
M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 319 – 326, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Computing Similarity Among 3D Objects Using
Dynamic Time Warping

A. Angeles-Yreta and J. Figueroa-Nazuno

Centro de Investigación en Computación, Instituto Politécnico Nacional,
Unidad Profesional “Adolfo López Mateos” –Zacatenco- México, D.F.
malberto@sagitario.cic.ipn.mx, jfn@cic.ipn.mx

Abstract. A new model to compute similarity is presented. The representation
of a 3D object is reviewed; sequence of vertices and index of vertices are the
basic information about the shape of any 3D object. A linear function called
Labeling is introduced to create a new sequence or time series from a 3D object.
A method to create randomly 3D objects is also described. Experimental results
show viability to compute similarity among 3D objects using the extracted
sequences and the Dynamic Time Warping algorithm.

1 Introduction

The problem of defining and computing similarity among objects (concepts, time
series, images, 3D objects, etc.) is the essence of many Data Mining applications.

Most of the methods of similarity search among 3D objects use a feature extraction
technique [1]. A transformation from a 3D object to a feature vector is involved. The
goal is to preserve, discover or select some property. This feature vector can be
handled as a time series. Other methods consider 3D objects as images sequences (2D
view based methods); afterward, models of similarity search among images. Also,
there are methods based on histograms, even though they can be a particular case of
feature extraction based methods, usually belong to another class (Histogram based
methods). Finally, hybrid methods exist. In this work a new model to compute
similarity among 3D objects is presented.

This work is organized as follow. In section 2, the Dynamic Time Warping
algorithm used to compute similarity among sequences is described. In section 3, the
3D Object Representation is discussed. In section 4, a linear function called Labeling
is presented. This function converts the 3D object representation (sequence of vertices
and index of these vertices) to a new sequence or time series useful to the properties
of the Dynamic Time Warping algorithm. In section 5, a method to create randomly
3D objects is introduced. In section 6, A Model to Compute Similarity is presented. In
section 7 results of Experimental Test that show viability of the model are presented.
Finally, Conclusions of this work are presented in section 8.

2 Dynamic Time Warping

The Dynamic Time Warping algorithm has been applied in automatic speech
recognition; is fundamentally a feature-matching scheme [2].

320 A. Angeles-Yreta and J. Figueroa-Nazuno

Given two sequences Q and C (1), to accomplish the alignment (feature-match) is
build a matrix of size n by m, where the (i,j) element of the matrix contains the metric
d(qi, cj) (2), in this case the Euclidean metric:

ni qqqqqQ ,,,,,, 321 KK= ;
mj cccccC ,,,,,, 321 KK= (1)

2
)(),(iiii cqcqd −= (2)

The objective of the Dynamic Time Warping algorithm is to find a relation i = ω(j)
that produces a warping path.

Definition 1. Warping path: A warping path W, is a contiguous set of matrix elements
that defines a relation between two sequences, The kth element of W is defined as wk =
(i,j)k, so we have:

1),max(,,,,, 21 −+<≤= nmKnmwwwwW Kk KK (3)

Until now, the time and space complexity of the Dynamic Time Warping algorithm
is O(nm) [3]. Several constraints has been proposed to reduce the complexity:

1. Endpoint Constraints. Requires that the endpoints match exactly; any path begin
at (q1,c1), and end at (qn, cm). Another approach automatically locates endpoints .

2. Monotonic. The warping path should be monotonic, that is, qk-1 ≤ qk and ck-1 ≤ ck.
The features of a sequence Q must never match to features already matched in the
sequence C.

3. Global Constraints. They imply allowed regions in the matrix; no warping path
must be outside this area, even if optimal. Itakura parallelogram (left-side Fig. 1)
constrains a warping path for maximum compression and expansion factors of two
[2], the Window band (right-side Fig. 1) defines a windows width r to compress or
expand the search space of a warping path. In this work the Itakura parallelogram
is used.

4. Local Constraints. Determine alignment flexibility. In this work the warping path
search is in 0°, 45° and 90°, Fig. 2 depicts this local constraint.

(n,m) (n,m)

(1,1)(1,1)

b)a)

QQ

C C

()mnij −−= 22

2
1

2
1 += ij

12 −= ij

⎟
⎠
⎞

⎜
⎝
⎛ +−= mnij

2
1

2
1

rij +=

rij −=

(n,m) (n,m)

(1,1)(1,1)

b)a)

QQ

C C

()mnij −−= 22

2
1

2
1 += ij

12 −= ij

⎟
⎠
⎞

⎜
⎝
⎛ +−= mnij

2
1

2
1

rij +=

rij −=

Fig. 1. a) Itakura parallelogram, and b) Window band are the most common global constraints
for Dynamic Time Warping

 Computing Similarity Among 3D Objects Using Dynamic Time Warping 321

Fig. 2. The local constraint used in this work. It establishes the vicinity in the warping path
search.

