
Sequential Aggregate Signatures Working over
Independent Homomorphic Trapdoor One-Way

Permutation Domains

Huafei Zhu, Feng Bao, and Robert H. Deng

Department of Information Security, I2R, A-Star, Singapore 119613
{huafei, baofeng}@i2r.a-star.edu.sg

School of Information Systems, Singapore Management University
robertdeng@smu.edu.sg

Abstract. The contribution of this paper has two folds. In the first
fold, we propose a generic construction of sequential aggregate signa-
tures from families of certificated trapdoor one-way permutations. We
show that our construction is provably secure in the random oracle model
assuming that the underlying homomorphic permutations are trapdoor
one-way. Compared to Lysyanskaya et al’s generic construction that is
constructed from a trapdoor one-way permutation family working over
the same domain [16], our scheme works over independent trapdoor one-
way permutation domains. The flexible choice of the underlying permu-
tation domains benefits our scheme to its applications in the real world
where individual user may choose its working domain independently. In
the second fold, we instantiate our generic construction with RSA so that
the RSA moduli in our scheme can be chosen independently by individ-
ual user and thus the moduli is not required to be of the same length.
Consequently, our proposed instantiation is the first scheme based on the
RSA problem that works for any moduli − this is the most significant
feature of our scheme different from the best results constructed from
the RSA problem (say, Kawauchi et al’s scheme [14], and Lysyanskaya
et al’s scheme [16]).

Keywords: Homomorphic trapdoor one-way permutation, sequential
aggregate signature, signature scheme.

1 Introduction

In [3], Boneh, Gentry, Lynn and Shacham (BGLS) first introduced and for-
malized a new notion called aggregate signatures, together with a concrete im-
plementation from the bilinear mapping. An aggregate signature scheme is the
following cryptographic primitive: each of n users with a public/private key pair
(PKi, SKi and a message mi) wishes to attest to a message mi. Informally the
procedure can be stated as follows: user ui first signs the correspondent message
mi (1 ≤ i ≤ n) and obtains a signature σi, and then n signatures can be com-
bined by an unrelated party into an aggregate signature. Aggregate signatures
are natural extension of multi-signature schemes. In a multi-signature scheme

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 207–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 H. Zhu, F. Bao, and R.H. Deng

(e.g., [13], [22], [12], [24], [9], [11], [20] and [21]), a collection of users all sign the
same message m. The result is a single signature (thus the conception of multi-
signature schemes is not so good for practical applications since in certain cases
we must be able to aggregate signatures on different messages, e.g., Certificate
chaining, Secure Border Gateway Protocol). Recently, Micali, Ohta, and Reyzin
[18], presented a clear security model and new constructions for multi-signature
schemes from Schnorr’s signature scheme. Another interesting construction was
presented by Boldyreva [1] from the gap Diffie-Hellman assumption.

Burmester et al [2], Doi, Mambo, and Okamoto [8] (DMO), Mitomi and Miyaji
[17] have already mentioned that when multiple entities sign a document (hence
a set of users all sign the same message), the signing order often reflects the
role of each signer and signatures with different signing orders are regarded as
different multi-signature schemes. Thus a multi-signature scheme with message
flexibility, order flexibility and order verifiability should be required. Burmester
et al’s then proposed an interesting order-specified multi-signature scheme from
modified ElGamal signature scheme while Doi et al’s construction is from the
RSA problem. Notice that the protocol presented in [8] requires that the public
keys corresponding the signing order have to be registered in advance, but it
is not necessary in [17]. Later Kawauchi, Komano, Ohta and Tada [14] studied
the possibility of simulation of Mitomi and Miyaji’s schemes [17] in order to
investigate whether that scheme is secure against active attacks. Unfortunately,
they showed that Mitomi and Miyaji’s scheme cannot be proved secure against
active attacks. Tada [25] then proposed an order-specified multi-signature scheme
based on the hardness of the discrete logarithm problem. The scheme allows
the signing orders to be formed like any series-parallel graphs, which differs
from the scheme [20]. The security is shown by using ID-reduction technique,
which reduces the security of multi-signature schemes to those of multi-round
identification schemes. Finally they constructed alternative RSA-based multi-
signature scheme in order to overcome the problem from which Mitomi and
Miyaji’s scheme suffers.

Very recently, Lysyanskaya et al. [16] presented a clear security model and new
constructions for order-specified multi-signature schemes that allow a collection
of users to sign different messages (i.e., sequential aggregate signatures). In their
paper [16], a generic construction for sequential aggregative signature schemes
based on Full Domain Hash, which again is based on trapdoor permutations,
is presented. They also instantiated the underlying trapdoor permutations with
RSA. Their work is not trivial for several reasons, one being that their generic
construction needs the trapdoor permutation to be over the same domain for
each user, which is not the case for RSA.

