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Abstract. The concept of concurrent signatures allows two entities to
produce two signatures in such a way that, the signer of each signa-
ture is ambiguous from a third party’s point of view until the release
of a secret, known as the keystone. Once the keystone is released, both
signatures become binding to their respective signers concurrently. Pre-
vious concurrent signature schemes use the concept of ring signatures in
their construction. Ring signatures identify the ring and thus concurrent
signatures constructed from ring signature are related and linkable. We
propose a new concurrent signature scheme which is independent of the
ring signature concept. Our concurrent signatures are anonymous. The
ordinary signatures obtained from our concurrent signature protocol are
unlinkable and do not reveal which concurrent signature transaction has
occurred. The price we pay is our concurrent signatures are asymmetric
in the sense that the initial signature and subsequent signatures are not
of the same construction.

1 Introduction

1.1 Concurrent Signatures

The concept of concurrent signatures was introduced in [3]. In a concurrent sig-
nature scheme, two parties A and B interact without the help of any third party
to sign messages MA and MB in such a way that both signatures are ambiguous
without an extra piece of information, known as the keystone. Without the key-
stone, from a third party’s point of view, both signatures are ambiguous as they
could have been generated by either of the parties and thus do not represent any
entity’s commitments to the messages. With the keystone, the signer for each
signature is identified and both signatures become instantly binding to their re-
spective signers. In the original proposal [3], the keystone is a randomly chosen
piece of information and possessed by the protocol’s initiator. During the sig-
nature generation phase, the keystone is not known to other parties. When the
validation of concurrent signatures is required, the initiator reveals the keystone
which validates all the signatures concurrently.

Concurrent signatures find applications in fair exchange of digital signatures
and fair tendering of contracts. To exchange digital signatures, two parties A
and B engage in a concurrent signature protocol by which each party receives
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the other’s concurrent signature on the desired message. The exchange is fair in
the sense that without the knowledge of the keystone, both of the concurrent
signatures are ambiguous and non-binding to the signers. To prove the validity
of the concurrent signature generated by party B, party A would need to reveal
the keystone. The revelation of this knowledge in turn would bind the concurrent
signature generated by party A to its signer, i.e., to party A, hence the fairness
is achieved. This notion of fairness is weak as it allows party A to reveal the
keystone in private to another party. In this scenario, the party B who is denied
of the knowledge of the keystone, can not prove the validity of the concurrent
signature generated by party A. However, this weak notion of fairness is accept-
able in many instances, such as contracts for party A to buy physical goods from
party B. The advantage of fair exchange using concurrent signatures is that it
eliminates the requirement of a trusted third party from the protocol and it is
not overly interactive. Previous solutions to the problem of fair exchange of dig-
ital signatures (see [1,2] and references therein for a detailed survey) are either
highly interactive with multiple rounds of exchange or require the existence of a
third party trusted by both parties A and B. Multiple rounds of exchange are
inefficient while the existence of a trusted third party is not always warranted.

Previous concurrent signature proposals [3,10] are based on the concept of
ring signatures. In those schemes, each concurrent signature is a ring signature
[8] generated from the ring consisting of all involved parties. Each ring signature
while identifies that the signer is a member of the ring, does not reveal the actual
signer. The ambiguity of each concurrent signature comes from this anonymous
attribute of the underlying ring signature scheme. Ring signatures while hide
the actual signer identity in the ring, do identify the ring. Hence it does leak
information about the transaction.

Furthermore, in those proposals [3,10], once the keystone is revealed, its
value must be included in each signature in order to bind the signature to its
actual signer. This means all the signatures obtained from a concurrent signature
protocol are linked together. This is not desirable when the anonymity of the
transaction is required.

