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Abstract. A new robust matching algorithm for motion detection and computa-
tion of precise estimates of motion vectors of moving objects in a sequence of 
images is presented. Common matching algorithms of dynamic image analysis 
usually utilize local smoothness constraints. The proposed method exploits 
global motion smoothness. The suggested matching algorithm is robust to mo-
tion discontinuity as well as to noise degradation of a signal. Computer simula-
tion and experimental results demonstrate an excellent performance of the 
method in terms of dynamic motion analysis. 

1   Introduction 

Extraction of motion information is an essential part of any video processing system. 
Such popular tasks as relative depth from motion, 3-D shape recovery, autonomous 
vehicle or robot navigation, and moving object detection usually involve various 
motion analysis techniques. Many techniques analyzing motion from optical flow 
computation have been proposed in the past two decades [1-7]. However, reliable 
optical flow estimation remains a difficult problem when smoothness constraint is 
violated. Furthermore, algorithms based on the optical flow concept are also very 
sensitive to large values of sought motion vectors (more than one pixel) and to noise 
degradation of a signal. Among a wide variety of approaches, there exist three main 
categories of motion estimation methods: gradient-based methods [1], frequency-
based methods [2], and matching techniques [4]. In this work we remain in frame-
work of matching concept that aims to solve the correspondence problem. It is well 
known that the correspondence problem is inherently ambiguous, and some additional 
information must be added to solve it. Various approaches have been suggested for 
solving the correspondence problem [8-12]. The identification of correspondence 
between the same points in consecutive images is often formulated as a local (area-
based) optimization problem, or shortest-path technique [9]. On the other hand, the 
correspondence between the same points in neighbor images can be considered as a 
global optimization problem [11-12]. So the matching is carried out between 2-D 
arrays of images. A drawback of this approach is owing to contradictions between the 
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smoothness constraint of motion vectors between adjacent pixels and a real signal 
discontinuity at borders of object segments. In this paper, the local motion smooth-
ness constraint is replaced by a global motion smoothness criterion. The latter yields a 
high performance in optical flow based techniques. We suggest a new matching algo-
rithm, which is based on dynamic programming and global smoothness criterion. 
Computer simulation with various image sequences shows that the proposed algo-
rithm is robust to motion discontinuity and to noise degradation of a signal. Experi-
mental results with real dynamic images illustrate a very good performance of the 
method in terms of motion vector accuracy. 

2   Optical Flow Constraint and Global Optimization Technique 

A common assumption in dynamic image analysis is that the intensity of a point 
keeps constant value along its trajectory. More precisely, let f(x,y,t) denote the inten-
sity of the pixel at the coordinates (x,y) and time t. Starting from the point (x0,y0) at 
time t0, we define the trajectory of this point in time as  (x0 +uxδt,y0+uyδt, t0+δt) 
 with 

0 0 0 0 0 0( , , ) ( , , ),x yf x y t f x u t y u t t tδ δ δ= + + +  (1) 

where u = (ux(x0,y0,t0), ux(x0,y0,t0)) is the velocity vector (called the flow vector) of 
 a point (x0,y0) at time t0 and δt is called the interframe interval. 

In motion analysis common algorithms usually work if some conditions are ful-
filled. For instance gradient-based methods [1] are subject to that the motion vector 
(δrx =uxδt, δry =uyδt) and the interframe interval δt are small. Therefore Taylor’s ex-
pansion may be applied to Eq. (1),  
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and finally 
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∂ ∂ ∂
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Note that Eq. (3) is not sufficient for computing the components of velocity field. 
Another drawback of optical flow approach is a severe restriction for sought values of 
motion vectors. In general for a sampled signal (digital image), Eq. (3) holds only if 
motion vector values equal or less than one pixel (image sampling interval). Actually, 
the sign “=” in Eq. (3) must be replaced by “≈”. This means that the time interval in 
the most cases is a fixed value.  

We propose a new method that is based on matching techniques. With the help of 
matching techniques Eq. (1) can be rewritten as  

( , ) ( ( , ), ( , )),x ya x y g x r x y y r x y= + +  (4) 
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where a(x,y) is the intensity function of anchor frame (snapshot at t0) and g(x,y) is the 
intensity function of the target frame (snapshot at t0 +δt ). 

We use the following dissimilarity function 

, , , , ,

n

i j k l i k r j l r i jE g aδ δ+ += −  (5) 

as a local feature of correspondence matching as well as a local error function to com-
pute the optical flow. In a sampled space the dissimilarity function values can be 
described by a 4-D array {Ei,j,k,l; i=0,…, I-1; j=0,…, J-1; k=-K,-K+1…, K; l=-L,-
L+1,…, L}. Here, I and J are the size of images, and K, L are reasonable values to 
carry out the correspondence matching, a(i,j) and g(i,j) are the sampled intensity func-
tions of the anchor and the target frames, respectively. Suppose that the motion vec-
tors possess subpixel values,  n equals to 1 or 2, and, finally, the vector’s sampling 
interval belongs to the interval 0<δr≤1 that means a subpixel accuracy of the vector 
estimation in Eq. (4). 