1.1 Problem Statement

Sequential aggregate signatures are very useful for many network applications.
They can be used in secure border gateway protocol (S-BGP) [15] for securing the
UPDATE routing messages and in secure Ad Hoc On-Demand Vector Routing
protocol. They can be used in hierarchical public key infrastructure to reduce

Sequential Aggregate Signatures Working 209

the certificate chain as well. To the best of our knowledge, all order-specified
multi-signature schemes (or sequential aggregate signatures if each users signs
different message) proved to be secure against active attacks are based on either
the hardness of the discrete logarithm problem (for example, [18], [20] and [25])
or gap Diffie-Hellman problem (e.g., [1], [3] and [4]) while those based on the
RSA problem suffer from unnecessary restrictions (e.g., [14] and [16]). Thus any
more satisfactory solution to sequential aggregate signature scheme based on the
RSA problem is certainly welcome (the main topic of this paper). Before starting
our works, we would like to review the problems among the best results based
on RSA below which are closely related to our works:

In [14], Kawauchi, Komano, Ohta and Tada proposed their construction from
RSA trapdoor one-way permutations [23]: The key-generation step: Pi has RSA,
which on input 1Ki , randomly selects two distinct Ki/2-bit primes pi and qi, and
calculates the modulus Ni = piqi. It randomly picks up an encryption exponent
ei ∈ Zλ(Ni) and λ(Ni) = LCM(p1−1, qi−1). Also each Pi uses two hash functions
Gi and Hi. The first one, Hi, called the compressor, maps as Hi: {0, 1}∗ →
{0, 1}k2 and the other one, Gi, called the generator, maps as Gi: {0, 1}k2 →
{0, 1}Ki−1+k1 , where Ki =1 + Ki−1 + k1 + k2, K0 = k0

1. Signature generation
step (for the same message m): Suppose that P={ P1, · · ·, Pn } generates a
multi-signature for a message m. P1 picks up an r1 ∈R {0, 1}k1 to compute
ω1 = H1(m, r1). Also P1 computes σ1 =zd1

1 mod N1, where z1 = 0||t1||s1||ω1,
(t1||s1) =(0k0 ||r1) ⊕ G1(ω1). Then P1 sends (m, σ1) as a signature for m to
P2. For each i ∈ [2, n], the following is executed: Pi receives (m, σi−1) from
Pi−1. Pi then checks the validity of received signature which is described below.
If it is invalid, halts, otherwise, Pi picks up an ri ∈R {0, 1}k1 to compute ωi

= Hi(m, ri, σi−1). Also Pi computes σi =zdi

i mod Ni, where zi = 0||ti||si||ωi,
(ti||si) =(σi−1||ri)⊕Gi(ωi). Then Pi sends (m, σi) as a signature for m to Pi+1,
where Pn+1 is a verifier. Verification step: Suppose that the verifier V receives
(m, σn) as a multi-signature for a message m. For each i = n to i = 2, the
following is executed by the verifier. -First, V computes zi =σei

i mod Ni, breaks
up zi as bi||ti||si||ωi. (That is, let bi be the first bit of zi, ti the next Ki−1 bits,
si the next k1 bits, and ωi the remaining k2 bits.) And V calculates (αi||βi) =
(ti||si) ⊕ Gi(ωi). If bi = 0 and ωi = Hi(m, βi, αi), then V computes αi = σi−1
and goes on the step. Finally V obtains σ1, computes z1 = σe1

1 mod N1, breaks
up z1 as b1||t1||s1||ω1, and calculates (α1||β1) = (t1||s1) ⊕ G1(ω1). If b1 = 0, ω1
= H1(m, β1, α1) and α1= 0k0 , then V returns 1 else return 0.

In [16], Lysyanskaya, Micali, Reyzin, Shacham proposed two approaches to
instantiate their generic construction from RSA trapdoor one-way permutations:
the first approach is to require the user’s moduli to be arranged in increasing
order: N1 < N2 < · · · < Nt. At the verification, it is important to check that the
i-th signature σi is actually less than Ni to ensure the signatures are unique if
H is fixed. As long as log(N1) − log(Nt) is constant, the range of H is a subset
of ZN1 whose size is the constant fraction of N1, the scheme will be secure; the

1 Thus the restriction |Ni|-|Ni−1| = 1+ k1 + k2 is posted. We see that this unpleasant
restriction should be removed from the point of views of practical applications.

210 H. Zhu, F. Bao, and R.H. Deng

second approach does not require the moduli to be arranged in increasing order,
however they are required to be of the same length. The signature will expanded
by n bits b1, · · ·, bn, where n is the total number of users. Namely, during signing,
if σi ≥ Ni+1, let bi =1; else, let bi =0. During the verification, if bi =1, add Ni+1
to σi before proceeding with the verification of σi. Always, check that σi is in
the correct range 0 ≤ σi ≤ Ni to ensure the uniqueness of signatures.

We would like provide the following remarks on KKOT scheme [14] and
Lysyanskaya et al’s scheme [16]: Lysyanskaya et al’s first scheme can be viewed
as improvement of of KKOT scheme [14]. The restriction of moduli in Tada’s
scheme |Ni|-|Ni−1| = 1+ k1 +k2 is weakened by the restriction of users’s moduli
to be arranged in increasing order N1 < N2 < · · · < Nt in Lysyanskaya et al’s
scheme. The second approach of Lysyanskaya et al’s scheme does not require
the moduli to be arranged in increasing order, however they are required to be
of the same length and the signature size will expanded by n bits b1, · · ·, bn,
where n is the total number of users. Namely, during signing, if σi ≥ Ni+1, let
bi =1; else, let bi =0. For applications of sequential aggregate signature schemes
in the scenarios discussed above, the choice of Ni of a host is independent on
the choice of another host Nj in the Internet (in case the underlying protocol is
constructed from RSA). A reasonable assumption should be that the sizes of all
moduli are bounded by a fixed size. Since there is no solution to this problem,
an interesting research problem can be addressed as:

Research problem: how to construct practical and secure sequential aggregate
signatures assuming that all moduli are bounded by a fixed size?

