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Abstract. One of the basic problems of applied mathematics is to find a 
synthetic expression (model) which captures the essence of a system given a 
(necessarily) finite sample which reflects selected characteristics. When the 
model considers several independent variables its mathematical treatment may 
become burdensome or even downright impossible from a practical standpoint. 
In this paper we explore the utilization of an efficient genetic algorithm to select 
the “best” subset of multivariate monomials out of a full polynomial of the form 
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desired degree for the i-th independent variable). This regression problem has 
been tackled with success using neural networks (NN). However, the “black 
box” characteristic of such models is frequently cited as a major drawback. We 
show that it is possible to find a polynomial model for an arbitrary set of data. 
From selected practical cases we argue that, despite the restrictions of a 
polynomial basis, our Genetic Multivariate Polynomials (GMP) compete with 
the NN approach without the mentioned limitation. We show how to treat 
constrained functions as unconstrained ones using GMPs. 

1   Introduction 

One of the basic goals of the scientific endeavor is to (try to) identify patterns in 
apparently chaotic data given a (necessarily) finite sample which reflects selected 
characteristics in the system under study. In this paper we explore the utilization of an 
efficient genetic algorithm to select the “best” subset of multivariate monomials out 
of a full polynomial. Such multivariate regression problem has been tackled with 
success using neural networks (NN) whose “black box” nature is frequently cited as a 
major drawback. We show that it is possible to find a polynomial model for an 
arbitrary set of data and give evidence that, despite the restrictions of a polynomial 
basis, our Genetic Multivariate Polynomials (GMPs) compete with the NN approach 
without the mentioned “black box” limitation. 

1.1   Statistical Systems 

Statistical systems are a relatively modern approach to automated machine learning 
(AML). They rely on the overall analysis of data representing the behavior of the 
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system. No previous knowledge about the system is assumed and, indeed, they do 
achieve AML with a certain amount of success depending on how one measures it. 

1.1.1   Neural Networks 
Perhaps the most representative systems in this category are the so-called neural 
networks (NN). The basic idea is that simple computing elements (which we will 
refer to as “units”), individually displaying little computing power, when arranged in 
richly interconnected networks, may embody the essence of the system they model. 
The term “neuron” arises from suggestive analogies where the units purportedly 
simulate the behavior of the neuron of a living being. Every connecting path between 
units has an associated weight. It is in these weights that knowledge, tacitly (as 
opposed to the explicit rules of the classical AI approach) is stored in a “trained” 
network. In supervised mode the NN is “shown” the data repeatedly and, via an 
iterative algorithm, it modifies the initial (typically random) value of the weights so 
that the NN’s outputs replicate the known ones for every element in the data. NNs 
have evolved from the initial animal-neuron-inspired approach into sophisticated 
entities in which units are determined by their mathematical properties. 

The statistical nature of the learning process has been given solid theoretical 
foundation by the work of many researchers, outstanding that of Vapnik [VV95]. It 
has been proven that a feedforward strongly interconnected network of units 
(perceptrons) constitutes a universal approximator [SH99]. Furthermore, analogous 
NNs are able to represent the data in the best possible way given a set of data [BB92]. 
Notice that the proper selection of the data is not an issue here; data is assumed to 
have been properly selected (a fact which we will take for granted in what follows). In 
conclusion, NNs are able to extract knowledge, given an arbitrary set of data, fully 
and optimally. However, a drawback of NNs is that the process by which they arrive 
at their conclusions is not explicit and, upon presentation of a larger (possibly richer) 
set of data the learning process has to be repeated or, at best, continued from the 
previous one. Nevertheless, the NN methodology yields a tool which is able to tackle 
complex multivariate regression effectively. 

1.1.2 Multivariate Polynomials 
An obvious alternative is to attempt such regression appealing to a functional 
representation (such as the one in (1)) where the known response of the system to a 
set of input stimulae is expressed explicitly. 
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In (1) vi corresponds to the i-th independent variable and gi is the highest allowed 
power for vi. In order to find F(v1,...,vn) one must device a method to approximate the 
data in a typically overdetermined system for a given metric. We must also overcome 
the curse of dimensionality inherent to this approach1. In what follows we give a 

                                                           
1  For instance, consider a problem where n=10 and g1=g2=...=gn=4. The number of coefficients 

in (1) is easily calculated as C = 510 = 9,765,625 which implies that we must have, at least, 
those many elements in our sample. 
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method which allows us to solve both problems. In part 2 we expound the method. In 
part 3 we make a comparison of a representative set of problems tackled with GMPs 
and NNs. In part 4 we offer our conclusions. 

2   Genetic Multivariate Polynomials 

To approximate the data vectors we have chosen the minimax or ∞L  norm for 

reasons that will become apparent in what follows. In ∞L one seeks an F(x) that 

minimizes θε , where |d)F(|maxε ii −= vθ ; vi denotes the i-th independent variable 

vector  and di the i-th desired output. The original data set is found in matrix O of 
dimensions (n+1) × s; where n denotes the number of independent variables and s the 
number of elements in the sample. In order to find the approximator of (1) we map the 
vectors of O to a higher dimensional space yielding matrix V of dimensions p ×  s, 
where p= )ig(1Πn

1i += . 