To avoid an exponential number of warping paths, we use only the warping path
that minimizes the cost:

⎪⎩

⎪
⎨
⎧

≡ ∑
=

K

k
ki KwCQDTW

1

/min),(
(4)

The denominator K is used for the fact that warping paths may have different
lengths; the sequence with the lowest match score is declared the most similar. The
warping path can be found using dynamic programming, specifically:

)}1,(),,1(),1,1(min{),(),(−−−−+= jijijicqdji ii γγγγ (5)

In Fig. 3 an example of two sequences before and after alignment, is shown, the
reference (continuous line) and the sample (dotted line).

0 20 40 60 80 100
1.1

1.2

1.3

1.4

1.5

1.6

Independent variable

Raw Data

Sample
Ref

0 20 40 60 80 100
1.1

1.2

1.3

1.4

1.5

1.6
Warped Data

Joint axis [-]

Sample
Ref

Fig. 3. Example of two sequences. Reference and sample are aligned using Dynamic Time
Warping.

3 3D Object Representation

A 3D object can be represented as a graph; a graph is represented by an adjacency
matrix. Most of the file formats used to represent 3D objects use an approximation of
an adjacency matrix, that is, a sequence of vertices (6) and an index of vertices (7).

()kvvvV ,,, 21 K= , where ()iiii zyxv ,,= and ℜ∈iii zyx ,, (6)

()
nfff vvvF ,,,

21
K= , where []kf j ,1∈ (7)

Sequence of vertices V composes the graph nodes in a 3D space. The index of
vertices F implies the order in which vertices must be drawn, and therefore the graph

(i-1,j) (i,j)

90°

0°

45° (i-1,j-1) (i,j-1)

322 A. Angeles-Yreta and J. Figueroa-Nazuno

v0=(0,0,0)

v1=(1,0,0)

v2=(1,1,0)

v4=(0,0,1)

v7=(0,1,1)

v5=(1,0,1)

v3=(0,1,0)

v6=(1,1,1)

Fig. 4. The figure shows a cube, eight vertices are defined (v0-v7), the index of vertices is: v0, v1,
v2, v3, -1, v2, v6, v7, v3, -1, v6, v5, v4, v7, -1, v1, v2, v6, v5, -1, v0, v4, v7, v3, -1, v1, v5, v4, v0

edges. Additional information such as position, rotation, cameras location, textures,
etc., is ignored. Only the 3D object shape is considered when similarity is computed.

In Fig. 1 a cube in VRML format [4] is presented. Vertices are 3D points, the
presence of -1 in the index of vertices means that the face sequence is almost
complete and an extra vertex has to be added. For example, the first face composed by
(v0, v1, v2, v3, -1), -1 has to bee substituted by v0, that is, the first vertex in the face
sequence. Several representations (file formats) uses this representation. Small
modifications in index of vertices are detected. In this work this basic information is
used (sequence of vertices and index of vertices). Graphics libraries, like OpenGL [5]
agree this shape representation. The next code shows how to draw a 3D Object
(polygon) defined by means of a sequence of vertices and an index of vertices

glBegin(GL_POLYGON);
 for (int i=0; i < length(F); i++)
 glVertex3f(V[F[i]].x, V[F[i].y, V[F[x].z);
glEnd();

The glVertex3f primitive puts a 3D point (vertex) in floating type. The F array
is the index of vertices (7), and the structure V is the array of vertices or sequence of
vertices (6). The next section presents a linear function to create another sequence or
time series based on sequence of vertices and index of vertices.

4 Labeling 3D Objects

The Dynamic Time Warping is an excellent metric that can be indexed [3]. Given a
sequence of vertices V and index of vertices F of any 3D object, a linear function
(Labeling) is presented to create a new sequence. These sequences can be used to
compute similarity among 3D objects using Dynamic Time Warping advantages.

Function Labeling(V, F):Q
 for (int i=0; i < length(F); i++)
 Q[i]=V[F[i]].x + V[F[i]].y + V[F[i]].z;
 return Q;

Parameters of the linear function (Labeling) are sequence of vertices V (6) and index of
vertices F (7). The output is a sequence or time series Q that reflexes the

x

y

z

 Computing Similarity Among 3D Objects Using Dynamic Time Warping 323

Table 1. A polyhedron of four vertices and a vertex index of length 16, the plot shows
sequence Q