1.2 Our Works

In this paper, we first propose sequential aggregate signatures in which the set
of participants is ordered. The aggregate signature is computed by having each
signer, in turn, add his signature to it. We propose a generic construction of
sequential aggregate signatures from families of certificated trapdoor one-way
permutations. We then show that our construction is provably secure in the ran-
dom oracle model assuming that the underlying homomorphic permutations are
trapdoor one-way. Compared to Lysyanskaya et al’s generic construction that is
constructed from a trapdoor one-way permutation family working over the same
domain [16], our scheme works over independent trapdoor one-way permutation
domains. The flexible choice of the underlying permutation domains benefits our
scheme to its applications in the real world where individual user may choose its
working domain independently. Finally, we instantiate our generic construction
with RSA that enjoys the following nice features: All three signatures are based
on the hardness of RSA problem. Notice that the computation complexity of
our scheme for the i-th users signing a message needs one exponent computation
while the verification processing needs (i − 1) exponent computations. Thus all
three schemes mentioned above have approximate computation complexity; In
our scheme, the moduli are not required to be of the same length, i.e., each RSA
modulus Ni is chosen independently by individual user. Thus our construction
is the first scheme from RSA that works for any moduli − the most significant
feature of our scheme different from all known schemes available in the literature.

Sequential Aggregate Signatures Working 211

2 Standard Signature Schemes Working over Extended
Domains

2.1 Notions

Definition 1: A collection of permutation F ={fi : Di → Di|i ∈ I} over some
index set I ⊂ {0, 1}∗ is said to be a family of trapdoor one-way permutations
if: there is an efficient sampling algorithm S(1k) which outputs a random string
index i ∈ {0, 1}k∩I, and a trapdoor information ski; there is an efficient sampling
algorithm which, on input i, outputs a random x ∈ Di. Notice that there must
be a mathematical structure associated with Di. For simplicity, we assume that
Gi is a group (not necessary a cyclic group, e.g., Di = Z∗

ni
, if fi is the RSA

function); each fi is efficiently computable given i and input x ∈ Di; each fi is
efficiently invertible given the trapdoor information ski and output y ∈ Di; for
any probabilistic algorithm A, A is said (t(k), ε(k))-break F , if A runs in time at
most t(k) and AdvF

A(k) ≥ ε(k), where the advantage of A is defined as AdvF
A(k)

=Pr[x′ = x|(i, ski) ← S(1k), x ← Gi, y = fi(x), x′ ← A(i, y)]. F is said to be
(t(k), ε(k))-secure if no adversary A can (t(k), ε(k))-break it.

Definition 2: A collection of trapdoor one-way permutation F ={fi : Di →
Di|i ∈ I} over some index set I ⊂ {0, 1}∗ is said to be homomorphic if for any
(Di, fi) ← i and x, y ∈ Di, it satisfies fi(xy) = fi(x)fi(y).

We review the well known definition of security of ordinary digital signatures
[10]. Existential unforgeability under a chosen message attack in the random
oracle [5] for a signature scheme (KG, Sig, V f) with a random oracle is defined
using the following game between a challenger and an adv (notice that this
security definition can also be applied to the scenario where a collection of ran-
dom oracles are deployed): the challenger runs KG to obtain a public key pk
and private key sk. The adversary adv is given pk; Proceeding adaptively, adv
requests signatures with pk on at most qsig messages of his choice m1, · · ·, mqsig .
The challenge responds to each query with a signature σi. Algorithm adv also
adaptively asks for at most qH queries of the random oracle H ; adv outputs a
pair (m, σ) and wins the game if m /∈ {m1, · · · , mqsig}, and V f(pk, m, σ)=1 (a
valid signature of the message m).

By AdvSigA, we denote the probability of success of an adversary.

Definition 3: We say a signature scheme is secure against adaptive chosen-
message attack if for every polynomial time Turing machine A, the probabil-
ity AdvSigA that it wins the game is at most a negligible amount, where the
probability is taken over coin tosses of KG and Sig and A.

2.2 Generic Construction

We show that our signature scheme constructed from the extended domain of
homomorphic trapdoor one-way permutations is provably secure against adap-
tive chosen message attack in the random oracle model [5]. We assume that a

212 H. Zhu, F. Bao, and R.H. Deng

permutation used to construct our sequential aggregate signature scheme must
be a certificated one-trapdoor permutation. A certified trapdoor one-way per-
mutation is one such that, for any describing string des, it is easy to determine
whether des can have been output by a trapdoor one-way permutation generator,
and thereby ensure that f(des, ·) is a permutation.

