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Abstract. The notion of concurrent signatures was recently introduced
by Chen, Kudla and Paterson. In concurrent signature schemes, two enti-
ties can produce two signatures that are not binding, until an extra piece
of information (namely the keystone) is released by one of the parties.
Subsequently, it was noted that the concurrent signature scheme pro-
posed in the seminal paper cannot provide perfect ambiguity. Then, the
notion of perfect concurrent signatures was introduced. In this paper, we
define the notion of identity-based (or ID-based) perfect concurrent sig-
nature schemes. We provide the first generic construction of (ID-based)
perfect concurrent signature schemes from ring signature schemes. Using
the proposed framework, we give two concrete ID-based perfect concur-
rent signature schemes based on two major paradigms of ID-based ring
signature schemes. Security proofs are based on the random oracle model.

Keywords: Concurrent Signatures, Perfect Ambiguity, Fair-Exchange,
Ring Signatures, Identity-based Signatures, Bilinear Pairing.

1 Introduction

Consider the situation where a customer Alice would like to make a purchase
request of a physical item from a shop owner Bob. One of the ways to do the
transaction is asking Alice to firstly sign a payment instruction to pay Bob the
price of the item. Then, Bob agrees by signing a statement that he authorizes
Alice to pick the item up from the store, which will be sent via an email or other
means upon receiving Alice’s signature. We would like to make sure that both
parties (the customer and the shop owner in our case) get the other party’s item,
or no party gets the other party’s item at the end of a transaction, that is, the
principle of fair exchange. For purchase occurred in a face-to-face manner, people
have a higher confidence in getting back the other party’s item shortly after
giving out his or her item to be exchanged. However, to achieve fair exchange
over Internet, in which two parties are mutually distrustful, is not a trivial task.
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Concurrent signature can help when the full power of fair exchange is not
necessary [0]. A pair of concurrent signatures can be made binding at the same
time, i.e. when Alice picks up the item from Bob’s store. At this time, Alice’s
signature (i.e. payment instruction) will be binding and Bob’s signature (to allow
Alice to pick up the item) will also be binding concurrently.

Subsequently, [I3] noted that the concurrent signature scheme proposed in [6]
cannot provide perfect ambiguity if both signers are known to be trustworthy.
With the aim to further anonymize the signatures before the signatures are made
binding, the notion of perfect concurrent signatures was introduced.

1.1 Related Work

Fair exchange of signature is a fundamental research problem in cryptography.
Fairness in exchanging signatures is normally achieved with the help of a trusted
third party (TTP) (which is often offline [2]). There were some attempts where
a fair exchange of signatures can be achieved with a “semi-trusted” TTP who
can be called upon to handle disputes between signers [1,[9]. This type of fair
exchange is also referred to as an optimistic fair exchange. The well-known open
problem in fair exchange is the requirement of a dispute resolving TTP whose
role cannot be replaced by a normal certification authority (CA).

In [I2], the notion of ring signatures was formalized and an efficient scheme
based on RSA was proposed. A ring signature scheme allows a signer who knows
at least one piece of secret information (or a trapdoor) to produce a sequence of
n random permutations and form them into a ring. This ambiguous signature
can be used to convince any third party that one of the people in the group (who
knows the trapdoor information) has authenticated the message on behalf of the
group. The authentication provides signer ambiguity, in the sense that no one
can identify who has actually signed the message. The ID-based version of ring
signature schemes was introduced in [14]. After that, a number of ID-based ring
signature schemes were proposed. A recent study [7] showed that these schemes
can be classified into two major paradigms, namely, the conversation from non-
ID-based ring signature and the extension from ID-based signature. Please refer
to [7] for a more detailed review of ID-based ring signature schemes.

1.2 Owur Contributions

We define the notion of ID-based perfect concurrent signatures, which is the
strongest notion (in terms of privacy) of concurrent signature currently available.
We provide a generic construction of both non-ID-based and ID-based perfect
concurrent signature schemes from ring signatures, which is the first discussion
in the literature. We illustrate our idea by two schemes from each of two major
paradigms of existing ID-based ring signature schemes. Both of them enjoy short
signature length which is only one group element on elliptic curve larger than
most existing ID-based signature schemes, our second scheme is also efficient in
the sense that no pairing operation is required for the generation of signature.
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1.3 Paper Organization

The rest of this paper is organized as follows. The next section reviews some
notions that will be used throughout this paper. Section [3 provides a model of
ID-based perfect concurrent signature schemes together with its security require-
ments. We also present a generic construction of (ID-based) perfect concurrent
signature protocol in this section. In Section [4] and Section B, we provide two
concrete ID-based perfect concurrent signature schemes. Section [0l concludes the
paper and discusses future research direction.