1.2 Our Contributions

In this paper, we propose a concurrent signature scheme which offers a stronger
notion of anonymity than previous schemes. Under the Decisional Diffie-Hellman
assumption, each of our concurrent signatures could be created by anyone (not
just by a member of the ring as done previously) without the knowledge of the
keystone. Due to this, a set of k concurrent signatures in our scheme is anony-
mous and releases no information about whether the transaction is real or faked.
Once the keystone is revealed, our concurrent signatures could be converted to
ordinary Schnorr-like signatures. Except for one signature issued by the protocol
initiator, our converted signatures do not contain the keystone and thus remain
unlinkable. This is in total contrast to all previous proposals [3,10] in which once
the keystone is revealed, all the signatures obtained from a concurrent signature
transaction are linked by the formation of the ring.
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The cost we pay is that our concurrent signatures are asymmetric. The sig-
nature signed by the party who processes the keystone is different from the
other signatures. However, this is not a real issue in most applications where
concurrent signatures find their uses.

1.3 Technical Approach

Each concurrent signature could be viewed as a promise of signature which could
be converted into an ordinary signature by revealing a secret information – the
keystone. In CKP concurrent signatures, a promise of signature is a ring signature
issued by a member of the ring. Upon the release of the keystone information,
it converts the ring signature to a signature that could only be issued by the
identified member. While ring signatures could be used to construct promises of
signatures, it is not a necessary condition.

In [1], Asokan, Shoup and Waidner (ASW) proposed a technique which re-
duces a promise of a signature to a promise of a homomorphic pre-image. With-
out the homomorphic pre-image, the promise of signature looks indistinguishable
from random elements of the signature space as it could have been created by
anyone using solely public information. With the homomorphic pre-image, the
promise of signature could be converted into an ordinary signature. This tech-
nique is applicable to most well-known signature schemes (e.g., Schnorr [9], RSA
[7], DSS [5] and GQ [4] signature schemes). If we view the homomorphic pre-
image as the keystone, then an ASW promise of signature is indeed a concurrent
signature. The advantage of using the ASW construction is that a promise of
signature while contains public information about a single entity, could be cre-
ated by anyone; hence without the keystone, it leaks no information about the
signature. This is a genuine advantage from ring signatures where signatures are
linked together by the nature of the ring.

An ASW promise of a signature could only be constructed with the knowledge
of homomorphic pre-image, i.e., the keystone. In the standard model of the
concurrent signatures, the keystone should only be known to one party and not
to be shared with other parties. Thus except for one party in the protocol, the
ASW promise of signature construction could not be used for others. In those
cases, we need a promise of signature construction that does not require the
knowledge of the keystone. Fortunately, a such new construction is possible for
a variant of the Schnorr signature scheme. This construction is described in
section 2.

1.4 Organization

The remaining of the paper is organized as follows. Section 2 describes the con-
cept of promises of signatures. This concept forms the main basic building block
for our concurrent signature scheme. Section 3 discusses our formal definitions
which include both the definitions for concurrent signature scheme and protocol.
Section 4 gives the security model for our concurrent signature scheme. Here, we
modify the security model from [3] in order to capture the additional security
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properties of anonymity and unlinkability. Section 5 proposes a concrete con-
current signature scheme. It also discusses the security of the construction and
extensions of this proposal to multi-party case.

2 Promises of Signatures

Definition 1. Let f be some cryptographic function. The value σ = 〈s, u〉 is
said to be a valid promise of signature ρ = 〈k, u〉 on some message m if the
following conditions hold:

– Publicly Verifiable: given σ, everyone is convinced that if there exists
k = f−1(s) then ρ = 〈k, u〉 is a valid ordinary signature.

– Anonymity: without the knowledge of k = f−1(s), σ is indistinguishable
from random elements of the signature space.

To convert a promise of signature to an ordinary signature, one only needs to
reveal the value k such that f(k) gives s. The verification s = f(k) is adequate
to verify the signature ρ = 〈k, u〉 provided that σ = 〈s, u〉 is a valid promise of
signature.

2.1 Promises of Schnorr Signatures

The Schnorr signature scheme [9] is constructed as follows:

– Setup: the public parameters are the primes p and q of appropriate size
such that q|(p − 1), and a generator g for the subgroup in Z

∗
p of order q.