-Key generation algorithm KG: On input a security parameter l, k, KG spec-
ifies two cryptographic hash functions H : {0, 1}∗ → {0, 1}l and G: {0, 1}t →
{0, 1}k, t = l − k. On input k, KG outputs an instance of homomorphic trap-
door one-way permutation {f : D → D}. We assume that each element in D
can be represented by a k-bit string, i.e., D ⊂ {0, 1}k. We further assume that
there is an efficiently computable mapping from {0, 1}k \D to D and given τ(x)
and b, it is easy for one to recover x ∈ {0, 1}k, where τ(x) maps a element
x ∈ {0, 1}k to x modulo |D|, i.e., τ0(x) =x if x ∈ D while τ1(x)=x mod |D|, if
x ∈ {0, 1}k\D (it will be clear in case that the underlying homomorphic one-way
trapdoor permutation is instantiated with RSA, see next for more details).

-Signing algorithm: On input a message m, it computes x = H(m) and then
separates x = y||z, where y ∈ {0, 1}k and z ∈ {0, 1}t, t = l − k. Finally,
it computes g = f−1(τb(y ⊕ G(z)))||z, where τ is an efficient mapping from
{0, 1}k \ D to D. That is, if y ⊕ G(z) ∈ D, then the signature σ of the message
m is (g, 0) (b=0); if y ⊕ G(z) ∈ {0, 1}k \ D, then the signature σ of the message
m is denoted by (g, 1) (b=1).

-The verification algorithm is given as input a signature σ = (g, b), the mes-
sages m, and the correspondent public key pk and proceeds as follows: first it
computes x = H(m) and separates x =y||z and g=v||w and checks whether w is
z, if not, it outputs 0; Else, it checks that pk and f is a certificated permutation.
If both conditions are valid, then it computes y from the equation τb(y ⊕ G(z))
=f(v). And output 1, if the test H(m) = y||z is valid.

Lemma 1: Let f be a homomorphic trapdoor one-way permutation defined
over D, and τ be an efficiently computable mapping from {0, 1}k \ D to D and
given τ(x), it is easy for one to recover x ∈ {0, 1}k, then our signature scheme
is secure within the random oracle model.

Proof: We follow Coron’s full domain reduction [7]. Let F be a forger that (t, qsig ,
qH , qG, ε) breaks our sequential aggregate signature scheme. We assume that
F never repeats a hash query and a signature query. We will build an inverter
that can (t′, ε′) breaks underlying one-way trapdoor permutation. The inverter
receives an input D, f , where D and f are public keys and Y ∈ D is chosen
uniformly at random. The inverter tries to find X = f−1(Y). The inverter starts
running F and makes hash oracle queries and signing queries on behalf of the
inverter. The inverter will answer hash oracle queries (H-oracle query and G-
oracle query) and signing oracle queries. We assume for simplicity that when F
requests a signature of the message m, it has already made the corresponding
hash queries on m. If not, the inverter goes ahead to make H-oracle query and
then to make G-oracle query. The inverter uses counter i initially set to zero.
When F makes a H-oracle for m, the inverter increments i, sets mi =m and picks
two random strings yi ∈ {0, 1}k and zi ∈ {0, 1}l−k, where k is the bit length

Sequential Aggregate Signatures Working 213

of D. The output of H-oracle is xi (xi = yi||zi). To make the G-oracle query
of the string zi, the inverter first checks that whether zi has been made the G-
oracle query, and then the inverter will look at the H-oracle table for any query
mi queried to H-oracle with answer (yi, zi). It will output the string vi which
is defined below if zi has already requested (notice that since H is a random
oracle, the probability that the H-oracle will output (∗, zi) for any message
different than mi is negligible assuming that the amount 1/2(l−t) is negligible).
The inverter now picks a random string ri ∈ D then returns vi such that τb

(yi ⊕ vi) =f(ri) with probability p and vi such that τb (vi ⊕ yi) = Y f(ri) with
probability (1 − p). Here p is a fixed probability which will be determined later.
When F makes a signing query for m, it has already requested the hash queries
of m, so m = mi for some i. If τb (vi ⊕yi) =f(ri), then the inverter returns ri as
the signature, otherwise the process stop and the inverter has failed. Eventually,
F halts and outputs a forgery (m, σ). We assume that m has requested H-oracle
and G-oracle of m before. If not, I goes ahead and makes the hash oracle queries
itself, so that in any case, m =mi for some i. Then if τb (vi ⊕ yi) = Y f(ri), we
can compute f−1(Y) = τb(vi ⊕ yi) ri with probability pqsig (1 − p). Setting p =
1 − 1

qsig+1 , it follows that the probability that the inverter can find y ∈ D such
that f(y) =Y with probability ε=exp(1)qsigε

′ for sufficiently large qsig .

2.3 Instantiated with RSA

Specifically to RSA instance [23], a certificated permutation could be done by
having a trusted certification authority to check that N is a product of two large
primes and e is relative prime to φ(N) before issuing a certificate. This check,
however, requires one to place more trust in the authority than usual. Namely,
the authority must be trusted not just to verify the identity of a key’s purported
owner, but also to perform verification of some complicated properties of the
key. More precisely,

Lemma 2: suppose gcd(e, p−1) =k1k2, gcd(e, q −1) =k2k3, gcd(k1, q −1) =1,
gcd(k3, p − 1) =1 (i.e., we consider the case where k1 is a factor of p − 1, k2 is a
common divisor of p − 1 and q − 1, k3 is a factor of q − 1 and k1, k2 and k3 are
pair wise prime), then the number of set A is k1k2k2k3.