2 Preliminaries

2.1 Basic Concepts on Bilinear Pairings

Let G1, G2 be cyclic additive groups generated by P, P>, respectively, whose
order are a prime q. Let G,; be a cyclic multiplicative group with the same
order ¢q. We assume there is an isomorphism 1 : Go — Gy such that ¢ (P2) = P.
Let é: G; X G2 — Gy be a bilinear mapping with the following properties:

1. Bilinearity: é(aP,bQ) = é(P,Q)* for all P € G1,Q € Ga,a,b, € Z,,.

2. Non-degeneracy: There exists P € G1,Q € Gy such that é(P, Q) # 1.

3. Computability: There exists an efficient algorithm to compute é(P, Q) for all
P eGq,Q € Go.

For simplicity, hereafter, we set G; = G2 and P; = P,. We note that our scheme
can be easily modified for a general case, when Gy # Go.

A bilinear pairing instance generator is defined as a probabilistic polynomial
time algorithm ZG that takes as input a security parameter ¢ and returns a uni-
formly random tuple param = (p, G1, Gy, é, P) of bilinear parameters, including
a prime number p of size ¢, a cyclic additive group G; of order ¢, a multiplicative
group Gy of order ¢, a bilinear map € : G; x G; — Gjs and a generator P of
G1. For a group G of prime order, we denote the set G* = G \ {O} where O is
the identity element of the group.

2.2 Complexity Assumption

Definition 1. Computational Co-Diffie-Hellman (Co-CDH) Problem.
Given a randomly chosen (Py, Py, aPy,bP;), where P1, Py € Gy, a,b € Z;, and
a,b are unknown, compute abPy € Gyy.

Definition 2. Co-CDH Assumption.

If IG is a Co-CDH parameter generator, the advantage Advzg(A) that an al-
gorithm A has in solving the Co-CDH problem is defined to be the probabil-
ity that the algorithm A outputs abPy on inputs Gy, Gy, Py, Py, aPy,bPs, where
(G1,Gyy) is the output of IG for sufficiently large security parameter £, Py, Py
are random generators of G1 and a,b are random elements of ZZ. The Co-CDH
assumption is that Advzg(A) is negligible for all efficient algorithms A.
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2.3 Review on Concurrent Signatures

In concurrent signatures, there are two parties involved in the protocol, namely
A and B (or Alice and Bob, respectively). At first, both parties’ signatures are
ambiguous from any third party’s point of view, but they will be simultaneously
binding after an additional information, called a “keystone” is released by one
of the participants. Since one party is required to create a keystone and send
the first message to the other party, we call this party the initial signer. A party
who responds to the initial signature by creating another signature is called a
matching signer. We note that if Alice does not release the keystone, then the
transaction cannot be completed, although Bob would like to do so. Nevertheless,
there are many scenarios where this type of signature schemes is applicable [6].

Similar to the definition in [6], concurrent signatures are digital signature
schemes that consist of the following algorithms:

— SETUP: A probabilistic algorithm that accepts a security parameter ¢, out-
puts the descriptions of the message space M, the signature space S, the
keystone space K, the keystone fix space F, a function KSGEN : K — F
and any other parameters 7.

— KEYGEN: A probabilistic algorithm that accepts a security parameter ¢,
outputs the public key y;; together with the corresponding private key z; to
be kept secretly.

— ASIGN: A probabilistic algorithm that accepts (yi,y;, %:, k1, ha,m), where
hi,he € F, y;, y; # y; are public keys, x; is the private key corresponding to
yi, and m € M, outputs a signer-ambiguous signature o = (s, hq, ha) where
s € 8, and hq, hy are the sources of randomness used in generating s.

— AVERIFY: An algorithm that accepts S = (o, ys,y;, m), where o = (s, h1, ha),
s €S, hi,he € F, y; and y; are public keys, and m € M, outputs accept or
reject. The symmetric property of AVERIFY requires AVERIFY (o', y;,yi,m)
= AVERIFY(0,y;,y;,m) for o' = (s, ha, h1).