Vertices Q
)529.1,081.1,0(1 =v 2.61

)0,081.1,529.1(2 −=v 0.448

)529.1,081.1,0(0 −=v -0.45

)529.1,081.1,0(1 =v 2.61

)0,081.1,529.1(2 −=v 0.448

)0,081.1,529.1(3 −−=v -2.61

)529.1,081.1,0(0 −=v -0.45

)0,081.1,529.1(2 −=v 0.448

)0,081.1,529.1(3 −−=v -2.61

)529.1,081.1,0(1 =v 2.61

)529.1,081.1,0(0 −=v -0.45

)0,081.1,529.1(3 −−=v -2.61

)0,081.1,529.1(3 −−=v -2.61

)0,081.1,529.1(2 −=v 0.448

)529.1,081.1,0(1 =v 2.61

)0,081.1,529.1(3 −−=v -2.61

movements of drawing a 3D object, the object vertices have been labeled with the x,
y, and z addition. In Table 1 a polyhedron of four vertices (v0-v3) is considered.

5 Random Modifications of 3D Objects

To show the efficiency of the model (computing similarity among 3D objects using
Dynamic Time Warping), a method to create 3D objects is described. Given a 3D
object, cube, pyramid, etc., called base, random modifications to the sequence of
vertices V are made. The algorithm is sketched in the next code.

bool CObject3D::RetriveVRML(char *filename) {
 if (wml.Open(filename)) //VRML file (.wml)
 if(wml.Retrive(&V, &F)) return true;
 else return false;
 else return false; }

The CObject3D contains basic information (see section 3), that is, a sequence of
vertices called V and an index of vertices called F. RetriveVRML method accepts a
3D object base (cube, prism, etc.) in VRML format, it can be modified to accept other
grammar that define a sequence of vertices and an index of vertices (.3ds-The 3D
Studio Format, .dfx-Autodesk’s/AutoCAD, .off-Object File Format, etc.).

CObject3D::RandomModify(int nModify) {
 int list[V.Length]={0}; // Vertices to be modified

-3 -2 -1 0 1 2 3

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

 (6)

324 A. Angeles-Yreta and J. Figueroa-Nazuno

myRand.IRandom(0, vertices.Length)

 int count=0; // Number of modifications
 double x, y, z, min, max;
 min = V.GetMin(); max = V.GetMax();

 for(int i=0; i < nModify; i++)
 list[(int)myRand.IRandom(0, vertices.Length)]++;
 for(i=0; i < V.Length; i++)
 if(list[i]>0) {
 count++;
 x = myRand.IRandom(min, max);
 y = myRand.IRandom(min, max);
 z = myRand.IRandom(min, max);
 V.ModifyVertix(i, x, y, z); }
 wml.SaveVRML(&V, &F, count); }

RandomModify method defines a vertex list called list with the candidates to
be modified using a pseudo-random number generator with uniform distribution and
period of 219,937-1 [6] (Mersennne Twister). Uniform distribution warranties equal
probability to each vertex to be modified. nModify parameter gives indirect control
of modifications number made to a sequence of vertices. Finally, ModifyVertix,
updates the x, y, and z component of vi . Fig. 1 depicts this idea.

Fig. 5. A 3D Object base is the input to generate new 3D Objects with a) one modification, b)
two modifications, and c) three modifications

Given a new data set of 3D Objects randomly created, a Labeling function (see
section 4) can be computed over this data set to compute their similarity.

6 A Model to Compute Similarity

To compute similarity among 3D objects, a stage of pre-processing is required. The
Labeling function creates sequences from 3D objects (see section 4), and these
sequences are used to calculate a match score among these 3D objects. Fig 6 shows
the model to compute similarity among 3D objects. An advantage of Dynamic Time
Warping is that can be indexed. Future work presents results of indexing techniques.

v0 v1 v2 v3 v4 base 3D Object

R
e
t
r
i
v
e
V
R
M
L

R
a
n
d
o
m
M
o
d
i
f
y

0 1 2 3 4
0

50

100

150

200

250

300

O
u
t
p
u
t
s

a)

b)

c)

 (6)

 Computing Similarity Among 3D Objects Using Dynamic Time Warping 325

a) b) c) d) e) f) g)

Less Similar

Fig. 6. For each 3D object in the database a sequence is created (see section 4). Using Dynamic
Time Warping a similarity distance among 3D objects can be computed.

7 Experimental Tests

Two data sets were used in this work: 3D objects created with a typical Computer
Design System CAD (specifically, 3D Studio Max 6) and 3D objects randomly
created (see section 5), the pre-processing stage using the Labeling function (see
section 4) was applied to all 3D objects, finally, Dynamic Time Warping metric was
computed for each reference sequence (extracted from a 3D object) against every
sample in the database.