Now we need additional constraints to solve the problem. The common approach is 
that motion vectors possess small signal variations. So absolute differences between 
all adjacent elements of the motion vector field are assumed to be bounded by values 
δv: 

 ( )1 1 1 1i j i j i j i j i jk k l l v∆ δ± ± ± ±≡ − − ≤r , , , , ,, . (6) 

Now, for a sampled signal the global optimization problem is formulated as fol-
lows: find the motion vector field { } { }i j i j i jk l≡r , , ,,  with the local smoothness con-

straint in Eq. (6) in such a way to minimize the sum of the dissimilarity function Eq. 
(5) evaluated over all elements of images:  
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where i j vδ≤r ,∆ denote the smoothness constraint in Eq. (6). 
On the other hand, the most successful methods based on optical flow concept util-

ize the global motion smoothness criterion. In this case the objective function is a 
combination of the dissimilarity function and the squared values of gradients. So Eq. 
(7) can be rewritten as  
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, (8) 

where w is a regularizing parameter. 
The method proposed in [11] optimizes Eq. (7) by means of modified dynamic 

programming. The problem in Eq. (8) can be also solved withy modified dynamic 
programming: 
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(9) 

Finally, the solution can be found by simple procedure, 

( ) ( )( )  
i j
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i j i jO O EMIN ⎡ ⎤= ⎣ ⎦rr

r
,

, , , , (10) 

where OI and OJ are two consecutive transforms with the use of the recurrence opera-
tor in Eq. (9) along I and J axis, respectively.  

Note, that after one transform (OI , e.g.) the solution is equal to the optimal path 
that can be calculated with conventional dynamic programming. However the global 
optimization in Eq. (8) requires 2D optimization, whereas conventional dynamic 
programming solves only 1D optimization problem. After the second transform OJ the 
necessary optimization is obtained. 

So, the proposed algorithm consists of the following steps.  

• Form the initial 4D matrix Ei,j,r of the dissimilarity function  using Eq. (5).  
• Perform two consecutive transforms with the use of the recurrence operator 

in Eq. (9) along I and J axes, respectively.  
• Extract motion information with the help of Eq. (10). 

3   Computer Experiments 

Computer experiments are carried out to illustrate and compare the performance of 
conventional matching and proposed algorithms. We are also interested in under-
standing how well the proposed matching behaves if a signal distorted due to additive 
noise. In our computer experiments matched pair of images are generated using 
known test motion vector fields. In our case, the conventional representation of resul-
tant motion vectors by needle diagrams is not effective visual tool. We illustrate 
matching results by scalar maps. The gray-scale map presentation requires scalar 
values of motion vector fields. Generated test fields are also scalar (like horizontal 
disparity in stereo images). 

Fig. 1 (a) shows the pair of matched test images. The scalar valued map of a known 
vector field is given in Fig. 1 (b). Figs. 1 (c) and (d) show the scalar valued maps 
obtained by matching with local smoothness constraint and with global smoothness 
criterion, respectively. The visual comparison of the resultant maps shows that the 
performance of the proposed algorithm is obviously much better. 



 A Robust Matching Algorithm Based on Global Motion Smoothness Criterion 299 

     

 (a)  

   

 (b)  

   
                                 (c)                                                                (d) 
Fig. 1. (a) Test pair of matched images. (b) The scalar valued map of a known vector field. (c), 
(d) The scalar valued maps obtained by matching with local smoothness constraint and with 
global smoothness criterion, respectively. 

Next we carry out experiments with test images that are degraded using additive 
Gaussian noise. Fig. 2 (a) shows the pair of matched test images degraded due to the 
noise. The map of a known vector field is given in Fig. 2 (b). Figs. 2 (c) and (d) show 
the resultant maps obtained by matching with local smoothness constraint and with 
global smoothness criterion, respectively. The visual and numerical analysis of the 
resultant depth maps shows that the proposed matching algorithm is robust to the 
noise degradation of a signal. 
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                                 (c)                                                                 (d) 

Fig. 2. (a) Test pair of matched images degraded due to additive Gaussian noise.(b) The scalar 
valued map of a known vector field. (c), (d) The resultant scalar valued maps obtained by 
matching with local smoothness constraint and with global smoothness criterion, respectively. 

The proposed operator in Eq. (9) includes a smoothness parameter w that must be 
defined during matching process. With the help of many computer experiments we 
found that this parameter can be represented as follows: 

1
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=

∑ , ,

. ,  (11) 

where ai,j  is the image intensity value of the anchor frame.  
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In other word, the sought parameter is proportional to the mean absolute value of 
signal gradient along the chosen axis (in Eq. (11) it is the horizontal axis of matched 
images).  

We carried out many computer experiments with different simulated motion vector 
fields, motion fields, and degradation of matched images. So numerical analysis on 
the base of the mean squared errors (MSE) criterion shows that the proposed algo-
rithm has advantage over conventional matching algorithms.  

4   Conclusion 

In this paper, a new motion estimation method based on dynamic programming 
matching and global motion smoothness criterion has been proposed. The method 
demonstrates much better results than those obtained with the use of local smoothness 
constraints. The proposed method is robust to additive noise.  
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