— VERIFY: An algorithm that accepts (k, S) where k € K is a keystone and S is
of the form S = (o, y;,y;, m), where o = (s, hq, he) with s € S, hy,hy € F,
y; and y; are public keys, and m € M. The algorithm verifies whether

KSGEN (k) < hy holds. If it does not hold, then it terminates with output
reject. Otherwise, it runs AVERIFY(S).

As discussed in the introduction, the concrete construction of concurrent sig-
nature schemes in [6] cannot provide perfect ambiguity in certain situations. In
their scheme, the two signatures have an explicit relationship which can be eas-
ily observable by any third party. As a consequence, when the two signers are
well known to be honest that will always conform to the protocol, then any third
party would trust that the signatures are valid. Since the signatures can be iden-
tified even before the keystone is released, it contradicts with the requirement of
concurrent signatures. Concurrent signature schemes with perfect ambiguity was
considered in [13]. They presented two schemes based on the discrete logarithm
problem and bilinear pairings. Their constructions are based on the framework
proposed by [6], and they have not considered the generic construction of perfect
concurrent signature schemes.
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3 Generic Framework and Security Notions

We note that the algorithms listed out by [6] may not be enough to cater for the
need of perfect ambiguity. In view of this, we provide a new generic framework.

3.1 Building Blocks

Firstly, we provide a formal definition of the algorithm used in our generic con-
struction of perfect concurrent signature schemes, by incorporating some el-
ements from the notion introduced in [6]. Notice that to achieve the perfect
ambiguity, we no longer require the matching signer to use the same keystone
fix as the initial signer. Beside, a pair of keystones is used instead of a single one.
We also describe the essential properties of these algorithms for the construction
of perfect concurrent signature schemes.

Definition 3. A perfect concurrent signature scheme is a digital signature
scheme that consists of the following algorithms:

— SETUP: A probabilistic algorithm that on input a security parameter £, out-
puts the system parameters params which is the descriptions of the the mes-
sage space M, the signature space S, the keystone-pair space Kr x Ky, the
keystone fix space F and the encrypted keystone space K'. Note that we do
not include params explicitly as the input in the following descriptions.

— KEYGEN: A probabilistic algorithm that is invoked by a participant ID. The
algorithm outputs a public key Qip and the corresponding the secret key Sip.

— FIX-INITIAL-KEYSTONE: A deterministic algorithm that on input a initial-
keystone ky € Ky, it outputs the corresponding keystone fix fr € F.

— ASIGN: A probabilistic algorithm that on inputs (1D,, 1D, Sip,, o, f, m), where
o, f € F, ID;,ID; are the identities of the participants, Sip, s the secret
key associated with ID;, and m € M, outputs an ambiguous signature o =
{U;,U;,V} onm.

— ENC-MATCHING-KEYSTONE: A deterministic algorithm that on input a
matching-keystone kyr € Ky, it outputs the encrypted matching-keystone
Ky € K'.

— FIX-SECRET-KEYSTONE: A deterministic algorithm that on inputs an en-
crypted matching-keystone Kyr € K' and a secret key Sip,, outputs a secret
keystone fix fs € F.

— AVERIFY: A deterministic algorithm that takes as input S = (o,1D;,1D;, m)
and outputs accept or reject. Again we require a symmetric property that
AVERIFY (o, ID;, IDj, m) = AVERIFY (o', ID;,ID;, m) for ¢’ ={U;,U;,V'}.

— VERIFY-INITIAL-KEYSTONE: A deterministic algorithm that on input an
initial-keystone ky € Ky and its corresponding fix ky € F, it outputs accept

or reject by checking fr Z FIX — INITIAL — KEYSTONE(k;).

— VERIFY-SECRET-KEYSTONE: A deterministic algorithm that on input a
matching-keystone ky € Ky, a secret keystone fix fs € F and an iden-
tity ID;, it outputs accept or reject depending whether fs = FIX-SECRET-
KEYSTONE(ENC-MATCHING-KEYSTONE(kxs), Sip, )-
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— VERIFY-CONNECTION: A deterministic algorithm that on input a pair of
signatures o; = {U;,U;,V} and o; = {U],U;,V'} and a pair of keystone
fix fr and fs, it outputs accept or reject depending whether U; = fr and
Ul =U; ® fs, where ® is the operator of the group F.