Proof: We consider the following three cases.

– case 1: gcd(e, p − 1)=k
= 1, gcd(e, q − 1) = 1; Since f(x)= xe mod q is
a permutation from Z∗

q to Z∗
q , we will consider g(x) =xe mod p from Z∗

p

to Z∗
p . Let g be a generator of Z∗

p and denote B = {gk : x ∈ Z∗
p}. Since

gcd(e, p − 1)=k
= 1, it follows that gcd(e/k, p − 1) = 1. Denote g(x)= xe

mod p = g1(g2(x)), where g1(x) = xk mod p and g2(x) = xe/k mod p. Notice
that g2 is a permutation from Z∗

p to Z∗
p but g1(x) is a homomorphism from

Z∗
p to Z∗

p . Since order ord(gk) = p−1
gcd(k,p−1) , it follows that the number of

elements of B is k and so the number of the set A is also k.
– case 2: gcd(e, p − 1) = 1, gcd(e, q − 1) = k
= 1; Same claim as case 1.

214 H. Zhu, F. Bao, and R.H. Deng

– case 3: k = k1k2k3, gcd(e, p−1) =k1k2, gcd(e, q−1) =k2k3, gcd(k1, q−1) =1,
gcd(k3, p−1) =1 (i.e., we consider the case where k1 is a factor of p−1, k2 is
a common divisor of p − 1 and q − 1, k3 is a factor of q − 1 and k1, k2 and k3
are pair wise prime). Since Z∗

n and Z∗
p × Z∗

q are isomorphic and f(x)=xe/k

mod n is a permutation from Z∗
p × Z∗

q to Z∗
p × Z∗

q , we will only consider
the function g(x)= xk mod n. Denote fi(x) = xki mod n, then g(x)=f3 (f2
(f1(x))) =xk mod n. Denote B={xk : x ∈ Z∗

p × Z∗
q }. We know that there

are k1k2 elements x1 ∈ Z∗
p such that xk

1 = 1 (this 1 is in Z∗
p). And there are

k2k3 elements x2 ∈ Z∗
q such that xk

2 = 1 (this 1 is in Z∗
q). So the number of

the set A is k1k2k2k3.

Alternative approach may allow one to choose a large prime number e such
that e > N , and then to show that e is a prime number by making use of the
prime test protocol. This approach is attractive and has been used in [16]. Our
sequential aggregate signature scheme will make use of this approach.

We show that our signature scheme described below is provably secure against
adaptive chosen message attack in the random oracle model [5] assuming that
the RSA problem (on input a randomly chosen y ∈ Z∗

N , and the public key
(e, N), outputs x ∈ Z∗

N such that y = xe mod N) is hard.
-Key generation algorithm: On input a security parameter k, it generates an

RSA public key (N, e) and secret key (N, d), ensuring that |N |=k-bit and that
e > N is a prime. Let f−1(x) = xd mod N be the inverse function of RSA
function f(x) = xe mod N (ed ≡ 1 mod φ(N). On input l and k, it also specifies
two cryptographic hash functions H : {0, 1}∗ → {0, 1}l and G: {0, 1}t → {0, 1}k,
t = l − k.

-Signing algorithm: On input a message m, it computes x = H(m) and then
separates x = y||z, where y ∈ {0, 1}k and z ∈ {0, 1}t, t = l − k. Finally, it
computes g = f−1(y ⊕ G(z))||z. If y ⊕ G(z) > N , then the signature σ of the
message m is (g, b), where b = 1; if y ⊕ G(z) < N , then the signature σ of the
message m is denoted by (g, b), where b = 0 (in this case τ(x) = x − bN in
the RSA instantiation); Note that the probability that the event y ⊕ G(z) = N
happens is at most negligible amount, therefore we ignore this event in the
following discussions.

-The verification is given as input a signature σ = (g, b), the messages m, and
the correspondent public key (N, e) and proceeds as follows: first it computes
x = H(m) and separates x =y||z and g=v||w and checks whether w is z, if not, it
outputs 0; Else, it checks that e > N and e is a prime number. If both conditions
are valid, then it checks the validity of the equation y =B(f(v) + bN) ⊕ G(z),
where B(x) is the binary representation of x ∈ Z. And output 1, if the equation
is valid.

At first glance it seems that the adversary may have choice whether to use
b = 0 or b = 1. However, this will result in two values y⊕G(z) that are guaranteed
to be different: one is less than N and the other at least N . Hence uniqueness
of σ implies uniqueness of b. Notice that once m is given, the value y ⊕ G(z)
is determined assuming that H(m) and G(z) have already been queried. Fur-
thermore, since the functionality of bit b defined above is to identify whether

Sequential Aggregate Signatures Working 215

y ⊕ G(z) > N or not, and f(y ⊕ G(z) + N) =f(y ⊕ G(z)) (an invariant of RSA
function f(x) = xe mod n), we can simply assume that y ⊕ G(z) < N in the
following security argument. As an immediate application of Lemma 1, we have
the following statement:

Corollary 1: Under the hardness of the RSA problem, the ordinary signature
scheme described above is secure against adaptive chosen message attack in the
random oracle model in the sense of [10].

