose K neighboring
minutia such that a nearest neighbor is chosen in each of the four quadrant sequentially.
Our results are reported based on this construction.
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Fig. 2. Illustration of two fingerprints of the same user with marked minutiae and the correspond-
ing adjacency graph based on the K-plet representaion. It is to be noted that the topologies of the
graphs are different due to an extra unmatched minutiae in the left print.

2.2 Graphical View

We encode the local structural relationship of the K-plet formally in the form of a graph
G(V, E). Each minutiae is represented by a vertex v and each neighboring minutiae
is represented by a directed edge (u,v) (See Figure ). Each vertex u is colored with
attributes (2, Yu, O, t,,) that represents the co-ordinate, orientation and type of minu-
tiae(ridge ending or bifurcation). Each directed edge (u, v) is labelled with the corre-
sponding K-plet co-ordindates (7., Pus, Oun )

2.3 Local Matching: Dynamic Programming

Our matching algorithm is based on matching a local neighborhood and propagating the
match to the K-plet of all the minutiae in this neighborhood successively. The accuracy
of the algorithm therefore depends critically on how this local matching is performed.
We convert the unordered neighbors of each K-plet into an ordered sequence by arrang-
ing them in the increasing order of the radial distance r;;. The problem now reduces to
matching two ordered sequences S{s1, sa...5p } T{t1,t2...t x }. We utilize a dynamic
programming approach based on string alignment algorithm [2].

Formally, the problem of string alignment can be stated as follows: Given two strings
or sequences S and T, the problem is two determine two auxiliary strings S’ and T’ such
that

1. S’ is derived by inserting spaces ( ) in S
2. T’ is derived by inserting spaces in T
3. length(S") = length(T")
4. The cost lei,ll o(s},t}) is maximized.
For instance, the result of aligning the sequences S = {acbcdb} and T = {cadbd} is
given by
S"=ac bedb 3)
T = cadb d 4)
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A trivial solution would be to list all possible sequences S’ and T’ and select the pair
with the least/most alignment cost. However, this would require exponential time. In-
stead we can solve this using dynamic programming in O(MN) time as follows. We de-
fine D[i,j]1(: € {0,1...M }, j € {0,1...N}) as the cost of aligning substrings S(1..i) and
T(1..j). The cost of aligning S and T is therefore given by D[M,N]. Dynamic program-
ming uses a recurrence relation between D[i,j] and already computed values to reduce
the run-time substantially. It is assumed ofcourse that D[k,1] is optimal Vk < 4,1 < j.
Given that the previous sub-problems have been optimally defined, we can match s;
and t; in three ways

1. the elements s[i] and t[j] match with cost o(s]], t[J]),
2. a gap is introduced in t (s[i] is matched with a gap) with cost o(s[i], )
3. agap is introduced in s (t[j] is matched with a gap) with cost o( , ¢[j])

Therefore, the recurrence relation to compute D[i,j] is given by

D[i — 1,5 — 1] + o(s[j], t[i])
Dli,j] = maz Dli—1,5] + o(s[i], ) (5)
Dli,j—1] + o ,t[j])

2.4 Consolidation: Coupled Breadth First Search

The most important aspect of the new matching algorithm is a formal approach for con-
solidating all the local matches between the two fingerprints without requiring explicit

Wlgorithm: CBFS

Inputs : Graphs G(V,E) and H(V,E) corresponding to reference and
test fingerprints
i: somnrece node in graph G
Jj: source node in graph H

Outputs : No. of vertices that can be matched from the given sources
1. Let G(V,E) and H(V,E) represent the graphs corresponding to the two

prints

2. Let GQ and HQ represent a FIFO gueus
3. Let M represent a set of matched wertex pairs «<g, h>
4. Initialize
a. For each vertex g in G(V,E) and h in H(V,E)
i. ecolor[g] = WHITE //unvizited node
ii. color[h] = WHITE
b. color[i] = GRAY
c. color[j] = GRAY
d. M =M + <g[i],h[i]>
e. ENQUEUE (GQ, g[il)
£. ENQUEUE (HQ,h[3])
5. While (GQ is not empty and HQ i= not empty)
a. gu = DEQUEUE (GQ)
b. hm = DEQUEUE (HQ)
¢, Find matching neighbors of gu,hu using dynamic programming
d. For each matching neighbor gv (of gu) and hv (of gwv)
e. If (color[gv] == WHITE and color[hv] == WHITE)

i, M=M + «<gv,hv>
ii. ENQUEUE (GQR,qv)
iii. ENQUEUE (HQ, hv)
6. Return M (the size of M gives the match count)

Fig. 3. An overview of the CBFS algorithm
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alignment. We propose a new algorithm called Coupled BFS algorithm(CBFS) for this
purpose. CBFS is a modification of the regular breadth first algorithm [2] except for
two special modifications. (i) The graph traversal occurs in two directed graphs G and
H corresponding to reference and test fingerprints simultaneously. (The graphs are con-
structured as mentioned in Section 2.2)) (ii) While the regular BFS algorithm visits each
vertex v in the adjacency list of , CBFS visits only the the verticesvg € V and vy € H
such that vg and vy are locally matched vertices. The overview of the CBFS algorithm
is given in Figure [3]

2.5 Matching Algorithm

It is to be noted that the CBFS algorithm requires us to specify two vertices as the source
nodes from which to begin the traversal. Since the point correspondences are not known
apriori, we execute the CBFS algorithm for all possible correspondence pairs g[i], h[j]).
We finally consider the maximum number of matches return to compute the matching
score. The score is generated by using [1] s = MZL;/[T. Here m represents the number
of matched minutiae and M and Mt represent the number of minutiae in the reference

and template prints respectively.

3 Experimental Evaluation

In order to measure the objective performance, we run the matching algorithm on im-
ages from FVC2002 DB1 database. The database consists of 800 images (100 distinct
fingers, 8 instances each). In order to obtain the performance characterists such as EER
(Equal Error Rate) we perform a total of 2800 genuine comparision and 4950 impostor
comparisons .We present the comparative results in Table [2l The improvement in the
ROC characteristic can be seen from Figure [l
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Fig.4. A comparision of ROC curves for FVC2002 DB1 database
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Table 2. A summary of the comparative results

Database ~ NIST MINDTCT/BOZORTH3 Proposed Approach
EER FMR100 EER FMRI100
FVC2002 DB1 3.6% 5.0% 1.5% 1.65%

Summary

We presented a novel minutia based fingerprint recognition algorithm that incorporates
three new ideas. Firstly, we defined a new representation called K-plet to encode the lo-
cal neighborhood of each minutia. Secondly, we also presented a dynamic programming
approach for matching each local neighborhood in an optimal fashion. Lastly, we pro-
posed CBES (Coupled Breadth First Search), a new dual graph traversal algorithm for
consolidating all the local neighborhood matches and analyze its computational com-
plexity. We presented an experimental evaluation of the proposed approach and showed
that it exceeds the performance of the popular NIST BOZORTH3 matching algorithm.
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