– Key Generation: select a random x ∈ Zq and compute h = gx mod p. The
public key is {p, q, g, h} and its corresponding private key is x.

– Sign: the signer chooses a random r ∈ Zq and computes k = cx + r mod q
where c = H(gr mod p, m) and H is a hash function. The signature is ρ =
(k, c).

– Verify: to verify the signature ρ = (k, c), one checks c =H(gkh−c mod p, m).

For the remaining of this paper, we omit the modular reduction mod p from
the modular exponentiation ar mod p for any given a ∈ Z

∗
p and any arbitrary r.

Instead, we use ar to denote ar mod p whenever the context is clear.
The promise of the Schnorr signature ρ = 〈k, c〉 is σ = 〈s, c〉, where s = f(k)

for f(x) = gx. To verify the promise of signature, one verifies c = H(sh−c, m).
To convert the promise of signature to an ordinary signature, the signer reveals
k. The verification is gk = s which implies c = H(gkh−c, m), and thus ρ = 〈k, c〉
is a valid Schnorr signature.

Lemma 1. The value σ = 〈s, c〉 where c = H(sh−c, m) is a promise of signature
ρ = 〈k, c〉, where s = f(k) for f(x) = gx.
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2.2 Promises of Schnorr-Like Signatures

Apart from the above promise of signature. We also need a promise of signature
construction in which the promise of signature could be constructed without the
knowledge of the promise, i.e., without the knowledge of the homomorphic in-
verse. We design such a promise of signature construction for a variant of Schnorr
signature scheme. This variant of Schnorr signature scheme is constructed as fol-
lows:

– Setup: the public parameters are the primes p and q of appropriate size
such that q|(p − 1), and a generator g for the subgroup in Z

∗
p of order q.

– Key Generation: select a random x ∈ Zq and compute h = gx. The public
key is {p, q, g, h} and the corresponding private key is x.

– Sign: the signer chooses two random κ and r ∈ Zq and computes κ =
(r−c)/x mod q where c = H(gr, m) and H is a hash function. The signature
is ρ = (κ, c).

– Verify: to verify the signature ρ = (κ, c), one checks c = H(gchκ, m).

This is a straightforward variant of the Schnorr signature scheme. The difference
here is that the equation r = κx + c mod q is used instead of the standard
equation r = k − cx mod q. Using essentially the same security proof for the
original Schnorr signature scheme [6], we have the following security result:

Lemma 2. In the random oracle model, this Schnorr-like signature scheme is
existentially unforgeable against adaptive chosen message attacks, assuming the
hardness of the discrete logarithm problem.

The promise of the Schnorr-like signature ρ = 〈κ, c〉 is ω = 〈s, κ1, c〉 where
s = f(κ−κ1) for f(x) = hx. To verify this promise of signature, one verifies c =
H(gchκ1s, m). To convert the promise of signature to an ordinary signature, the
signer reveals κ2 = κ − κ1 mod q. The verification is hκ2 = s which implies c =
H(gchκ1+κ2 , m); and hence ω = 〈κ, c〉 = 〈κ1 + κ2 mod q, c〉 is a valid signature.
Note that the knowledge of κ2 is not required in order to create the promise of
signature ω.

Lemma 3. The value ω = 〈s, κ1, c〉 where c = H(gchκ1s, m) is a valid promise
of signature ρ = 〈κ, c〉, where κ = κ1 + κ2 mod q and s = f(κ2) for f(x) = hx.

Proof. The verification c = H(gchκ1s, m) requires only public information. If
there exists κ2 such that hκ2 = s, we have c = H(gchκ1+κ2 , m) and thus ρ =
〈κ, c〉 = 〈κ1 + κ2, c〉 is a valid ordinary signature. Hence, the publicly verifiable
condition is satisfied.

