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Abstract. An automatic texture segmentation approach is presented in this pa-
per, in which wavelet-domain hidden Markov tree (WD-HMT) model is ex-
ploited to characterize the texture features of an image, an effective cluster va-
lidity index, the ratio of the overlap degree to the separation one between dif-
ferent fuzzy clusters, is used to determine the true number of the textures within 
an image by solving the minimum of this index in terms of different number of 
clusters, and the possibilistic C-means (PCM) clustering is performed to extract 
the training sample data from different textures. In this way, unsupervised seg-
mentation is changed into self-supervised one, and the well-known HMTseg al-
gorithm in the WD-HMT framework is eventually used to produce the final 
segmentation results, consequently automatic segmentation process is com-
pleted. This new approach is applied to segment a variety of composite textured 
images into distinct homogeneous regions with satisfactory segmentation re-
sults demonstrated. Real-world images are also segmented to further justify our 
approach. 

1   Introduction 

Image segmentation is an important and hard problem in image analysis. Among 
others, texture plays an important part in low level image analysis. The image seg-
mentation based on textural information is termed as texture segmentation, which 
involves the identification of non-overlapping homogeneous regions in an image.  

Typically, the first step of texture segmentation is texture feature characterization, 
which has been discussed through various approaches by far. In this paper, wavelet-
domain hidden Markov tree (WD-HMT) model is exploited to characterize texture 
features. The WD-HMT model [1], proposed first by Crouse et al. as a type of wave-
let-domain statistical signal models to characterize signals through capturing the inter-
scale dependencies of wavelet coefficients, has gained more and more attention from 
image processing and analysis communities due to its effectiveness in performing 
image denoising [2, 3], segmentation [4 ,5, 6], texture classification [6], texture syn-
thesis [6] and texture retrieval [7] etc..  

Based on the WD-HMT model, one supervised image segmentation algorithm, 
HMTseg [4], was presented by Choi et al. to solve the image segmentation problem. 
Later, HMTseg algorithm was improved to apply to synthetic aperture radar (SAR) 
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image segmentation where the “truncated” HMT model [8] was proposed to reduce 
the effect of speckle present at fine scales.  

More recently, a variety of unsupervised segmentation algorithms [9, 10, 11, 12] 
have been proposed one after another to extend the supervised algorithm [2] to the 
unsupervised one based on WD-HMT models. Zhen [9] integrated the parameter 
estimation and classification into one by using one multi-scale Expectation Maximi-
zation (EM) algorithm to segment SAR images on the coarse scales. In [10], Song 
exploited HMT-3S model [6] and the joint multi-context and multi-scale (JMCMS) 
approach [5] to give another unsupervised segmentation algorithm in which K-means 
clustering was adopted to extract the appropriate training samples for the unknown 
textures based on the likelihood disparity of HMT-3S model. Subsequently, Sun [11] 
utilized an effective soft clustering algorithm, possibilistic C-means (PCM) clustering, 
to further improve the unsupervised segmentation performance. Alternatively, Xu 
[12] has also given one unsupervised algorithm, where the dissimilarity between im-
age blocks was measured by the Kullback-Leibler distance (KLD) between different 
WD-HMT models, followed by a hierarchical clustering of the image blocks at the 
selected scale. It should be noted that all the unsupervised segmentation algorithms 
above are implemented under the assumption that the number of the textures in an 
image is provided a priori, which is unpractical for automatically segmenting images 
in many particular application areas, such as the content-based image retrieval. 

In this paper, we present an automatic texture segmentation approach based on the 
WD-HMT model [1]. Firstly, one global WD-HMT model is trained with the special 
EM algorithm in [1] with the whole image to be segmented as one texture. This model 
contains information from all distinct regions, and the different goodness of fit be-
tween the global model and local texture regions exists. Secondly, the true number of 
textures is obtained by finding the minimum of index ( , )osv c U  [13] over 

max2, ,c C= L for the likelihood results of image blocks. Thirdly, PCM clustering [14] 

is used to extract the training sample data based on the true number of textures. Fi-
nally, WD-HMT models for different textures are re-trained with the extracted sample 
data, and the supervised procedures of HMTseg [4] are performed to achieve the final 
results with one adaptive context based fusion scheme. 

The paper is organized as follows. In Section 2, WT-HMT model is briefly re-
viewed. Supervised Bayesian image segmentation algorithm, HMTseg, is outlined in 
Section 3. Automatic segmentation approach is detailed with three main procedures in 
Section 4. Experimental results on composite and real images are demonstrated in 
Section 5. Section 6 concludes this paper. 

