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Abstract. A computational approach to the perception of illusory con-
tours is introduced. The approach is based on the tensor voting technique
and applied to several real and synthetic images. Special interest is given
to the design of the communication pattern for spatial contour integra-
tion, called voting field.

1 Introduction

Illusory contours, also called virtual contours, are perceived contours that have
no counterpart in the retinal image of the human vision system. Neurophysi-
cal studies have shown that the perception of illusory contours can be found in
mammals, birds and insects [20]. The importance of illusory contours becomes
obvious regarding the fact that the brains of these animals have developed inde-
pendently throughout evolution. We can therefore assume that illusory contour
perception is not just a malfunction of these visual processing systems, but in-
stead is necessary for object border completion. Also for technical vision systems,
the completion of object boundaries that are interrupted due to occlusions or
low luminance contrast is an important issue.

For the human vision system, illusory contours have been studied by Gestalt
psychologists from the early 20th century on [10, 2, 25]. Schuhmann was one of
the first to mention this phenomenon in 1900 [24]. He described illusory contours
as contours that are not ”objectively present”. In the following years the contri-
butions to the field of illusory contour perception comprised the description of
optical illusions based on contour perception rather than explaining these illu-
sions. The most famous examples for optical illusions caused by illusory contour
perception are the Kanizsa figures shown in Fig. 1 (see also [8]).

In the following we present a computational approach to illusory contour
perception in natural scenes. The model uses the position and orientation of
detected corners. We therefore developed an algorithm for threshold-free edge
detection and a subsequent corner detection, which leads to the question of the
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(a) Kanizsa Triangle (b) Kanizsa Rectangle

Fig. 1. Kanizsa figures: The black ”pacmen” induce the perception of a triangle in (a)
and a rectangle in (b)

dependency of the presented results on the preceding low level image processes.
On the one hand it can be argued that results on real images suffer from the
systematic errors in preceding steps, on the other hand a real image offers a
much more complex and realistic test bed. Furthermore few attempts have been
made so far to apply illusory contour perception to real images.

2 Related Work

The majority of approaches or models dealing with the problem of spatial contour
integration use some kind of bipole connection scheme [6, 21], as introduced by
Grossberg and Mingolla [23]. This perceptual grouping kernel usually consists
of two symmetric lobes encoding the connection strength and orientation. In
[26], Williams and Thornber address the comparison of different methods of
aggregating the contributions of neighboring sites of the grouping kernel. For
a detailed overview of contour integration approaches, see [5] or [19]. In [19],
emphasis is placed on models including illusory contour perception, namely the
model of Heitger et al. [7, 22] as a neurophysical inspired computational model
and the approach of Zweck and Williams [28] which models the Brownian motion
of a particle from source to sink.

The method proposed in this paper uses the tensor voting technique intro-
duced by Medioni et al. [4]. Tensor voting was applied successfully to contour
inference problems on synthetic and binary input images in [17]. In [13] and [12],
this approach was extended to greyscale images as input, using gabor filtering as
a preceding image processing step. In the tensor voting framework the grouping
kernel, called stick voting field, is orientational, i.e. with angles from 0◦ to 180◦,
and designed for contour inference. Considering illusory contour perception,
the use of this stick voting field could make sense in the context of a unified
treatment of all contour elements, but would lead to interference of contour
elements, especially in the case of amodal completions behind a textured fore-
ground. What is needed for illusory contours including amodal completions is a
directional communication pattern (with angles from 0◦ to 360◦), e.g. one lobe,
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which was already used in [15] and [16], but addressed to spontaneously splitting
figures and binary input images.

3 Edge and Corner Detection

As a preprocessing step we have developed a method for threshold-free edge
detection and a subsequent corner detection. This is achieved by applying a
recursive search to edge candidates. The edge candidates are local extrema and
zero-crossings of the responses of several Gaussian-based filter banks. For an
overview of edge detection algorithms, see [3] and [27].