The anonymity property of this promise of signature follows from the fact
that one could generate a valid promise of signature from public information:
the simulator chooses two random r and κ1 ∈ Zq, computes c = H(grhκ1 , m)
and sets s = gr−c. We have ω = 〈s, κ1, c〉 satisfies c = H(gchκ1s, m) and thus is
a valid promise of signature constructed solely from public information.
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3 Formal Definitions

3.1 Asymmetric Concurrent Signatures

In this section, we give a formal definition for concurrent signature schemes.
Our definition is an adaption of the CKP definition with some modification
accommodating the asymmetric property of signatures.

Definition 2. An asymmetric concurrent signature scheme is a digital signature
scheme consisted of the following algorithms:

SETUP: A probabilistic algorithm that on input of a security parameter l, out-
puts: the set of participants U each equipped with a private key xi and the cor-
responding public key Xi. The algorithm also outputs the message space M,
the keystone space K, the keystone fix space F and some additional system
parameters π. The algorithm also defines a function KGEN : K → F , a
set of functions {KGENj : K → F} and a keystone transformation function
KTRAN : F × {xi} → F .

ISIGN: A probabilistic algorithm that on inputs 〈Xi, xi, Mi〉, where Xi is a public
key, xi is the corresponding private key and Mi ∈ M is the message, outputs
a promise of signature σi = 〈s, ui〉 and the relevant keystone k ∈ K, where
s = KGEN(k).

SSIGN: A probabilistic algorithm that on inputs 〈Xj , xj , Mj〉 and s, where Xj

is a public key, xj is the corresponding private key , Mj ∈ M is the message
and s a keystone fix, outputs a promise of signature ωj = 〈s′, vj〉 where s′ =
KTRAN(s, xj).

IVERIFY: An algorithm which takes as input a promise of signature σi = 〈s, ui〉
and a message Mi, and outputs accept or reject. The algorithm outputs accept
if and only if σi is a valid promise of the signature 〈k, σi〉 on message Mi with
f(x) = KGEN(x).

SVERIFY: An algorithm which takes as input a promise of signature ωj =
〈s′, vj〉, a message Mj, and outputs accept or reject. The algorithm outputs accept
if and only if omegaj is a valid promise of the signature 〈k, ωj〉 on message Mj

with f(x) = KGENj(x).

VERIFY: An algorithm which takes as input, a promise of signature σi = 〈s, ui〉
(or ωj = 〈s′, vj〉), a message M and a keystone k ∈ K, and outputs accept or
reject. The algorithm will output accept if and only if s = KGEN(k) and 〈k, σi〉
(or s′ = KGENj(k) and 〈k, ωj〉) forms a valid signature on message M .

We note that our concurrent signature protocol differs from the protocol of [3]
in that the keystone fixes used for A and B are different. This crucial property
allows us to unlink signatures obtained from the same signature protocol. For
this to work, we require the keystone fix transform function KTRAN to be
isomorphic and that s′ leaks no more information about k rather than s. This
security notion is discussed in the following section.
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3.2 Concurrent Signature Protocol

Using the above definition, our two-party concurrent signature protocol is as
follows. Let A be the initial signer who initiates the protocol and B be the
matching signer who responds to the initial signer. A and B first run SETUP
algorithm to generate the public key parameters for the system. We assume A’s
public and private keys are XA and xA respectively. Likewise, B’s public and
private keys are XB and xB respectively. Then A and B engage in the following
protocol:

1: To start of the protocol, A runs ISIGN algorithm to generate a promise of
signature σA = 〈s, uA〉 and the relevant keystone k for the message MA. The
values of σA and MA are sent to B.
2: Upon receiving σA and MA, B verifies the validity of σA using IVERIFY. If
σA is a valid promise of signature on message MA, B uses the keystone fix s to
run SSIGN algorithm to generate a promise of signature ωB = 〈s′, vB〉 for the
message MB. The values of ωB and MB are sent to A.
3: Upon receiving ωB and MB, A runs SVERIFY to verify the validity of ωB.
If so, A uses the keystone k to verify the keystone fix s′. If this keystone fix is
valid, A forwards the keystone k to B.