2   Wavelet-Domain Hidden Markov Tree Model 

It is well known that the discrete wavelet transform (DWT) is an effective multi-scale 
image analysis tool due to its intrinsic multi-resolution analysis (MRA) characteris-
tics, which can represent different singularity contents of an image at different scales 
and subbands. In Fig.1 (a), one quad-tree structure of wavelet coefficients is shown, 
which demonstrates the dependencies of wavelet coefficients at three subbands, HL, 
LH, and HH. 



472 Q. Sun, B. Hou, and L.c. Jiao 

 
(a)                                          (b) 

Fig. 1. (a) Quadtree structure of 2-D discrete wavelet transforms. (b) 2-D wavelet-domain hid- 
den Markov tree model for one subband. Each wavelet coefficient (black node) is modeled as a 
Gaussian mixture model by a hidden state variable (white node) 

For multi-scale singularity characterization, one statistical model, hidden Markov 
tree (HMT) model [1], was proposed to model this structure. The HMT is a multidi-
mensional Gaussian mixture model (GMM) that applies tree-structured Markov 
chains across scales to capture inter-scale dependencies of wavelet coefficients [6], as 
shown in Fig.1 (b). In this tree-structured probabilistic model, each wavelet coeffi-
cient W is associated with a hidden state variable S, which decides whether it is 
“large” or “small”. The marginal density of each coefficient is then modeled as one 
two-density GMM: one large-variance Gaussian for the large state and one small-
variance Gaussian for the small one. Thus, GMM can closely fit the non-Gaussian 
marginal statistics of wavelet coefficient. 

Grouping the HMT model parameters, i.e. state probabilities for the root nodes of 
different quad-trees, state transition probabilities and variances for two mixtured 
Gaussians, into one vectorΘ , the HMT can be considered as one high-dimensional 

yet highly structured Gaussian mixture model ( )f W Θ  that approximates the joint 

probability density function (pdf) of wavelet coefficients W. For each wavelet coeffi-
cient, the overall pdf ( )f w can be expressed as 

( ) ( ) ( ),
M

W S W S
m=1

f w = p m f w S = m∑  (1) 

where, M is the number of states and S state variable. The model parameters in Θ  are 
estimated by the EM algorithm in [1]. 

It should be noted that HMT model has one nesting structure that corresponds to 
multi-scale representation of an image, as shown in Fig. 2. Each subtree of the HMT 
is also an HMT, with the HMT subtree rooted at node i modeling the statistical char-
acteristics of the wavelet coefficients corresponding to the dyadic square id  in the 

original image. 

3   Bayesian Image Segmentation Using WD-HMT 

One Bayesian segmentation algorithm, HMTseg [4], was proposed to implement super-
vised segmentation in which the WD-HMT model [1] is exploited to characterize  
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Fig. 2.  Multi-scale representation of an image; (b) Correspondence of quad-tree structure of 
wavelet coefficients with multi-scale representation of an image 

texture features and context labeling tree is built to capture the dependencies of the multi-
scale class labels. 

In multi-scale segmentation framework, the dyadic image squares at different 
scales can be obtained by recursively dividing an image into four equal sub-images. 
HMTseg can capture the features of these dyadic squares by the WD-HMT model. 
Moreover, contextual information on each dyadic square is described by one vector 

jv , which is derived from the labels of dyadic squares at its parent scale. Denote a 

dyadic square and its class label by j
id and j

ic respectively, and j  is the scale index. 

In HMTseg [], each context vector j
iv consists of two entries, the value of the class 

label of the parent square and the majority vote of the class labels of the parent plus 
its eight neighbors. 

The HMTseg algorithm relies on three separate tree structures: the wavelet trans-
form quad-tree, the HMT, and a labeling tree [4]. As for a complete procedure, it 
includes three essential ingredients, i.e. HMT model training, multi-scale likelihood 
computation, and fusion of multi-scale maximum likelihood (ML) raw segmentations. 
The three main steps are summarized as follows.  We refer the interested readers to 
Section IV in [4] to further get the knowledge on the HMTseg algorithm. 

1) Train WD-HMT models for each texture using their homogeneous training im-
ages. Furthermore, Gaussian mixture is fit to the pixel values for each texture and the 
likelihood of each pixel is calculated to obtain the pixel-level segmentation,. 