3 Syntax, Security Definition, Construction of Sequential
Aggregate Signature Scheme from Ordinary Signatures

3.1 Syntax

A sequential signature scheme (KG, AggSign, AggVf) consists of the following
algorithms: Key generation algorithm (KG): On input l and ki, KG outputs sys-
tem parameters param (including an initial value IV , without loss of generality,
we assume that IV is a zero strings with length l-bit), on input param and user
index i ∈ I and ki, it outputs a public key and secret key pair (PKi, SKi) of
a trapdoor one-way permutation fi for a user i. Aggregate signing algorithm
(AggSign): Given a message mi to sign, and a sequential aggregate σi−1 on mes-
sages {m1, · · · , mi−1} under respective public keys PK1, · · ·, PKi−1, where m1
is the inmost message. All of m1, · · ·, mi−1 and PK1, · · ·, PKi−1 must be pro-
vided as inputs. AggSign first verifies that σi−1 is a valid aggregate for messages
{m1, · · · , mi−1} using the verification algorithm defined below (if i=1, the aggre-
gate σ0 is taken to be zero strings 0l). If not, it outputs ⊥, otherwise, it then adds
a signature on mi under SKi to the aggregate and outputs a sequential aggregate
σi on all i messages m1, · · · , mi. Aggregate verifying algorithm (AggVf): Given
a sequential aggregate signature σi on the messages {m1, · · · , mi} under the re-
spective public keys {PK1, · · · , PKi}. If any key appears twice, if any element
PKi does not describe a permutation or if the size of the messages is different
from the size of the respective public keys reject. Otherwise, for j = i, · · · , 1, set
σj−1 = fj(PK1, · · · , PKj, σj). The verification of σi−1 is processed recursively.
The base case for recursion is i = 0, in which case simply check that σ0. Accepts
if σ0 equals the zero strings.

3.2 The Definition of Security

The following security definition of sequential aggregative signature schemes is
due to [16]. The aggregate forger A is provided with a initial value IV , a set of
public keys PK1, · · ·, PKi−1 and PK, generated at random. The adversary also
is provided with SK1, · · ·, SKi−1; PK is called target public key. A requests
sequential aggregate signatures with PK on messages of his choice. For each
query, he supplies a sequential aggregate signature σi−1 on some messages m1,
· · ·, mi−1 under the distinct public keys PK1, · · ·, PKi−1, and an additional
message mi to be signed by the signing oracle under public key PK. Finally,

216 H. Zhu, F. Bao, and R.H. Deng

A outputs a valid signature σi of a message mi which is associated with the
aggregate σi−1. The forger wins if A did not request (mi, σi−1) in the previous
signing oracle queries. By AdvAggSignA, we denote the probability of success of
an adversary.

Definition 4: We say a sequential aggregate signature scheme is secure against
adaptive chosen-message attack if for every polynomial time Turing machine
A, the probability AdvAggSignA that it wins the game is at most a negligible
amount, where the probability is taken over coin tosses of KG and AggSign and A.

3.3 Generic Construction from Independent Homomorphic
Trapdoor One-Way Permutations

We now propose an interesting method to construct aggregate signature schemes
from independent homomorphic trapdoor one-way permutations.

-Key generation: each participant i runs its key generation algorithm KGi on
input l, ki, KGi specifies two cryptographic hash functions H : {0, 1}∗ → {0, 1}l

and Gi: {0, 1}ti → {0, 1}ki, ti=l − ki (notice that the system security parameter
l should be shared by all participants). On input ki, KGi outputs an instance of
homomorphic trapdoor one-way permutation {fi : Di → Di}. We assume that
each element in Di can be represented by a ki-bit string, i.e., Di ⊂ {0, 1}ki. We
further assume that there is an efficiently computable mapping from {0, 1}ki \Di

to Di and given τ(x) and b, it is easy for one to recover x ∈ {0, 1}ki. The public
key pki is (fi, Di, Gi, H); The private key ski is the trapdoor information of
fi;

-Aggregate signing: the input is a private key ski, a message m ∈ {0, 1}∗ to be
signed, and a sequential aggregate σi−1 =(gi−1, b1, · · · , bi−1) on messages m|i−1

1 ,
under the public keys pk|i−1

1 (for a vector x, we denote a sub-vector containing
xa, · · ·, xb by x|ba). Verify that σ′ is a valid signature on m under pk using
the verification algorithm below; if not, output ⊥ indicating error. Otherwise,
compute hi ← H(pk|i1,m|i1). The signer then rewrites hi ⊕ gi−1 = xi: = yi||zi,
and computes gi =f−1

i (τbi (yi ⊕ Gi(zi)))||zi. The signature of m|i1 under pk|i1 id
denoted by σi =(gi, b1, · · · , bi);

-Aggregate verification: the input is a sequential aggregate σi on message m|i1
under pk|i1. If any public key appears twice in pk|i1, if any element of pk|i1
does not describe a valid permutation, reject; Otherwise, for j=i, · · ·, 1, the
verification algorithm processes the following steps recursively:

– for a given σi= (gi, bi), setting vi||wi ← gi, zi ← wi;
– computing yi from the equation τbi(yi ⊕wi) =f(vi); and setting xi ← yi||zi;
– computing hi ← H(pk|i1,m|i1), and then gi−1 ← xi ⊕ hi.