4 Security Model

The original security model of [3] addresses four basic security properties, namely
completeness, fairness, ambiguity and unforgeability. The unforgeability prop-
erty is somewhat redundant as it has already been captured with the fair-
ness property. If concurrent signatures are forgeable, fairness would not be
achieved.

We require our concurrent signature protocol to achieve four security require-
ments, namely completeness, fairness, anonymity and unlinkability. The com-
pleteness and fairness properties are the standard security requirements in the
original model of [3] while the anonymity and unlinkability properties are new.
Our anonymity property replaces the ambiguity property in the original model.
It provides a stronger anonymity attribute for concurrent signatures than what
was originally allowed with the ambiguity property. The unlinkability property
addresses the anonymity of ordinary signatures obtained from the concurrent
signature protocol. This property is new and was not addressed in the original
model.

We note that our anonymity and unlinkability properties are not overlapped.
The anonymity property deals with the concurrent signatures while the unlinka-
bility property deals with the ordinary signatures obtained from the concurrent
signature protocol (upon the revelation of the keystone). It is quite possible that
once the keystone is revealed, it would link the anonymous concurrent signatures
together and thus the obtained (ordinary) signatures are not unlinkable.
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4.1 Completeness

Definition 3. A concurrent signature protocol is complete if the following con-
ditions hold:

– If σi = 〈s, ui〉 = ISIGN(Xi, xi, Mi), then IV ERIFY (s, ui) = accept. More-
over, if KGEN(k) = s for some k ∈ K, V ERIFY (k, s, ui)= accept.

– If ωj = 〈s′, vj〉 = SSIGN(Xj , xj , Mj), then SV ERIFY (k, s′, vj)= accept.
Moreover, if KGENj(k) = s′ for some k ∈ K, V ERIFY (k, s′, vj)= accept.

– If KGEN(k) = s and KGENj(k′) = s′, then k = k′.

4.2 Fairness

The fairness property is defined by the following game between an adversary A
and a challenger C.

GAME 1:

Setup: as SETUP in section 3.1. The challenger C is given the public key X
and its corresponding secret key x. The adversary is given the public key X ′

and its corresponding secret key x′.
Queries: the adversary A is allowed to make a sequence of the following queries

to the challenger C:
– ISIGN query, A will supply the message mi and C will output the

promise of signature σi = 〈si, ui〉 = ISIGN(X, x, mi).
– SSIGN query, A will supply his promise of signature σ̂j = 〈ŝj , ûj〉

with the message mj . If IV ERIFY (ŝj , ûj) = accept, A obtains from C:
ωj = 〈sj , vj〉 = SSIGN(X, x, mj, ŝj); otherwise A obtains nothing.

– KRELEASE query, A requests C to reveal the keystone k ∈ K used to
produce the keystone fix s ∈ F in a previous ISIGN query.

Output: Finally A outputs a string φ and C outputs a string φ̄. The adversary
wins if either of the following conditions hold:
– φ = (k, σ) = (k, s, u), V ERIFY (k, s, u) = accept and A has not made

KRELEASE query for s or,
– φ=(k, ω)=(k, s, v), V ERIFY (k, s, v) = accept, and s = KTRAN(ŝ, x);

φ̄ = (k, σ) = (k, ŝ, û) and V ERIFY (k, ŝ, û) �= accept.

Definition 4. A concurrent signature protocol is fair if the advantage of an
polynomial-bounded adversary in the above game is negligible.

4.3 Anonymity

Definition 5. A concurrent signature is anonymous if the following conditions
hold:

– The value σi = 〈s, ui〉 = ISIGN(Xi, xi, Mi) is indistinguishable from ran-
dom elements of the signature space.

– The tuple (s, ωj) where s is the keystone fix input to SSIGN and ωj =
〈s′, vj〉 = SSIGN(Xj , xj , Mj, s) is indistinguishable from random elements
of the signature space.
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4.4 Unlinkability

The unlinkability property is defined by the following game between an adversary
A and a challenger C.

GAME 2:

Setup: as SETUP in section 3.1. The challenger C is also given two pairs of
public and private keys (X, x) and (X ′, x′).