2) Calculate the likelihood of each dyadic image square j
id at each scale. The con-

ditional likelihoods ( )j j
i if d c for each j

id are obtained in this step, on which ML raw 

segmentation results are achieved based. 
3) Fuse multi-scale likelihoods using context labeling tree to give the multi-scale 

maximal a posterior (MAP) classification. Choose a certain suitable starting scale J  
such that a reliable raw segmentation can be obtained at this scale. The contextual 

vector 1J −v is calculated from the class label set Jc at the J-th scale. Also, the EM 

algorithm [4] for context labeling tree is utilized to find 1 -1( )J J
i ip c − v  by maximizing 
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the likelihood of the image given the contextual vector 1J −v . In this step, each itera-

tion updates the contextual posterior distribution ( )i i ip c d ,v . When the process of 

iteration converges, determine ic  which maximizes the probability ( )i i ip c d ,v . The 

fusion is repeated in next finer scale with the contextual vector 2J −v computed from 

the label set 1J −c at scale 1J − . Continue the fusion process across scales until the 
finest scale is reached. 

4   Automatic Segmentation 

Automatic image segmentation using texture information means identifying all the 
non-overlapping homogenous regions in an image with the texture features and the 
number of textures unavailable. Our proposed segmentation method is made up of 

three steps: the determination of the number of textures utilizing osv  index in [13], 

the extraction of training sample data from different textures via the PCM clustering 
[14] and the supervised segmentation algorithm, HMTseg [4]. 

4.1   Determining the Number of Texture Categories 

In this paper, the true number of textures in an image is not assumed a priori, which is 
different from the segmentation methods [9, 10, 11, 12], but determined using the 
likelihood values of image blocks at a certain suitable scale J through an effective 
cluster validity index for the fuzzy c-means (FCM) algorithm, osv  index in [13], 

which exploits an overlap measure and a separation measure between clusters to cor-
rectly recognize the optimal cluster number of a given data set. 

Let { }, , , nX x x x1 2= denote a pattern set, and [ ], , , T
i i i imx x x x1 2= represent 

the m  features of the ith sample. The FCM algorithm classifies the collection X  of 
pattern data into c  homogeneous groups represented as fuzzy sets ( , 1, , )iF i c=% L . The 

objective of FCM is to obtain the fuzzy c-partition in terms of both the data set X and 
the number c  of clusters by minimizing the following function 

( , ) , .
c n c

m
m ij j i ij

i j i

J U V u x v subject to u for all j
2

=1 =1 =1

= − = 1∑∑ ∑  (2) 

In (2), ( , , )cV v v1= is a c-tuple of prototypes, i.e. a vector of cluster centroids of the 

fuzzy cluster 
1 2( , , , )cF F F% % %L , n  is the total number of feature vectors, c  is the 

number of classes, and ijU u⎡ ⎤= ⎣ ⎦  is a c n×  matrix, called fuzzy partition matrix. 

Here, iju  is the membership degree of the feature point jx  in the fuzzy cluster iF% and 

can be denoted as ( )jFi
xµ % , and [ , )m ∈ 1 ∞  is a weighting exponent, called the fuzzier, 

typically taken as 2. 
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The osv  index consists of two elements, an overlap measure ( , )Overlap c U  and a 

separation one ( , )Sep c U . The former measure indicates the degree of overlap between 
fuzzy clusters and can be obtained by calculating an inter-cluster overlap. This meas-
ure is defined as 

( , )Overlap c U =
1

1 1 [0.1,0.5] 1

2
( , : , ) ( )

( 1)

c c n

p q j
p q p j

xj F F w x
c c µ

δ µ
−

= = + ∈ =

×
− ∑ ∑ ∑ ∑ % % , 

(3) 

where 
1 if ( ( ) ) and ( ( ) )

( , : , )
0 otherwise

p qj jF F
j p q

x x
x F F

µ µ µ µ
δ µ

⎧ ≥ ≥⎪= ⎨
⎪⎩

% %% % =, and ( )jw x is empirically 

given a value of 0.1( ( ) 0.8jFi
xµ ≥% ), 0.4( 0.7 ( ) 0.8jFi

xµ≤ ≤% ), 0.7( 0.6 ( ) 0.7jFi
xµ≤ ≤% ), 0 

otherwise for any iF% . A small value of ( , )Overlap c U  implies a well-classified fuzzy c-

partition. Whereas, the latter measure ( , )Sep c U  indicates the distance between fuzzy 
clusters and is defined as 

{ {( , ) 1-min max min( ( ), ( ))
p qF F

p q x X

Sep c U x xµ µ
≠ ∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
% % . (4) 

A large value of ( , )Sep c U  could tell one a well-separated fuzzy c-partition. 
Then, the ( , )osv c U  index is expressed as the ratio of the normalized overlap meas-

ure to the separation one, i.e. 

