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Abstract. This paper presents a method for segmentation of medical
images and the application of the so called geometric or Clifford algebras
for volume representation, non-rigid registration of volumes and object
tracking. Segmentation is done combining texture and boundary infor-
mation in a region growing strategy obtaining good results. To model 2D
surfaces and 3D volumetric data we present a new approach based on
marching cubes idea however using spheres. We compare our approach
with other method based on the delaunay tetrahedrization. The results
show that our proposed approach reduces considerably the number of
spheres. Also we show how to do non-rigid registration of two volumetric
data represented as sets of spheres using 5-dimensional vectors in con-
formal geometric algebra. Finally we show the application of geometric
algebras to track surgical devices in real time.

1 Introduction

When dealing with tumor segmentation in brain images, one way to solve the
problem is by using Magnetic Resonance (MR) images because in such images
we have different types of them (ie. T1, T2, T1-weighted, T2-weighted, etc.;
some of them highlight tumor and other structures), and by combining and
differentiating them, the task become more easy and an automatic approach for
segmentation become possible (see [1]). Other methods, like the one proposed
by [2], use a probabilistic digital brain atlas to search abnormalities (outliers)
between the patient data and the atlas. The use of Computer Tomographic (CT)
images is less used because they have not such modalities and the development
of an automatic algorithm for segmentation is more complicated; however semi-
automatic approaches have been proposed (as in [3,4]) using seed points defined
manually by the user as initialization, and growing the region by some method.
In this work we are interested in segmenting tumors in CT images, so we use
a simple but effective algorithm to segment them: a set of 5 texture descriptors
is used to characterize each pixel of the image by means of 5 × 1 template or
a 5D-vector; then each vector is compared with the typical vector describing
a tumor in order to establish an initialization of the tumor in the image (seed
points for tumor tissue). Finally, a region growing strategy is used, combined
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with boundary information to obtain the final shape of the tumor (this method
is explained in section 2).

On the other hand, representation of volumetric objects using primitives like
points, lines or planes is a common task. The Union of Spheres proposed in [5] is
another possible representation for volumetric data, but it usually needs a large
amount of primitives (spheres). This fact aimed us to look a different way to
model the object with less primitives but being a good enough representation.
In the first approach, the dense Union of Spheres representation is obtained
using the Delaunay tetrahedrization and its complexity is O(n2) in both, time
and number of primitives, while our highest number of spheres using our method
based on marching cubes is less than 2n in the worst case, and some times it is
less. We use computer tomography (CT) images to do the experiments, and one
of the the surfaces to be modeled is the segmented tumor - n is the number of
boundary points in a total of m CT images (slides). This approach is explained
in section 4, which uses the concepts explained in section 3.

Some times (ie., when surgeon opens the head and occurs loss of cerebrospinal
liquid) tumor and brain structures suffer (non-linear) deformation. In this work
(see section 4.2) we present a new approach which uses models based on spheres
for using such spheres as the entities to be aligned. This is embedded in the
Conformal Geometric Algebra (CGA) framework using the TPS-RPM algorithm
but in a 5-dimensional space (see Sect. 4.2). Finally, we show the application of
GA for the task of object tracking (section 5).

2 Segmentation

As mentioned in [7,8] segmentation techniques can be categorized in three classes:
a) thresholding, b) region-based and c) boundary-based. Due to the advantages
and disadvantages of each technique, many segmentation methods are based on
the integration information of region and boundary techniques and there are
a great variety of methods; some of them working better in some cases, some
being more sensitive to noise, etc. This fact make not feasible to determine the
best approach to segmentation that integrates boundary and region information
because we have not a generally accepted and clear methodology for evaluating
the algorithms; additionally, the properties and objectives that the algorithms
try to satisfy and the image domain in which they work are different. Interested
reader can consult a detailed review of different approaches in [7]. Due to the
fact that we are dealing with medical images, we need also to take into account
an important characteristic: the texture. Textural properties of the image can
be extracted using texture descriptors which describe the texture in an area of
the image. So, if we use a texture descriptor over the whole image, we obtain a
new “texture feature image”. In most cases, a single operator does not provide
enough information about texture, and a set of operators need to be used. This
results in a set of “texture feature images” that jointly describe the texture
around each pixel.