— VERIFY: A deterministic algorithm that takes as input (kr,knr,S’), where
(kr,km) € Kr x Ky, 87 = (04,04,1D4,1D;,m). The algorithm verifies if
all of VERIFY-INITIAL-STONE, VERIFY-SECRET-KEYSTONE and VERIFY-
CONNECTION are true. If not, it terminates with output reject. Otherwise,
it runs AVERIFY(S) and the output of this algorithm is the output of the
AVERIFY algorithm.

3.2 ID-Based Scenario

For ID-based perfect concurrent signature, we need to modify the SETUP algo-
rithm described and replace KEYGEN algorithm by a new EXTRACT algorithm
in the above definition.

Definition 4. An ID-based perfect concurrent signature scheme requires the fol-
lowing algorithms:

— SETUP: A probabilistic algorithm that on input a security parameter £, out-
puts descriptions of the set of participants U, the message space M, the
signature space S, the keystone-pair space Ky x Ky, the keystone fix space
F, and the encrypted keystone space K'. The algorithm also outputs the pub-
lic key of the private key generator (PKG) and the master secret key of the
PKG for the extraction of user’s private key.

— EXTRACT: A deterministic algorithm that is invoked by a participant and the
PKG. On input an ID of a participant, the algorithm outputs a participant’s
secret key Sip.-

3.3 Generic Construction

In this section, we describe a generic construction of (ID-based) concurrent sig-
nature protocol. We highlight the properties of the algorithm involved. There
are two parties, namely A (Alice) and B (Bob) that are involved in the protocol.
Without losing generality, we assume that A is the initial signer and B is the
matching signer. The protocol works as follows.

Firstly, CA/PKG runs the SETUP algorithm to determine the public para-
meters of the scheme. Then, depending on whether the scheme is ID-based, user
invokes the corresponding algorithm to get the public-private key pair.

More specifically, for non-ID-based scenario, both A and B run KEYGEN to
generate a public-private key pair (denoted by (Qip,,Sip,) and (Qipg, Sipj;) re-
spectively), register the public key and the identity with the CA, and possibly
provides a proof-of-knowledge of the private key to the CA as well. After au-
thentication (and the checking of the proof-of-knowledge) the CA issues a digital
certificate binding the relation of the purported identity to the user.
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For the ID-based scenario, both A and B visit the PKG and engage in the
EXTRACT algorithm to obtain their secret key Sip, and Sip,, respectively. The
identities of A and B are available publicly as ID 4 and ID g, together with public
hash functions Hy : {0,1}* — G;. Hence, the public key Qp, can be computed
by anyone (for instance, by computing Qip, = Ho(ID;)).

After both users got their corresponding key pair, the protocol is as follows.

1. A picks a random keystone (kr,kn) € K; x Kj and executes the SET-
INITIAL-KEYSTONE algorithm using k; as the input to obtain f; € F.

A good candidate for SET-INITIAL-KEYSTONE is a cryptographic hash func-
tion, since it is hard to invert, i.e. given y from the range of the function, it
is hard to find the pre-image x.

2. A selects a message m4 € M, together with her identity ID4 and B’s iden-

tity IDp, and computes her ambiguous signature as o4 = {Ua,Up,V} «—
ASIGN(ID 4, DB, Sip,, OF, f1,ma) where Oz denotes the identity element
of the group F. (Op is used to unify the list of input parameters used by 1D 4
and IDp for the ASIGN algorithm, which merely means that A can skip a
certain group operation inside the ASIGN algorithm that is used to connect
B’s signature with A’s.)
We require that the ASIGN algorithm to be able to produce ambiguous sig-
nature o such that any one can get convinced that either Sip, or Sip,, is used
as the input but does not know exactly which one with probability greater
than 1/2. Moreover, there are two parts (which can be implicitly) involved
with the signature such that the first part can be chosen arbitrary while the
value of another part must be depending on the first part. Most of existing
ring signature schemes satisfy these properties.

3. A hides the second keystone kp; by executing the ENC-MATCHING-
KEYSTONE algorithm using kj; as the input to obtain K, € K', A then
sends K s and 04 to B. We require that kj; cannot be effectively computable
from K ;. The choice of implementation for ENC-MATCHING-KEYSTONE
will be discussed shortly afterward.