-Accept if σ0 is equal to 0l (the initial value of sequential aggregate signature
scheme);

Sequential Aggregate Signatures Working 217

3.4 The Proof of Security

Theorem: Let ∪i∈Ifi be a certificated homomorphic trapdoor permutation fam-
ily. Then our sequential aggregate signature scheme described above is secure in
the random oracle model.

Proof: Suppose adv is a forger algorithm that with non-negligible probability
ε breaks the sequential aggregate signature scheme. We construct an algorithm
F that inverts the permutation given by pki on a given input z ∈ Di which is
chosen uniformly at random. Recall that the security definition of a sequential
aggregate signature scheme allows an adversary to generate a collection of public
keys pkj (j = 1, · · · , i), and obtain the correspondent skj except for the trapdoor
information ski of a target permutation. Thus, the security of the sequential
aggregate signature scheme can be reduced to that of the underlying (ordinary)
signature scheme. Since the simulator knows skj for j
= i, it follows that the
simulation of the j-th user can be trivially simulated while the simulation of
i-th user can be simulated exactly as that described in the proof Lemma 1.
Consequently, the proof of security of the theorem follows from an immediate
application of Lemma 1.

3.5 Instantiated with RSA

Let H : {0, 1}∗ → {0, 1}l be a cryptographic hash function and IV be the initial
vector that should be pre-described by a sequential aggregate signature scheme.
The initial value could be a random l-bit string or an empty string. Without loss
of generality, we assume that the initial value IV is 0l. Our sequential aggregate
signature scheme is described as follows:

-Key generation: Each user i generates an RSA public key (Ni, ei) and secret
key (Ni, di), ensuring that |Ni| = ki and that ei > Ni is a prime. Let Gi: {0, 1}ti

→ {0, 1}ki, be cryptographic hash function specified by each user i, ti = l − ki.
-AggSig: User i is given an aggregate signature gi−1 and (b1, · · ·, bi−1), a

sequence of messages m1, · · ·, mi−1, and the corresponding keys (N1, e1), · · ·,
(Ni−1, ei−1). User i first verifies σi−1, using the verification procedure below,
where σ0 = 0l. If this succeeds, user i computes Hi = H(m1, · · ·, mi, (N1, e1), · · ·,
(Ni, ei)) and computes xi = Hi ⊕ gi−1. Then it separates xi = yi||zi, where yi ∈
{0, 1}ki and zi ∈ {0, 1}ti, ti = l−ki. Finally, it computes gi = f−1

i (yi⊕Gi(zi))||zi.
By σi ← (gi, bi), we denote the aggregate signature(if yi ⊕ Gi(zi) > Ni, then bi

=1, if yi⊕Gi(zi) < Ni, then bi = 0; again we do not define the case yi ⊕Gi(zi) =
Ni since the probability the event happens is negligible), where f−1

i (y) = ydi

mod Ni, the inverse of the RSA function fi(y) = yei mod Ni defined over the
domain Z∗

Ni
.

-AggVf: The verification is given as input an aggregate signature gi, (b1, · · · ,
bi), the messages m1, · · · , mi, the correspondent public keys (N1, e1), · · ·, (Ni, ei)
and proceeds as follows. Check that no keys appears twice, that ei > Ni is a
prime. Then it computes:

– Hi = H(m1, · · · , mi, (N1, e1), · · · , (Ni, ei));
– Separating gi = vi||wi;

218 H. Zhu, F. Bao, and R.H. Deng

– Recovering xi form the trapdoor one-way permutation by computing zi ←
wi, yi = Bi(fi(vi)+biNi) ⊕ Gi(zi), and xi =yi||zi, where Bi(x) is the binary
representation of x ∈ Z (with ki bits).

– Recovering gi−1 by computing xi ⊕ Hi. The verification of (gi−1, bi−1) is
processed recursively. The base case for recursion is i = 0, in which case
simply check that σ0 =0l.

Corollary 2: Our sequential aggregate signature scheme described above is
secure in the sense of [16] in the random oracle model.

4 Conclusion

In this paper, a generic construction of sequential aggregate signatures has been
constructed from homomorphic trapdoor one-way permutations. We have shown
that our generic constructions are provably secure in the random oracle model
assuming that the underlying homomorphic permutations are trapdoor one-way.
We then instantiate our generic constructions with RSA. Compared the best
results in the literature, say Kawauchi et al’s scheme, and Lysyanskaya et al’s
scheme [16], our protocol has nice feature: the moduli are not required to be
of the same length in our scheme, i.e., in our scheme Ni is chosen by each user
independently. Thus we have proposed the first sequential aggregate signature
scheme from RSA that works for any moduli.

References

1. A. Boldyreva. Efficient threshold signature, multisignature and blind signature
schemes based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt,
editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 31C46. Springer-
Verlag, 2003.