When segmenting tomographic images, simple segmentation techniques such
as region growing, split and merge or boundary segmentation can not be used
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alone due to the complexity of the brain computer tomographic images, which
contain textures of different tissues, similar gray-levels between healthy and non-
healthy tissues, and sometimes the boundaries are not well defined. For this
reason, we decide to combine not only boundary and region information (as
typically it is done), but also to integrate information obtained from texture
descriptors and embed that in a region growing strategy. A block diagram of our
approach is shown in figure 1.a.
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Fig. 1. a) Block diagram of the approach to segment tumors in CT images (region
growing strategy combining texture and boundary information); b) Texture descriptors
used to obtain the texture information (4 Laws energy masks)

The first step is to characterize each pixel on images, so we opt for use the
texture information provided by some of the Laws’s masks to characterize them
with a five-dimensional vector (named texture vector, Vij , for pixel in coordi-
nates (i, j)). Then, to place automatically the seed points for the region growing
strategy, we choose only the pixels having a texture vector for the tissue of in-
terest (in this case we are interested in tumor) and use them as initialization (or
seeds) for the region growing strategy; boundary information is used to stop the
growing of the region. The construction of Vij is explained as follows: the first
element of Vij is only to identify if the pixels corresponds to the background
(value set to zero) or to the patient’s head (value set to one) - patient’s head
could be skin, bone, brain, etc.; in order to obtain the texture information, we
use a set of four masks of the so called Laws Masks (L5E5, R5R5, L5S5, E5S5 -
see 1.b); then we fix the value in a position of Vij with 1’s or 0’s, depending on
if the value is greater than zero or zero, respectively. As a result, each structure
(tissue, bone, skin, background) on the medical images used, has the same vector
Vij in a high number of its belonging pixels, but not in all of them because of
variations in values of neighboring pixels. So we can use the pixels having the
texture vector of the object we want to extract to establish them as seed points
in a region-growing scheme. Region growing criterions we use are as follows: we
compute the mean µseeds and standard deviation σseeds of the pixels fixed as
seeds; then, for each neighboring pixel being examined to determine if added or
not to the region:

If I(x, y) = ±2σseeds and Vxy �= Vseed at most in 1 element,then I(x, y) ∈ Rt
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where Rt is the region of the tumor. The stopping criterion takes into account the
boundaries of the object because the growing of the region is in all directions, but
when a boundary pixel is found, the growing in such direction is stopped. Figure
2 shows results of the process explained before: figure 2.a shows one original
CT-image; figure 2.b shows the seed points fixed, which have the texture vector
of the tumor; figure 2.c shows the final result after the overall process has ended
(the tumor extracted). The overall process takes only few seconds per image and
it could be used to segment any of the objects; but in our case, we focus our
attention on the extraction of the tumor.

a) c)
b)

Fig. 2. Results for the segmentation. a) One of the original CT-images; b) Seed points
fixed; c) Result for the image of (a) after the whole process (the tumor extracted).

After that, the next step is to model the volumetric data by some method.
Due to the fact that tumor can be deformed due to the lost of cefalic liquid once
the head of the patient is opened, we need a 3D representation of the tumor
which allows us to estimate such deformation to update the shape of the tumor.
Next sections explain the basis of our different approach for such modeling as
well as a similar method used for comparison. However, first we present how the
spheres are represented in conformal geometric algebra (CGA), and then we will
show how to build 3D models and register two of them using such entities with
TPS-RPM method.

3 Representation of Spheres in CGA

Our objective is not to provide a detailed description of the geometric alge-
bra (GA) and its advantages (interested reader can find very useful material
in [10,11]), so we only give a brief introduction and explain how to represent
spheres in conformal geometric algebra (CGA) as points in a space of 5 di-
mensions (because such representation will be used in the non-rigid registration
process).

Geometric algebra is a coordinate-free approach to geometry based on the
algebras of Grassmann and Clifford. The algebra is defined on a space whose
elements are called multivectors; a multivector is a linear combination of objects
of different grade, e.g. scalars, vectors and k-vectors. It has an associative and
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fully invertible product called the geometric or Clifford product. The existence
of such a product and the calculus associated with the geometric algebra endows
the system with tremendous power. The Clifford product (or geometric product)
ab between two vectors a and b is defined as:

ab = a · b + a ∧ b . (1)

where a · b represents the dot or inner product and a ∧ b represents the wedge
or exterior product. The geometric algebra Gp,q,r is a linear space of dimension
2n, where n = p + q + r and p, q, r indicate the number of basis vectors which
squares to 1, −1, 0, respectively. This algebra is constructed by the application
of geometric product between each two basis vectors ei , ej from the base of
the vector space �p,q,r. Thus Gp,q,r has elements of grade 0 (scalars), grade
1 (vectors), grade 2 (bivectors), and so on. The CGA G4,1,0 is adequate for
representing entities like spheres because there is no direct way to describe them
as compact entities in G3,0,0 (the geometric algebra of the 3D space); the only
possibility to define them is given by formulating a constraint equation. However,
in CGA the spheres are the basis entities from which the other entities are
derived. These basic entities, the spheres s with center p and radius ρ are defined
by (2).