4. Upon receiving A’s ambiguous signature o4, B verifies the signature by

testing whether AVERIFY (0 4,1D4,1Dg,m4) z accept holds. Obviously, the
AVERIFY algorithm is simply the one matching with the ASIGN algorithm.
5. B aborts if the above equation does not hold. Otherwise, B picks a mes-
sage mp € M to sign. B firstly executes FIX-SECRET-KEYSTONE with
the encrypted matching keystone Kjs and his secret key Sip, as input to
obtain a secret matching keystone fix fg, then computes his ambiguous mes-
sage op = {U4,Up,V'} «— ASIGN(IDp, D4, Sip,;,Us, fs,mp) and sends
this value to A. We require that the value of fg is uniquely determined
by kar and Sip, and cannot be computed without the knowledge of Sip,
or kps (that is why the keystone-fix is called a secret), yet its correctness
can be checked by only knowing kjps. All these properties can be achieved
by probabilistic public key encryption, such that ks is the randomness used
in encryption, K is part of the ciphertext, which can be viewed as a kind of
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session key employed by probabilistic public key encryption. The value of fg
can be verified by using the knowledge of kj;; and the recipient’s public key
Qibg-
6. Upon receiving B’s ambiguous signature op, A verifies it by testing whether
— VERIFY-SECRET-KEYSTONE(kys, fs, Qip,,) = accept,
— VERIFY-CONNECTION(fy, fs,04,08B) L accept and

— AVERIFY(03, 1D, 1D, mp) = accept
all hold. If not, then A aborts. Otherwise, A releases the keystone (kr, k)
to B, and both signatures are binding concurrently.

3.4 Security Notions

As the original model of concurrent signatures in [6], we require a perfect con-
current signatures (either ID-based or not) to satisfy correctness, ambiguity,
unforgeability and fairness. Intuitively, these notions are described as follows.
Note that we follow the definition of ambiguity in [13] instead of the one in [6].

— Correctness: If a signature o has been generated correctly by invoking ASIGN
algorithm on a message m € M, AVERIFY algorithm will return “accept”
with an overwhelming probability, given a signature ¢ on m and a secu-
rity parameter £. Moreover, after the keystone-pair (kr,ky) € Kr x Ky,
is released, then the output of VERIFY algorithm will be “accept” with an
overwhelming probability.

— Ambiguity: We require that given the two ambiguous signatures (o1, 02), any
adversary will not be able to distinguish who was the actual signer of the
signatures before the keystone is released. Any adversary can only conclude
that one of the following events has occurred:

1. Both o1 and o9 were generated by the initial signer.

2. Both 01 and o9 were generated by the matching signer.

3. The initial signer generated o; while the matching signer generated os.

4. The matching signer generated o1 while the initial signer generated os.
All these cases are equally probable from the adversary’s view.

— Unforgeability: There are two levels of unforgeability to be considered.

e Level 1: When an adversary A does not have any knowledge of the respec-
tive secret key Sip, then no valid signature that will pass the AVERIFY
algorithm can be produced. Otherwise, one of the underlying hard prob-
lems can be solved by using this adversary’s capability. This requirement
is for the matching signer to get convinced that the signature presented
by the initial signer is indeed originated from her.

e Level 2: Any party cannot frame the other party that he or she has in-
deed signed a message. We require that although both signatures are
ambiguous, any party who would like to frame (or cheat) the others will
not be able to produce a valid keystone with an overwhelming proba-
bility. This means that the first signature can only be generated by the
initial signer and it is unforgeable by anyone else, including the matching
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signer. At the same time, the second signature can only originate from
the matching signer, which is unforgeable by any person other than him,
including the initial signer.

— Fairness: We require that any valid ambiguous signatures generated using
the same keystone will all become binding after the keystone is released.
Hence, a matching signer cannot be left in a position where a keystone
binds his signature to him whilst the initial signer’s signature is not binding
to her. This requirement is important for the case like the initial signer
try to present a signature of another message after the matching signer has
verified the validity of the original message and complete his part of protocol.
However, we do not require that the matching signer will definitely receive
the necessary keystone.

Definition 5. An ID-based perfect concurrent signature scheme is secure if it
1s existentially unforgeable under a chosen message attack, ambiguous and fair.

4 A Concrete Instantiation

We present a concrete ID-based perfect concurrent signature scheme using the
above general construction, with the ID-based ring signature scheme proposed
by Zhang and Kim [I4] and the basic version of ID-based encryption scheme
with semantic security proposed by Boneh and Franklin [4]. Using our generic
construction in Section [l we define the required eleven algorithms.