The kernels of our filter functions are shown in Fig. 2. In the case of the
edge-filter, Fig. 2(a), the behaviour of the filter is similar to that of the first
derivative of a Gaussian. For example, edges produce local extrema in the filter
responses with corresponding orientation. Like the edge filters, the corner filters
in Fig. 2(b) are defined for different orientation angles. The center-surround filter
shown in Fig. 2(c) behaves like the Mexican Hat Operator [11]. Edges produce
zero crossings, while lines result in local extrema of the filter responses.

(a) (b) (c)

Fig. 2. Filter Masks: (a) Edge filter (b) Corner filter (c) Center-surround filter

In general, edge detection is performed by convolving one filter mask with
the image data and in many cases, the filter mask is rotated to gain orientation-
sensitive filter responses. Like all differential edge detection schemes these meth-
ods suffer from the necessity of defining a threshold. This makes the results of
an edge detector highly dependent on the image and on its brightness. Further-
more, to avoid the influence of noise, the size of the convolution mask has to
be sufficiently large. This often leads to rounded corners and poor localization.
To avoid these disadvantages we use several convolution masks with different
shapes and compare their filter responses with each other to decide whether a
given point belongs to an edge.

Taken on their own, these convolution masks have several problems in de-
tecting edges or corners, but in spite of these problems, some image positions
can be labled as edges with a high probability. If an image position belongs to a
zero crossing of the center-surround filter and to a local maximum of the edge
filter and furthermore, if this maximum is higher than the corresponding corner
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(a) (b)

(c) (d)

Fig. 3. Lab scene: (a) Input image (b) Edge Candidates (c) Detected edges (d) Detected
corners

filter response, the position is very likely to belong to an edge. Starting from
these ”ideal” edges, we now recursively try to find a good continuation of the
edge, using a ranking list that defines e.g. that a zero crossing combined with
an edge filter maximum is preferred to a simple zero crossing.

With a search for local minima on the absolute center-surround filter re-
sponses, most of the corners are found correctly, except for those that lie on
”ideal” edges. Here we have to use the classic approach and compute the orien-
tation differences between neighboring edgels.

The result of the recursive search is shown in Fig. 3(c), detected corners are
shown superposed to the input image in Fig. 3(d). A comparison to other corner
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detectors is given in [18]. Note that the used method for corner and edge detec-
tion is not an integral part of the proposed computational approach to illusory
contour perception and can therefore be replaced by any other corner detector
providing not only the corner positions but also the associated orientation angles.

4 Tensor Voting

In [17], Medioni, Lee and Tang describe a framework for feature inference from
sparse and noisy data called tensor voting. The most important issue is the
representation of edge elements as tensors. In the 2D-case, a tensor over R

2 can
be denoted by a symmetric 2 × 2 matrix T with two perpendicular eigenvectors
e1, e2 and two corresponding real eigenvalues λ1 > λ2. A tensor can be visualized
as an ellipse in 2-D with the major axis representing the estimated tangent
direction e1 and its length λ1 reflecting the saliency of this estimation. The
length λ2 assigned to the perpendicular eigenvector e2 encodes the orientation
uncertainty. The definition of saliency measures is deducted from the following
decomposition of a tensor into T = λ1e1e

�
1 + λ2e2e

�
2 or equivalently T = (λ1 −

λ2)e1e
�
1 + λ2(e1e

�
1 + e2e

�
2 ). Then, the weighting factor (λ1 − λ2) represents an

orientation in the direction of the eigenvector e1 and thus will be called curve-
or stick-saliency. The second weight λ2 is applied to a circle, hence it is called
junction- or ball-saliency as its information about multiple orientations measures
the confidence in the presence of a junction.

λ1

λ2

Fig. 4. Visualization of a tensor as an ellipse

Grouping can now be formulated as the combination of elements according to
their stick-saliency or ball-saliency. In stick-voting, for each oriented input token
the grouping kernel called stick-voting-field (see next section) is aligned to the
eigenvector e1. In the following the input tokens consist of detected corners and
their associated directions. All fields are combined by tensor addition, i.e. addi-
tion of the matrices and spectral decomposition of the sum into eigenvectors and
-values. The field is designed to create groupings with neighboring tokens which
fulfill the minimal curvature constraint. Hence the orientation of each token of
the voting field is defined to lie on a cocircular path.