s = p +
1
2

(
p2 − ρ2) e + e0 . (2)

where p ∈ �3, ρ is a scalar and e, e0 are defined as in eq. 3 (they are called null
vectors), and they are formed with two basis vectors e−, e+ additional to the
three basis vectors of the 3D-Euclidean space (which have the properties that
e2− = −1; e2

+ = +1; e− · e+ = 0).

e = e− + e+; e0 =
1
2
(e− − e+) (3)

In fact, we can think in a conformal point x as a degenerate sphere of radius
ρ = 0. More details on GA and the construction of other entities in CGA can
be consulted in [10,11]. We can see eq. 2 as a linear combination: s = αe1 +
βe2 + γe3 + δe+ + εe−, or represent it as a 5D-vector s = [α β γ δ ε]T . Thus, the
sphere in CGA is represented with a 5-dimensional vector, which is an adequate
representation to make two sets of 5-vectors, one representing the object and
the other the deformed object. These sets are obtained by the method explained
in next section (4). Once we have these sets, we will be able to apply the TPS-
RPM algorithm in order to do the registration process (see Sect. 4.2). However,
let us explain before how the rigid motion is done in GA. In GA, rotations are
computed by the so called rotor, R, defined as in equation 4, where a is the
plane perpendicular to the rotation axis; while translations are computed by the
translator, T , defined as in equation 5, where t is the translation vector and e is
defined as in 3.

R = exp −1
2
θa (4)

T = exp − t

2
e (5)
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To rotate any entity in any dimension, we multiply it by the rotor R from the
left and by the conjugate R̃ from the right, x′ = RxR̃. Translations are made
in the same way: y′ = TyT̃ . If we combine the rotation and the translation, the
resulting operator is named motor and is expresed as M = TR, which is applied
in the same way explained: x′ = MxM̃ = TRxR̃T̃ .

4 Volume Representation and Non-rigid Registration

In medical image analysis, the availability of 3D-models is of great interest to
medicians because it allows them to have a better understanding of the situa-
tion, and such models are relatively easy to build. However, in special situations
(as surgical procedures), some structures (as brain or tumor) suffer a (non-rigid)
transformation and the initial model must be corrected to reflect the actual shape
of the object. For this reason, it is important to have a representation suitable to
be deformed, with the minor quantity of primitives involved in such representa-
tion as possible to make faster the process. In literature we can find the Union of
Spheres algorithm (see [5]), which uses the spheres to build 3D-models of objects
and to align or transform it over time. Nevertheless, we use the marching cubes
algorithm’s ideas to develop an alternative method to build 3D models by using
spheres, which has the advantage of reducing the number of primitives needed.
For space reasons we do not provide an explanation of the Union of Spheres nor
the Marching Cubes algorithms, but it can be found in [5,9].

4.1 3D Models Using Spheres

To build a 3D model of the object of interest using spheres, we are based in the
marching cubes algorithm (MCA). The principle of our propposal is the same as
in MCA: given a set of m slides (CT images), divide the space in logical cubes
(each cube contains eight vertices, four of slide k and four of slide k + 1) and
determine which vertices of each cube are inside (or on) and outside the surface.
Then define the number of spheres of each cube according to figure 3 and eq.
6 (where i is the ith sphere of the case indicated by j), taking the indices of
the cube’s corners as the first cube of such figure indicates. Note that we use
the same 15 basic cases of the marching cubes algorithm because the total of
256 cases can be obtained from this basis. Also note that instead of triangles
we define spheres and that our goal is not to have a good render algorithm
(as intended for Marching cubes algorithm), but have a representation of the
volumetric data based on spheres which, as we said before, could be useful in
the process of object registration.

sj
pi

= cpi + 0.5(c2
pi

− ρ2
pi

)e + e0 ; sj
mi

= cmi + 0.5(c2
mi

− ρ2
mi

)e + e0

sj
gi

= cgi + 0.5(c2
gi

− ρ2
gi

)e + e0 (6)