— SETUP: The PKG selects a random number s € ZZ and sets Ppup = sP.
It selects three cryptographic hash functions Hy : {0,1}* — G; and
Hy, : {0,1}* — Z,. and Hs : {0,1}* — G;. It publishes system parameters
params = {G1,Gur, é,q, P, Ppyp, Ho, H1, Ho}, and keeps s as the master
secret key. The algorithm also sets M = K; =Ky = F = Z, and K' = G;.

— EXTRACT: The EXTRACT algorithm is defined as follows.

1. A user U; submits his or her identity ID; to the PKG.
2. After a successful identification, PKG generates U; secret key as follows.
e Compute Qip, = Ho(ID;).
o Compute U;’s secret key as Sip, = sQip,-
e Deliver Sip, as user U;’s secret key through a private and authenti-
cated channel.

— FIX-INITIAL-KEYSTONE: Assuming a keystone k; € Z, is randomly se-
lected, this algorithm outputs f; = Hy(kr) as the keystone-fix.

— ASIGN: The ASIGN algorithm accepts the following parameters (ID,,ID;,
Sip,;, @, f,m), where Sip, is the secret key associated with Qip,, f € F and
m € M is the message. The algorithm will perform the following.

1. Select a random point Z € G7.

Set uj — - f.

Compute ug = Hy (Ha(m)||(ID; & 1D;)||é(Z, P)é(u;Qp, , Poub))-

Compute V = ug ' (Z — (uo — u;)Sip,)-

Output o = (u; = ug — Uj, Uj, V') as the signature on message m.

Cuk
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— ENC-MATCHING-KEYSTONE: Assuming a keystone kys € Z, is randomly
selected, this algorithm outputs Kj; = kj/ P as the encrypted keystone.

— FIX-SECRET-KEYSTONE: This algorithm returns H;(é(Kas, Sip,))-

— AVERIFY. The AVERIFY algorithm accepts (o,|D;,1Dj,m), where o =
(u;, uj, V). The algorithm verifies whether

wi g £ Hy (Ha(m)[|(1D: @10;)|e(V, P)™ (i Quo,. Ppu) (1t Qu, » Ppu) )

holds with equality. If so, then output accept. Otherwise, output reject.

— VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if f; =
Hq(kr), reject otherwise.

— VERIFY-SECRET-KEYSTONE: It outputs accept if fg =
Hy(é(Pyup, Q|Dj)kM), reject otherwise.

— VERIFY-CONNECTION: This algorithm outputs accept if U] = U; - fg,
reject otherwise.

— VERIFY. The algorithm accepts (kr, kar,S’), where k; € Ky and ky € Ky
are the keystones and S’ = (m, 0y, 0;,1D;,1D;), where 0 = (u;, u;, V). The
algorithm verifies whether (kr, kys) is valid, by using the above two algo-
rithm. If it does not hold, then output reject. Otherwise, run AVERIFY(S).
The output of VERIFY is the output of AVERIFY algorithm.

Correctness.
The correctness of the above proposed scheme is justified as follows.

ui + 1y = Hy (Ha(m)[|(1D; & 1D,)|a(V, P)"*")&(t;Quo. Prus)é(ut; Qo s Prun))

( )
ug = Hy (HZ(m)H(lDi @ 1D;)l[e((us + u;)V + uiSip,, P)é(u; Qip, , pub))
= Hy (Hz(m)[|(ID; © 1D;)|[é(uoV + (uo — u;)Sip,, P)é(u;Qip,» Ppus))
= Hy (H(m)[|(1D; © 1D;)||é(Z, P)é(u;Qup, , Puv))

4.1 Security Consideration

The security proofs are omitted due to space limitation. We refer the reader to
the full version of this paper for a more complex account.

Theorem 1. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 1. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This gquarantees that the signature is unforgeable.

Theorem 2. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.
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Theorem 3. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 4. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

4.2 Signature Length

In the above scheme, each signature is a three-tuple o; = (u1,us,V), where
ui,ug € Zg and V € Gy. Using any of the families of curves described in [5],
one can take g to be a 170-bit prime and use a group G; where each element
is 171 bits. For example, G; is derived from the curve E/GF(3°7) defined by
y? = % —x+1, which has 923-bit discrete-logarithm security. With these choices,
the total signature length for a pair of signature is 1,022 bits or 128 bytes.