Fig. 7. a) SockAbsorber02, b) ChafCil01, c)Ext_C01, d)Ext_L01, e)Gengon01, f) Huso01,
g)Pyramid01 and their two most similar 3D objects

Fig. 7 shows partial results. In Fig. 7 the less similar 3D objects to b), f) and g)
respectively (marked with *), were created as part of another class (specifically,
Gengon03, ChafCil05, and Polyhedron03), the proposed model can distinguish their
similarity; this can be seen in Table 2.

Table 2. Dynamic Time Warping distance, ordered to most similar to less similar

21.508Polyhedron03205.8659ChafCil0520.4739Gengon035.7651Ext_L037.5414Ext_C03120.635Gengon05227.2536Muelle01

8.684Piramide02130.4449Huso0213.7403Gengon025.0388Ext_L056.672Ext_C02106.2858ChafCil02118.861ShockAbsorber01

DTW
DistancePiramide01

DTW
DistanceHuso01

DTW
DistanceGengon01

DTW
DistanceExt_L01

DTW
DistanceExt_C01

DTW
DistanceChafCil01

DTW
DistanceShockAbsorber02

21.508Polyhedron03205.8659ChafCil0520.4739Gengon035.7651Ext_L037.5414Ext_C03120.635Gengon05227.2536Muelle01

8.684Piramide02130.4449Huso0213.7403Gengon025.0388Ext_L056.672Ext_C02106.2858ChafCil02118.861ShockAbsorber01

DTW
DistancePiramide01

DTW
DistanceHuso01

DTW
DistanceGengon01

DTW
DistanceExt_L01

DTW
DistanceExt_C01

DTW
DistanceChafCil01

DTW
DistanceShockAbsorber02

Labeling function

3D Object X
(reference)

3D Object Y1, Y2,…,Yp

(samples)

Labeling function

“The most similar
to X is…”

0 50 100 150 200
-3

-2

-1

0

1

2

3

5 10 15 20

-2

-1

0

1

2

0 100 200 300
-2

-1

0

1

2

3

4

20 40 60 80

-1

-0.5

0

0.5

1

1.5

2

2.5

10 20 30

-2

-1

0

1

2

Sequence C1,C2,…,Cp

“Yi is most
similar to X…”

Dynamic Time
Warping

Sequence Q

Most Similar

326 A. Angeles-Yreta and J. Figueroa-Nazuno

Fig. 8. 3D objects randomly created; object11, object8, and object12 have 4 modifications,
object2, object1, object0, has 1, 1, and 0 modifications respectively, the number of
modifications can influence the Dynamic Time Warping distance

8 Conclusions

Experimental results show the efficiency of computing similarity among 3D objects, a
linear function is required to convert a 3D object into a sequence and then compute
Dynamic Time Warping distance among sequences. Two kinds of data sets were used
in experimental test, the first one, created with a typical CAD; the other one was
created from base 3D objects (cube, prism, and pyramid). There is not a true
classification per se; the similarity between objects has to be recognized by humans.
The proposed model to compute similarity among 3D objects is simpler than other
approaches [1], and the results show this idea. An advantage of this model is that has
been proved that Dynamic Time Warping technique can be indexed [3].

References

[1] Hlavaty, T., Skala, V.: A Survey of Methods for 3D Model Feature Extraction, bulletin of
the seminar of Geometry and Graphics in Teaching Contemporary Engineer, Szczyrk,
Poland, 2003, No: 13/03. pp. 5-8.

[2] Angeles-Yreta, A., Solís-Estrella, H. Landassuri-Moreno, V. Figueroa-Nazuno, J.:
Similarity Search In Seismological Signals. Fifth Mexican Internacional Conference on
Computer Science. Colima, México. September 2004, pp. 50-56.

[3] E. Keogh, Ratanamahatana C.: Exact indexing of dynamic time warping. In 28th
International Conference on Very Large Data Bases, pages 406--417, 2002.

[4] Hartman, J., Wernecke, J. The VRML 2.0 handbook: building moving worlds on the web,
Addison-Wesley, 1996.

[5] Leech, J. Brown, P. (eds.).The OpenGL Graphics System: A Specification, Silicon
Graphics Press, October 2004.

[6] Makoto Matsumoto, Takuji Nishimura, Mersenne Twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Transactions on
Modeling and Computer Simulation, ACM Press, Vol. 8, 1998, pp. 3-30.

Most Similar

Less Similar

object11object11

object8object8

object12object12

object12object12

object9object9

object11object11

object14object14

object15object15

object16object16

object2object2

object1object1

object0object0

object27object27

object20object20

object24object24

object29object29

object28object28

object26object26

object42object42

object41object41

object40object40

	Introduction
	Dynamic Time Warping
	3D Object Representation
	Labeling 3D Objects
	Random Modifications of 3D Objects
	A Model to Compute Similarity
	Experimental Tests
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