Table 1 is a comparison between the results of the Union of Spheres and our
approach for the case of a brain model. The first row shows the worst case with
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Fig. 3. The basic 15 cases of surface intersecting cubes (defining a different number of
spheres with different centers and radius

both approaches; second row shows the number of spheres with improvements
in both algorithms (reduction of spheres in DT is done by grouping spheres in
a single one which contents the others, while such reduction is done using a
displacement of d = 3 in our approach). The number of boundary points was
n = 3370 in both cases. It is obvious the reduction in the number of primitives
obtained with our approach, while maintaining clear enough the representation
(even in the worst case). Figure 4.a-d shows the results obtained for a set of 36
images of a real patient with a tumor visible in 16 of them (see in figure 4.d the
3D model of the tumor of the real patient).

Table 1. Comparison between number of spheres using approach based on Delaunay
tetraherization and our approach based on marching cubes algorithm; n is the num-
ber of boundary points; d is the distance between vertices in logical cubes of second
approach.)

n/d
Num of spheres with each approach
DT approach Our approach

3370 / 1 13480 11866
3370 / 3 8642 2602

4.2 Registration of Two Models

Suppose you have two points sets and one of them results from the transforma-
tion of the other but you do not know the transformation nor the correspondences
between the points. In such situation you need an algorithm that find these two
unknowns the best as possible. If in addition the transformation is non rigid,
the complexity increases enormously. In the variety of registration algorithms
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a) c)

a) b)
c) d)

Fig. 4. Real patient: a) Original of one CT slide; b) Segmented object (the tumor);
c) Zoom of the approximation by circles according the steps described in section; d)
Approximation by spheres of the tumor extracted

existing today, we can find two that solve for correspondence and transforma-
tion: Iterated Closest Point (ICP) and Thin plate spline-Robust Point Matching
(TPS-RPM). Details of each one of this algorithms can be found in [6]; here we
assume, for space reasons, the reader knows them. In a past work we presented
a comparison between these algorithms for non-rigid registration and we con-
cluded TPS-RPM gives better results. However, we had used only sets of 2D
and 3D points. Now we have spheres as points in a 5D-space modeling the ob-
ject, and these spheres have not only different centers, but also different radius.
So, for the non-rigid registration we follow the simulated annealing process of
TPS-RPM explained in [6]. Let be UI = {sI

j}, j = 1, 2, ..., k, the initial spheres
set; UF = {sF

i }, i = 1, 2, ..., n, the final spheres set. To update the matrix M of
correspondence for spheres sI

j y sF
i , modify mji as

mji =
1
T

e−
(sF

i
−f(sI

j
))�(sF

i
−f(sI

j
))

T . (7)

for outlier entries j = k + 1 and i = 1, 2, ..., n:

mk+1,i =
1
T0

e−
(sF

i
−f(sI

k+1))�(sF
i

−f(sI
k+1))

T0 . (8)

and for outliers entries j = 1, 2, ..., k and i = n + 1:

mj,n+1 =
1
T0

e
− (sF

n+1−f(sI
j
))�(sF

n+1−f(sI
j
))

T0 . (9)

where T is the parameter of temperature which is reduced in each stage of the
optimization process beginning at a value T0 (remember that TPS-RPM use the
simulated annealing process). Then, to update transformation we use the QR-
decomposition of M to solve eq. 10 (following the same process explained in [6]
and omited here for space reasons).

Etps(d, w) = ‖Y − V d − Φw‖2 + λ1(wT Φw) + λ2[d − I]T [d − I] . (10)

Figure 5.a shows the 3D models as sets of spheres representing the object (the
tumor mentioned in figure 4) -one is the initial set (or representation at time t1);



Medical Image Segmentation and the Use of Geometric Algebras 737

Tumor at time

(initial set)

t1

Tumor at time
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a) Before registration

Tumor at time

(initial set)
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algorithm (initial

set transformed)

b) registrationAfter

Shape expected of

the tumor

( the one of time t2)

Fig. 5. a) Initial and expected sets (the expected set is obtained by a non-rigid trans-
formation of the initial one); b) Initial and result of applying TPS-RPM to align the
sets of spheres, represented as 5D-vectors in conformal geometric algebra. Note that
the resulting set has been aligned an looks like the initial one.

the other is the deformed or expected set (or representation at time t2)- which must
be registered. Figure 5.b shows the results of registration process using TPS-RPM
algorithmwith the spheres as 5D-vectors in conformal geometric algebra.Note that
usually, researchers use TPS-RPM with 2D or 3D vectors because they can not go
beyond such dimension; in contrast, using conformal geometric algebra we have an
homogeneous representation which preserves isometries and uses the sphere as the
basic entity. In figure 5, at the left are only the initial and expected sets; at the right
the initial and the result of registration but with the shape of the expected set for
visual comparison. Note that the algorithm adjusted the radius as expected (this
is not possible using only 3D vectors).