5 A More Efficient Construction

Now we present a more efficient variant of ID-based perfect concurrent signature
which requires no pairing operation in signing without sacrificing the computa-
tional efficiency of verification or other steps. Again, the construction follows
our idea of generic construction in Section Bl We utilize the ID-based ring signa-
ture scheme proposed by Chow et al. [8] and also the basic version of ID-based
encryption scheme with semantic security proposed in [4].

— SETUP: Basically it is the same as our first scheme, but the description of
spaces become M =K; =Ky =2Z,, F =K' =Gs.
— EXTRACT: The same as our first scheme.
— FIX-INITIAL-KEYSTONE: Assuming a keystone k; € Gg is randomly se-
lected, this algorithm outputs f; = Ha(k;) as the keystone-fix.
— ASIGN: The input of this algorithm includes two identities ID; and ID;, a
private key Sip,, a message m, a G; element «, and a G element f.
1. Compute U; = ao+ f and h; = H1(m||(ID; & 1D,)||U;).
2. Choose 1'; €p Z3, compute U; = riQip, — Uj — h;Qp, .
3. Compute h; = Hi(m||(ID; & 1D;)||U;) and V = (h; +7';)Sip, -
4. Output the signature o = {U;,U;, V'}.
— ENC-MATCHING-KEYSTONE: The same as our first scheme.
— FIX-SECRET-KEYSTONE: This algorithm returns fs = Ha(é(Kar, Sip,))-
— AVERIFY: The input of this algorithm includes two identities ID; and ID;, a
message m, and a ring signature o = {U;,U;, V'}.
1. Compute h; = H1(m||(ID; & ID;)||U;) and h; = Hq(m||(ID; & ID,)||U;).
2. Return accept if é(Ppuy, Ui + hiQip, + U; + h;Qip,) = é(P, V), reject
otherwise.
— VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if f; =
Hy(kr), reject otherwise.
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— VERIFY-SECRET-KEYSTONE: It outputs accept if fg =
H(é(Ppubs Q|Dj)kM)7 reject otherwise.

— VERIFY-CONNECTION: This algorithm outputs accept if U] = U; + fg,
reject otherwise.

— VERIFY. The algorithm accepts (k;,my,S’), where k; € Ky and ky € Ky
are the keystones and S’ = (m, 0, 0;,1D;,1D;), where o = (U;,U;, V). The
algorithm verifies whether (kr, kas) is valid and the connection between o;
and o; is valid by using the above three algorithm. If it does not hold, then
output reject. Otherwise, run AVERIFY(S). The output of VERIFY is the
output of AVERIFY algorithm.

Correctness.
The correctness of our second scheme is justified as follows.

é(Ppub, Ui + hiQip, + U; + h;Qip,)
= é(Ppup, " iQip, — Uj — hjQip, + hiQip, + U; + h;Qip,)
= é(sP, (hl + 7JZ')Q|D7:) = é(Pv (hl + T/i)lei,)

5.1 Security Consideration

Theorem 5. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 2. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This guarantees that the signature is unforgeable.

Theorem 6. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.

Theorem 7. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 8. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

5.2 Signature Length and Efficiency

In this scheme, each signature is a three-tuple (Uy, Uz, V'), where Uy, Us, V € G;.
With the same setting as our first scheme, our second scheme only requires 1,026
bits or 129 bytes for a pair of signatures. Hence, the signature is nearly as short as
that of the first one. This signature length is only one group element on elliptic
curve larger than most existing ID-based signature schemes (for example, see
the review in [3]). Our second scheme inherits the efficiency of the underlying
scheme by Chow et al. [§], such that no pairing operation is needed for signing,
with a normal computational cost for other algorithms of the protocol.
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6 Conclusion and Future Research Direction

We introduced the notion of ID-based perfect concurrent signatures, which is an
extension of the notion of concurrent signatures proposed in [6]. We provided the
first generic construction of (ID-based) perfect concurrent signature protocol in
the literature. We presented two concrete constructions of ID-based perfect con-
current signature schemes based on our generic framework. Our second scheme
requires no pairing operation in signing. We also provided a complete security
analysis for our schemes on their ambiguity, fairness and unforgeability.

Recently, a new ID-based ring signature scheme was proposed [10]. Instead of
following the existing paradigms of ID-based ring signature constructions, the
scheme is constructed using a cryptographic primitive known as accumulator
(e.g. see [I0]). It would be interesting to see if concurrent signature could be
realized from cryptographic accumulator.
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