2. M. Burmester, Y. Desmedt, H. Doi, M. Mambo, E. Okamoto, M. Tada, Y. Yoshifuji:
A Structured ElGamal-Type Multisignature Scheme. Public Key Cryptography
2000: 466-483

3. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham: Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. EUROCRYPT 2003: 416-432.

4. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham: A Survey of Two Signature
Aggregation Techniques. In CryptoBytes Vol. 6, No. 2, 2003.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby,
editors, Proceedings of CCS 1993, pages 62-73. ACM Press, 1993.

6. Jan Camenisch, Markus Michels: Proving in Zero-Knowledge that a Number Is the
Product of Two Safe Primes. EUROCRYPT 1999: 107-122.

7. J. Coron: On the Exact Security of Full Domain Hash. CRYPTO 2000: 229-235.
8. H. Doi, M. Mambo, E. Okamoto: On the Security of the RSA-Based Multisignature

Scheme for Various Group Structures. ACISP 2000: 352-367.
9. H. Doi, E. Okamoto, M. Mambo, and T. Uyematsu, Multisignature Scheme with

Specified Order, Proc. of the 1994 Symposium on Cryptography and Information
Security, SCIS94-2A, January 27 -29, 1994.

Sequential Aggregate Signatures Working 219

10. Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281-
308 (1988).

11. P. Horster, M. Michels, and H. Petersen Meta-multisignature schemes based on the
discrete logarithm problem, Information Security -the Next Decade, Proc. of IFIP
Sec95, Chapman-Hall pp. 128 -142 1995.

12. T. Hardjono, and Y. Zheng A practical digital multisignature scheme based on
discrete logarithms, Lecture Notes in Computer Science 718, Proc. of Auscrypt92,
Springer-Verlag, pp. 122-132, 1993.

13. K. Itakura and K. Nakamura. A public key cryptographic suitable for digital mul-
tisignatures. NEC Rearch and Development (71), page 1-8, 1983.

14. K. Kawauchi, Y. Komano, K. Ohta and M. Tada: Probabilistic multi-signature
schemes using a one-way trapdoor permutation, IEICE transactions on fundamen-
tals, vol.E87-A, no5, pp.1141 -1153, 2004. Previous version: Kei Kawauchi, Mitsuru
Tada: On the Extract Security of Multi-signature Schemes Based on RSA. ACISP
2003: 336-349

15. S. Kent, C. Lynn and K. Seo: Secure Border Gateway Protocol (S-BGP). IEEE
Journal on Selected Areas in Communicaitons, Vol. 18, No. 4, Apr. 2000.

16. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, Hovav Shacham: Sequential Ag-
gregate Signatures from trapdoor one-way permutations. EUROCRYPT 2004: 74-
90.

17. S. Mitomi and A. Miyaji, ”A general model of multisignature schemes with message
flexibility, order flexibility, and order verifiability”, IEICE Trans., Fundamentals.
vol. E84-A, No.10(2001), 2488 - 2499. Previous version: S. Mitomi and A. Miyaji,
A multisignature scheme with message flexibility, order flexibility and order verifia-
bility, Information security and privacy-Proceedings of ACISP 2000, Lecture Notes
in Computer Science, 1841(2000), Springer-Verlag, p298 - 312.

18. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (ex-
tended abstract). In Proceedings of CCS 2001, pages 245 -254. ACM Press, 2001.

19. K. Ohta, and T. Okamoto, A digital multisignature scheme based on the Fiat-
Shamir scheme, Lecture Notes in Computer Science 739, Advances in Cryptology
-Asiacrypt’91, Springer-Verlag, pp. 139-148, 1993.

20. K. Ohta and T. Okamoto. Multisignature schemes secure against active insider
attacks. IEICE Trans. Fundamentals, E82-A(1):21C31, 1999.

21. K. Ohta and T. Okamoto: Generic construction methods of multi-signature
schemes, Proceedings of The 2001 Symposium on Cryptography and Information
Security (SCIS2001), vol.I, pp.31-36, 2001.

22. T. Okamoto. A digital multisignature scheme using bijective public-key cryptosys-
tems. ACM Trans. Computer Systems, 6(4):432C41, November 1988.

23. R. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2): 120-126
(1978).

24. A. Shimbo, Multisignature Schemes Based on the ElGamal Scheme, Proc. of The
1994 Symposium on Cryptography and Information Security,January 27 - 29, 1994.

25. M. Tada: A secure multisignature scheme with signing order Verifiability, IEICE
transactions on fundamentals, vol.E86-A, no.1, pp.73-88, 2003. Previous version:
M. Tada: An Order-Specified Multisignature Scheme Secure against Active Insider
Attacks. ACISP 2002: 328-345.

	Introduction
	Problem Statement
	Our Works

	Standard Signature Schemes Working over Extended Domains
	Notions
	Generic Construction
	Instantiated with RSA

	Syntax, Security Definition, Construction of Sequential Aggregate Signature Scheme from Ordinary Signatures
	Syntax
	The Definition of Security
	Generic Construction from Independent Homomorphic Trapdoor One-Way Permutations
	The Proof of Security
	Instantiated with RSA

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