Challenge: The challenger simulates by himself two instances of the concur-
rent signature protocol (using his two different pairs of public and secret
keys (X, x) and (X ′, x′) to obtain two different pairs of converted signatures
(ρ0, ρ

′
0) and (ρ1, ρ

′
1). Here ρ0 and ρ1 are signatures of the same type (Schnorr

or Schnorr-like) issued with the secret key x; and ρ′0 and ρ′1 are signatures of
the same type (Schnorr-like or Schnorr respectively ) issued with the secret
key x′. The challenger then chooses a random bit b ∈ {0, 1} and set ρ′ = ρ′b.
The signatures ρ0, ρ1 and ρ′ are then given to the adversary along with the
two private keys x and x′.

Output: Finally A outputs the bit b′. The adversary wins the game if b = b′.

Definition 6. A concurrent signature scheme is unlinkable if the probability of
an adversary to win the above game is not better than 1/2.

This definition captures the intuition that if signatures are unlinkable, the prob-
ability that the adversary to identify the correct pair (ρb, ρ

′
b) must not be non-

negligibly better than a random toss of the coin. By letting the adversary to
have the secret keys after the challenge is created, we essentially allow the ad-
versary to have the complete view of all protocol runs thereafter. Here we made
an implicit assumption that the messages signed are not linked.

5 An Asymmetric Concurrent Signature Scheme

We now proceed to give a concrete asymmetric concurrent signature scheme.

Setup: the public parameters are the primes p and q of appropriate size such
that q|(p−1), and a generator g for the subgroup in Z

∗
p of order q. The space

M is the set of all binary strings {0, 1}∗, K = Zq and F is the subgroup
of Z

∗
p generated by g. Private keys xi’s are chosen randomly from Zq. Their

corresponding public keys are Xi’s, each satisfies Xi = gxi . KGEN is defined
as KGEN(x) = gx, each KGENj is defined as KGENj(k) = Xk

j , and
KTRAN is defined as KTRAN(s, xj) = sxj .

ISIGN: on input of 〈Xi, xi, Mi〉, the algorithm generates a random r ∈ Zq and
returns the Schnorr promise of signature σi = 〈s, c〉 where c = H(gr, Mi),
s = gr+cxi.

SSIGN: on input of 〈Xj , xj , Mj〉 and s, the algorithm generates a random r′ ∈
Zq and returns the promise of Schnorr-like signature ωj = 〈s′, κ1, c

′〉 where
s′ = sxj , c′ = H(gr′

s′, Mj) and κ1 = (r′ − c′)/xj mod q.
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IVERIFY: on input of σi = 〈s, c〉, outputs accept if c = H(sX−c
i , Mi) and

reject otherwise.
SVERIFY: on input of ωj = 〈s′, κ1, c

′〉, outputs accept if c′ = H(gc′Xκ1
i s′, Mj)

and reject otherwise.
VERIFY: on input of the keystone k and the promise of signature σi = 〈s, c〉

(or k and the promise of signature ωj = 〈s′, κ1, c
′〉), the algorithm out-

puts accept if KGEN(k) = s and IV ERIFY (σi) = accept (or respectively
KGENj(k) = s′ and SV ERIFY (ωj) = accept).

5.1 Security

The completeness of the above concurrent signature scheme is by inspection. It
remains to show that our concurrent signature protocol is fair and anonymous
and the converted signatures are unlinkable.

Theorem 1. The concurrent signature protocol constructed from the above con-
current signature scheme is fair, provided that the Schnorr and Schnorr-like sig-
nature schemes are unforgeable.

Proof. The proof is by contradiction. If the concurrent signature protocol is not
fair, by definition it must violate one of these two conditions with non-negligible
probability:

Case 1: the party B can obtain a signature (k, σ) = (k, s, c) such that (k, s, c)
is accepted by V ERIFY without getting the keystone k from A.