{

{

( , ) max ( , )
( , )

( , ) max ( , )
c

os

c

Overlap c U Overlap c U
v c U

Sep c U Sep c U
= . (5) 

A small value of ( , )osv c U  indicates a partition in which the clusters are overlapped to 

a less degree and more separated from each other. So, the optimal value of c  can be 
determined by minimizing ( , )osv c U over max2, ,c C= L . 

In this paper, the data set to be clustered is the likelihood values of image blocks. 
The true number of textures can be obtained by finding the minimum of ( , )osv c U for 

the likelihood results. 

4.2   Extraction of Sample Data from Different Textures 

The key step for a fully unsupervised segmentation is the extraction of sample data 
for training different textures to obtain their HMT models used for the following su-
pervised procedure. The input is the true number of textures in an image obtained by 
the cluster validity index ( , )osv c U  above. Herein, an effective soft clustering algo-
rithm, PCM clustering [14], is exploited to extract the sample data of different tex-
tures. The objective function of the algorithm is formulated as 

2

( ) ( )
,

1 1

( , ) ( ) ( ) ( ) (1 ) ,

k k

N N
J Jm m

m ij i ijk l k
k l k l

J U V u f y f y uη
= ∈Γ = ∈Γ

= − + −∑∑ ∑ ∑Θ Θ  (6) 
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where ,U V  and m  have the same meanings as those in (2), iη is a certain positive 

number, and ( )( )ΘJ
kf y is the likelihood mean of class k at the suitable scale J , 

( )
,( )J

k lf y Θ  the likelihood of an image block l regarding the class k . The updated 

equation of iju  is 

1
2 1( ) ( )

,

1
,

( ) ( )
1

Θ Θ

ij

mJ J
k l k

i

u

f y f y

η

−

=
⎛ ⎞−⎜ ⎟

+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(7) 

where iη  is defined as 

( ) ( )
,( ) ( )

.

Θ Θ
N

J Jm
ij k l k

j
i N

m
ij

j

u f y f y

u

η

2

=1

=1

−

=
∑

∑
 (8) 

PCM clustering differs from the K-means and FCM clustering algorithms since the 
membership of one sample in a cluster is independent of all other clusters in the algo-
rithm. In this clustering, the resulting partition of data can be interpreted as degrees of 
possibility of the points belonging to the classes, i.e., the compatibilities of the points 
with the class prototypes [14]. Generally, more reliable and stable clustering results 
can be obtained with this algorithm. 

The complete procedure for the PCM algorithm to implement the extraction of im-
age sample data is listed in [14]. 

4.3   Adaptive Context-Based Fusion of Multi-scale Segmentation  

Effective modeling of contexts for each dyadic square id is crucial to effectively fuse 
the raw segmentations from coarse scale to fine one to obtain a satisfactory result in 
the multi-scale fusion step. In the original HMTseg method [4], the context j

iv is 
specified as a vector of two entries consisting of the value of class label ( )iCρ of the 
parent square and the majority vote of the class labels of the parent plus its eight 
neighbors, as illustrated in Fig.3 (a). This simplified context is typically effective for 
images consisting of separate large homogeneous textures since it focuses on the 
information of class labels at coarse scales. However, the segmentation results might 
be unsatisfactory when complicated structures occur in an image, such as most real-
world images. In [5], Fan proposed a joint multi-context and multi-scale (JMCMS) 
approach to Bayesian image segmentation using WD-HMT models, where three con-
texts (context-2, context-3 and context-5 shown in Fig. 3) are exploited sequentially 
to fuse the raw segmentation results across scale. However, the computation cost is 
too expensive, which renders this approach unpractical in real-time image segmenta-
tion applications. Herein, one adaptive context model, as shown in Fig. 3(d), is given 
to fully incorporate both the information of the class labels at the coarse scale and the 
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information at the fine scale to further improve the segmentation performance. In this 
context model, the context vector for each image block contains two entries of which 
the first element V1  is defined in the same way with [4], whereas the other one V2  is 
obtained by the compromise between the coarse scale and fine scale. Generally speak-
ing, if the dominant label 1Ω  at the coarse scale is identical with 2Ω  at the fine 
scale, V2  is established like context-2; otherwise, V2 is assigned 2Ω . In this way, 
the new context could adaptively make a trade-off between the parent-scale ML clas-
sification results and those at the child scale. It is expected that better segmentation 
results could be achieved. 