5 Object Tracking

Other important task in surgical procedures is the tracking of objects involved
in such procedures. For this purpose, some spherical markers are placed on the
instruments, and such markers are tracked using the Polaris System (Northern
Digital Inc.). To find the transfomation relating the 3D position of the objects
being tracked with the virtual model showed on display, we first calibrate the
real position of the patient with the 3D-model using the TPS-RPM algorithm
(section 4.2). Then we use the so called “motor” (explained in 3), to update the
position of the surgical devices in real time. The procedure to track is explained
as follows: first, we take two 3D point sets {xi} and {x′

i} defined in the Euclidean
3D geometric algebra and compute the rotor R and the translation vector t which
minimize the following equation
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Mannequin Passive probe

Spherical markers
Fiducial

points

Fig. 6. Scenario for tracking of devices: fiducial points are used to register the 3D
model with what is been observed by the polaris system; spherical markers on device
are used to track it

S =
n∑

i=1

[
x′

i − R(xi − t)R̃
]2

. (11)

The equations to compute the rotor and translation vector are obtained using
the differentiations of equation (11).

Fαβ ≡ σα · f(σβ) =
n∑

i=1

(σα · ui)(σβ · vi) (12)

t =
1
n

n∑

i=1

[
xi − R̃x′

iR
]

(13)

where ui = xi −x and vi = x′
i. By computing the SVD of F we get F = USV T

and using this result we compute the 3×3 rotation matrix R = V UT . Thereafter
the translation is computed using equation (13). This method was developed by
Lasenby et al. in [12]. The exponential representation of the transformation in
our framework reads

M = R +
t
2
R = el( θu

2 +e tu
2 ) (14)

where θu is the angle and tu the displacement with respect to the screw axis line
l. Applying this transformation to each point x′, we can obtain a tracking path
as follows:

x′ = TRxR̃T̃ = e
1
2 tee

θu
2 n xh e−

θu
2 ne−

1
2 te

= el( θu
2 +e tu

2 ) xh e−l( θu
2 +e tu

2 ) (15)

Figure 7 shows the applicaton of procedure explained before when tracking a
“polaris in-line passive probe” with three spherical markers (as the one showed
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Head

Tumor

Brain
Passive probe

Fig. 7. Images in 3D virtual world of the process of tracking of the surgical device.
First and third column: the whole 3D-model (skin + brain +device); second and fourth
column: brain hidden to visualize the tumor.

in figure 6:b). The scenario is as follows (see figure 6):a mannequin (in substi-
tution of a real patient); in such mannequin we put nine fiducial markers used
to align the “presurgical 3D-model” with the real position when tracking is in-
tended to be. A brain, obtained from a digital atlas, which is segmented and
merged with the 3D-model of the mannequin in order to have a more realistic
representation in the experiment, together with a tumor (also segmented to visu-
alize in differents views). Figure 7 shows the 3D-model of the mannequin, brain,
tumor and the device being tracked; such figure shows different momments while
tracking the device. In such figure, the first and third column show the model
complete (head+brain+device), the second and fourth one only the the head
and the tumor for better visualization of the last one.

6 Conclusions

We have shown the application of GA in three different tasks: volume repre-
sentation, non-rigid registration of sets of spheres and real time tracking. Also
we show at the begining a different approach for medical image segmentation
which combines texture and boundary information and embed it into a region-
growing scheme, having the advantage of integrating all the information in a
simple process. The algorithm proved to be very useful despite the limitations
of the used CT images (limitations compared with the facilities given by MRI
images, commonly used in similar works). With the GA framework, we show
how to obtain a representation of volumetric data using spheres; our approach is
based on the ideas exposed in marching cubes algorithm but it is not intended
for rendering purposes or displaying in real time, but for reduce the number of
primitives modeling the volumetric data and use less primitives in the process of
registration. Also, we show how to represent these primitives as spheres in the
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conformal geometric algebra, which are 5-dimensional vectors that can be used
with the principles of TPS-RPM. Experimental results seem to be promising
and highlight the potential of GA used in different tasks.
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