Case 2: the party A can obtain a signature (k, ω) = (k, s′, κ1, c
′) such that

(k, s′, κ1, c
′) is accepted by V ERIFY while the output of party B (k, σ) =

(k, s, c) is not accepted by V ERIFY , i.e., V ERIFY (k, s, c) �= accept.

We consider each of the two cases.

Case 1. B is able to obtain a valid signature (k, σ) such that (k, s, c) is accepted
by V ERIFY without getting k from A. This is equivalent to B getting a valid
signature (k, σ) from the promise of signature σ. This implies a Schnorr signature
forgery.

Case 2. A is able to obtain a valid signature (k, ω). A could either receive ω
from B or generate ω by herself. If A does not receive ω from B, A must generate
the whole tuple (k, ω) by herself. This means that A could forge the Schnorr-
like signature (k, ω) which contradicts the unforgeability property of the basic
signature scheme.

If A receives the promise of signature ω = 〈s′, κ1, c
′〉, it means B must have

obtained a promise of signature σ = 〈s, c〉 such that s′ = sxB . Since 〈k, ω〉 is a
valid signature, we have s′ = Xk

B. This means s = s′1/XB = gk; and thus (k, σ)
is a valid signature which contradicts the original assumption.

Theorem 2. In the random oracle model, the concurrent signature protocol con-
structed from the above concurrent signature scheme is anonymous under the
Decisional Diffie-Hellman assumption.
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Proof. By definition, our signature protocol is anonymous if these conditions are
both satisfied:

Case 1: the promise of signature σi = 〈s, c〉 outputted by the algorithm
ISSIGN on input (Xi, xi, Mi) is indistinguishable from random elements of
the signature space and,

Case 2: the tuple (s, ωj) where ωj = 〈s′, κ1, c
′〉 is the output of algorithm

SSIGN on input (Xj , xj , Mj, s) is indistinguishable from random elements
of the signature space.

Case 1 comes straight from the anonymity property of the Schnorr promise of
signature. For Case 2, we show that if there is an oracle which distinguishes
(s, ωj) from random elements of the signature space, there is a machine which
could use the oracle to solve the Decisional Diffie-Hellman problem in the random
oracle model.

Our machine interacts with the oracle as follows:

Input: a tuple of 〈g, gx, gy, gr〉.
Operation 1: The machine serves as the hash function for the oracle. The
machine maintains a list of previous hash query definitions. If a hash query
is defined, the machine returns the previous output. Otherwise, the machine
returns a random output and adds the entry pair to the definition list.

Operation 2: The machine chooses random c and κ1 and sets s = gy, Xj =
gx, s′ = gz, and ωj = 〈s′, κ, c〉. The machine adds the pair of (c, gcXκ1

j s) to
the list of hash function definition. Finally the machine sends the pair (s, ωj)
to the oracle. This operation could be initiated by the machine or by the
oracle. We place no restriction on how this operation could be initiated.

Output: If the oracle outputs that one of {(s, ωj)} is a valid promise of
signature, the machine outputs 〈g, gx, gy, gr〉 is a valid Diffie-Hellman tuple,
i.e., r = xy.

If 〈g, gx, gy, gr〉 is a Diffie-Hellman tuple then r = xy and thus (s′, ωj) is a valid
pair (with k = x). If 〈g, gx, gy, gr〉 is not a Diffie-Hellman tuple then logss

′ �= x
and thus (s′, ωj) is not a valid pair. Thus our machine will give a correct answer
to the Decisional Diffie-Hellman problem if the machine would terminate and the
oracle could distinguish a valid (s, ωj) from an invalid one. The latter is by the
assumption of the oracle. For the former, it remains to show that the machine
terminates in a polynomially-bounded number of operations.

It is clear that Operation 1 always terminates. Operation 2 would not termi-
nate only if the hash query is already defined for challenge gcXκ1

j s , i.e., there is
another value c′ �= c such that c′ = H(gcXκ1

j s) is already defined by the machine.
With random c and κ1, gcXκ1

j s is uniformly distributed and the probability that
it appears in a polynomial-bounded list is negligible.