      
(a)                                    (b)  

           

δ

 
                       (c)                                     (d)  

Fig. 3. Context models for inter-scale raw segmentation fusion. (a) Context-2 in [2]; (b) Con-
text-3 in [11]; (c) Context-5 in [11]; (b) Context proposed. 

5   Experimental Results 

We testified our approach on composite texture images with the size of 
256 256× pixels, which are made up of the original textures from Brodatz album [15]. 
Here, four composite textured images, consisting of 2, 3, 4 and 5 classes of homoge-
neous textures respectively, are shown in Fig. 4. 

  Originally, all the textured images are decomposed into four levels by discrete 
wavelet transform (DWT). The true number of the textures is determined by the dis-
parity of the likelihoods for different image blocks using the cluster validity index 

( , )osv c U at the suitable, J = 4  here, which is the coarsest scale. The number of cluster 
goes through from 2 to 10 ( maxC ), and the optimal (true) number of the textures in an 
image is found by evaluating the minimum of ( , )osv c U . Then, the PCM clustering of 
the model likelihoods is conducted at the scale J . 
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Fig. 4. Four composite texture images and their segmentation results with the proposed ap-
proach  (the second column) and supervised HMTseg algorithm [4] (the third row) 

In Table 1, the values of ( , )osv c U  in terms of different c for the four composite 
textured images in Fig. 4 are tabulated, of which the minimum of ( , )osv c U  is marked 
with boldface. It can be seen that all the true number of textures in these images have 
been correctly determined. Moreover, we also applied our method to other composite 
textures with a return of over 70% correctly detected number of textures obtained. 

Fig. 4 also demonstrates the final segmentation results for the four composite textures 
with the proposed approach and the supervised HMTseg algorithm in [4]. The results 
demonstrate that the segmentation performance of our approach is basically satisfactory 
and favorably compares with the results with HMTseg. The rate of misclassified pixels 
for the four images is given in Table 1. Our approach gives the error percentage of below 
8% for all tested composite textured images, which is basically feasible for practical 
applications.  Meanwhile, the segmentation results for real-world images are shown in 
Fig. 5 with similar performances with the HMTseg algorithm [4]. 
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Table 1. Values of ( , )osv c U  in terms of different c for the four composite textured images in 
Fig. 4 and their rate of misclassified pixels 

Image Number 
of tex-
tures 

Values of ( , )osv c U  for c=2,…,10 Rate of misclassi-
fied pixels 

Composite-2 2 0.0931(2),0.1257(3),0.1969(4), 
0.3150(5),0.2500(6),0.3950(7), 
0.6881(8),1.2424(9),1.0168(10) 

0.59% 

Composite-3 3 1.9374(2),0.0308(3),0.3746(4), 
0.2774(5),0.1936(6),0.1184(7), 
0.0908(8),0.0659(9),0.0586(10) 

4.65% 

Composite-4 4 1.7898(2), 1.0708(3), 0.0623(4), 
0.1634(5), 0.1089(6), 0.1226(7), 
0.1049(8), 0.0770(9) 0.0996(10) 

3.52% 

Composite-5 5 1.9502(2),0.0460(3),0.0131(4), 
0.0111(5),0.0642(6),0.0353(7), 
0.0231(8),0.0659(9),0.0868 (10) 

6.79% 

 

     
 

     

Fig. 5. Real-world images (Zebra and aerial-photo images) and their segmentation results with 
the proposed approach (the second column) and the HMTseg algorithm [4] (the third row) 

6   Conclusions 

In this paper, an automatic texture segmentation is developed by characterizing the 
texture features using WD-HMT model, determining the number of textures with the 
cluster validity index osv , and extracting the sample data from different textures by 
means of PCM clustering. Experimental results demonstrated that the proposed 
method can detect correctly the number of textures and provide good segmentation 
results on textured images. The further work is concerned with the use of more accu-
rate statistical model describing texture feature, such as HMT-3S model [6]. 
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