Note that for junctions or corners neither the tensor representation suffices to
encode the at least two different orientations nor is the ball saliency a trustable
measure for junctions, since it is highly dependent on the orientations of incoming
edges [14].
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5 Voting Fields

Given a point P with an associated tangent direction and a point Q with the
orientation difference θ between the tangent direction and the direct connection
of P and Q. Let � be the distance between P and Q. Then, with

r =
�

2sinθ
and s =

� · θ
sinθ

,

r is the radius of the tangent circle to P going through Q and s is the arc length
distance along the circular path (radian).

Most approaches to spatial contour integration define the connection strength
V for P and Q and therefore the shape of the bipole connection scheme via
V = Vd · Vc with a distance term Vd and a curvature term Vc. In [7], Heitger et
al. use

Vd1 = e−
�2

2σ2 and Vc1 =
{

cosk(π/2
α · θ) if |θ| < α

0 otherwise

with k = 2n, n ∈ N and an opening angle 2α = π. Hansen and Neumann also
use Vd1 and Vc1, but with k = 1 and α = 10◦ [6]. In [17], Medioni et al. define
the proximity term Vd2 and the curvature term Vc2 as follows:

Vd2 = e−
s2

2σ2 and Vc2 = e−
c·ρ2

σ2 with ρ =
2sinθ

�

c is a positive constant and ρ is nothing else than the inverse radius of the
osculating circle. This results in a curvature measure that is highly dependent
on scale.

Fig. 5. Stick saliency for the half lobe stick voting field with V = Vd2 · Vc1, k = 1 and
α = 15◦

To achieve a clear separation of distance along the circular path and its
curvature, we choose Vd2 and Vc1. The results presented in the next chapter are
computed with a directional one-lobe voting field and V = Vd2 · Vc1, k = 1 and
α = 15◦, i.e. an opening angle of 30◦.
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6 Results

Fig. 6(a), (d) and (g) show detected edges and corners and their associated
orientations, (b), (e) and (f) show stick saliencies after tensor voting and (c), (f)
and (i) show extracted illusory contours superposed to the previously detected
contours. It is remarkable, that in Fig. 6(f) the amodal completions of the circles
are found while this is not the case in Fig. 6(c) and (i). This is due to the acute
connection angles in the latter two cases as can be seen in the images showing
the stick saliencies.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Top row: Results for Fig. 1(b), middle row: results for Fig. 1(a), bottom row:
results for the Kanizsa triangle in Fig. 3. For further description see text.
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(a) (b)

(c) (d) (e)

Fig. 7. Rubber duck image: (a) input image, (b) stick saliencies induced by corners
and associated orientations, (c) illusory contours superposed to detected edges, (d) and
(e) magnification of regions containing illusory contours

In Fig. 7, the rubber duck is partially occluded by a black cable. Note that
there are some false assigned corners due to light reflections on the cable. The
voting fields cast by these corners interfere with the fields generated at the duck’s
object boundary and hence compromise the correct detection of amodal comple-
tions (Fig. 7(b)). This illustrates that a unified treatment of edge segments and
corners would disturb the perception of amodal completions, at least for this low
level image processing step. Anyhow just the two desired amodal completions of
the duck’s object boundary are marked as illusory contours, see Fig. 7(d) and
(e), so the correct virtual contours are found.

7 Conclusion

An approach to illusory contour perception has been introduced and successfully
applied to synthetic and real images. There are some natural limitations to a
low level image processing model for illusory contour perception. For a certain
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stage of grouping a knowledge base is required which leaves the field of low level
image processing. Furthermore, the human vision system derives its enormous
capabilities not only from the ”hardware implementation” as a parallel network
but also from the fact that several cues like depth and motion are considered
when detecting object boundaries.

With our approach we have shown that good results for illusory contour
perception can be achieved even in a low level image processing step.

8 Future Work

Currently, our model does not distinguish between modal and amodal comple-
tions and the contours are not assigned to certain object boundaries. Conse-
quently, unit formation will be substantial for future research. For further dis-
cussion about unit formation, see [9] and [1].
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