Theorem 3. Assuming the messages are unrelated, when converted to become
ordinary signatures, our concurrent signatures are unlinkable under the random
oracle model.
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Proof. According to definition 4, to prove that our concurrent signatures are
unlinkable, we need to show that the advantage of an adversary to identify the
bit b ∈ {0, 1} in GAME 2 (section 4.4) over the random toss of the coin is
negligible. Since the messages are irrelevant to our discussion, we ignore the
messages in the proof whenever possible.

We shall provide the proof for the case where ρ0 and ρ1 are Schnorr signatures
and ρ′b is a Schnorr-like signature. The case where ρ0 and ρ1 are Schnorr-like
signatures and ρ′b is a Schnorr signature is similar and omitted.

Let ρ0 = (k0, c0) and ρ1 = (k1, c1) where ci = H(X−cigki) (i = 1, 2), and let
ρ′b = (k′

b, c
′
b) where c′b = H(X ′k′

bgc′b).
Let r0 = k0− c0x mod q and r′0 = (k′

b −k0)xj + c′b mod q. Since c0 and c′b are
outputs of the random oracle H(), the pair 〈r0, r

′
0〉 is uniformly distributed in

Zq ×Zq. It is easy to verify that the concurrent signature protocol in which r0 is
the random input to the algorithm ISIGN(X, x, M0) and r′0 is the random input
to the algorithm SSIGN(X ′, x′, M ′

b) is legitimate and returns the signatures ρ0

and ρ′b.
Similarly, let r1 = k1 − c1x mod q and r′1 = (k′

b − k1)xj + c′b mod q. Since
c1 and c′b are outputs of the random oracle H(), the pair 〈r1, r

′
1〉 is uniformly

distributed in Zq ×Zq. It is likewise easy to verify that the concurrent signature
protocol in which r1 is the random input to the algorithm ISIGN(X, x, M1)
and r′1 is the random input to the algorithm SSIGN(X ′, x′, M ′

b) is legitimate
and returns the signatures ρ1 and ρ′b.

Then the probability for the adversary to identify the bit b is equal to the
probability for the adversary to identify whether the random pair 〈r0, r

′
0〉 or

〈r1, r
′
1〉 is the actual pair 〈rb, r

′
b〉 used in the protocol which generates ρb and ρ′b.

Since rb and r′b are uniformly and independently chosen random values from
Zq, the pair 〈rb, r

′
b〉 is uniformly distributed in Zq ×Zq. This means the probabil-

ity that 〈rb, r
′
b〉 = 〈r0, r

′
0〉 is equal to the probability that 〈rb, r

′
b〉 = 〈r1, r

′
1〉, i.e.,

the probability for the adversary to win GAME 2 is no better than a random
toss of the coin.

5.2 Discussion

The benefit of anonymity that our concurrent signature scheme offers might
turn out to be a disadvantage to the matching signer in certain cases. Due to
the anonymity property, the matching signer might not be able to distinguish
faked queries from genuine ones and hence is vulnerable against denial-of-service
attacks. This problem could be overcome by forcing the initial signer to prove
in zero-knowledge the knowledge of the homomorphic inverse. This is easily
accomplished using the standard Schnorr identification protocol [9]. The trade-
off is a reduction in the protocol performance. We note that this problem is not
applicable to the original CKP scheme as due to the nature of ring signatures,
the matching signer can always determine if a signature sent from the initial
signer is genuine or faked.

The protocol could be extended to work with multiple matching signers.
In this model, one initial signer is used as the hub connecting with all multi-
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ple matching signers. Each matching signer is assumed to behave like the the
matching signer in the two-party case. It is easy to see that in this scenario, the
anonymity of each and every signer is protected. Each concurrent signature in
this case is still of the same size. When the keystone is revealed, all obtained
signatures still remain unlinkable. We note that the CKP construction would re-
quire extra information proportional to the size of the group embedded in each
signature. This results in concurrent signatures of the size proportional to the
size of the group.
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