2.1   Minimax Approximation to a Set of Size m 

To illustrate minimax approximation we arbitrarily select a submatrix of V of size 
m × m (call it V’), where m=p+1; then, we solve the system of (2). 
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(2) 

Denoting the  approximation error for the i-th vector as iε  we may define θεηε ii = ; 

clearly, θεεη ≤ii . We also denote the elements of row i, column j of (2) as ijδ  and 

the i-th cofactor of the first column as iκ . From Cramer’s rule, we immediately have:  
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(3) 

To minimize θε  we have to maximize the denominator of (3). This is easily achieved 

by a) Selecting the maximum value of the iη ’s and b) Making the signs of the iη ’s 

all equal to the signs of the iκ ’s. Obviously the iη ’s are maximized iff 1=iη  for 

i=1,...,m which translates into the well known fact that the minimax fit corresponds to 
approximation errors of equal absolute size. On the other hand, achieving (b) simply 
means that we must set the signs of the iη ’s to those of the cofactors. Making 

iσ =sign( iκ ) system (2) is simply re-written as 
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Once having all the elements in (4) it suffices to solve this system to obtain both the 
value of θε  an the coefficients c1,...,cm which best fit the elements of V’ in the 

minimax sense. To find the minimax coefficients for V we apply the next algorithm. 

2.2   Exchange Algorithm 

1. Set i ← 1. 
2. Select an arbitrary set (of size m) of rows of matrix V; this set  is called Mi. 
3. Determine the signs of the iε  which maximize the denominator of (3). 

4. Solve the system of (4). Denote the resulting polynomial by Pi. 
5. Calculate the value of φε =max(| Pi - di |) ∀ vi ∉  Mi. 

6. If θφ εε ≤  end the algorithm; the coefficients of Pi are those of the polynomial 

which best approximates V in the minimax sense. 
7. Set i ← i+1. 
8. Exchange the row corresponding to φε  for the one in Mi which preserves its sign 

and makes ii )()( 1 θθ εε >+ . 

9. Go to step 4. 

 
The exchange algorithm will end as long as the consecutive systems of (4) satisfy 
Haar’s condition while, on the other hand, the cost of its execution (in FLOPs) is of 
O(m6). There are implementation issues which allow to apply this algorithm even in 
the absence of Haar’s condition and which reduce its cost to O(m2). The interested 
reader is referred to [KG02]. 

2.3   Genetic Algorithm 

The basic reason to choose a minimax norm is that the method outlined above is not 
dependent on the origin of the elements in V. We decided them to be the monomials 
of a full polynomial. But it makes no difference to the exchange algorithm whether 
the vi are gotten from a set of monomials or they are elements of arbitrary data 
vectors. This is important because, as stated above, the number of monomials and 
coefficients in (2) grows geometrically. One way to avoid the problem of such 
coefficient explosion is to define a priori the number (say µ ) of desired monomials of 

the approximant and then to properly select which of the p possible ones these will be. 

There are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
p

 possible combinations of monomials and even for modest values of p 

and µ  and exhaustive search is out of the question. This optimization problem may be 

tackled using a genetic algorithm (GA), as follows. 
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The genome is a binary string of size p. Every bit in it represents a monomial. If 
the bit is ‘1’ it means that the corresponding monomial remains while if it is a ‘0’ it 
means that such monomial is not to be considered. All one has to ensure is that the 
number of 1’s is equal to µ . Assume, for example, that v = (v1, v2, v3) and that g1=1, 

g2=2, g3=2; if µ = 6 the genome 110000101010000001 corresponds to the polynomial 

in (5). 
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It is well known that any elitist GA will converge to a global optimum [GR94]. It 
has also been shown that a variation of GA called Vasconcelos Genetic Algorithm 
(VGA) shows superior behavior on a wide range of functions [AK00]. VGA uses a) 
Deterministic parenthetical selection, b) Annular crossover, c) Uniform mutation 
[KV98]. All results reported are based on VGA’s application. 

Therefore, the initial population of the GA is generated randomly. It consists of a 
set of binary strings of length p in which there are only µ  1’s. Then the GA’s 

operators are applied as usual. The fitness function is the minimax fitness error as per 
the exchange algorithm. This error is minimized and, at the end of the process, the 
polynomial exhibiting the smallest fit error is selected as the best approximant for the 
original data set. 

3   Neural Networks and GMPs 

As we already pointed out, NNs have been proven to be able to synthesize the 
knowledge contained in an arbitrary set of data. Particularly, when the units are the 
well known perceptrons [SH99], any continuous function may be approximated by a 
three layer NN, such as the one shown in figure 1. 

In figure 1 we show a NN with 6 input variables and one output variable, i.e., one 
dependent variable and 6 independent ones. The b neuron is the so-called bias and its 
input is canonically set to +1. It is easy to see that there are w = 33 (6 × 4+4 × 1+4+1) 
weights in this network. The number of neurons in the input and output neurons is 
determined by the number of input and output variables respectively. The number of 
neurons in the hidden layer (H) was estimated from the heuristic rule of equation (6). 

1)O3(I

O3S
H

++
−≈  (6) 

Here, S is the number of elements in the data sample; I and O are the number of 
input and output neurons, respectively. What equation (6) says is that the number of 
weights should equal, roughly, 1/3 of the size of the sample. With these convention 
we tackled the problem of approximating a set of constrained functions of which a 
small fraction is shown in table 1.  

In every case, we sampled the independent variables randomly and selected those 
values which complied with the constraints. Equalities were treated as closely 
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bounded inequalities. For example, the first constraint of function 6 was actually 

transformed into: 9999.92
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5x ≤ . The samples represented the actual values of interest of every one of 

the functions and the resulting NN, in fact, constitutes an alternate non-constrained 
version of the original one.  

Table 1. A Set of Constrained Functions 
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Our thesis may be resumed as follows: 
 a) The domain of a constrained function may be sampled in such a way that 

the resulting sample represents adequately the domain of a constrained function. 
 b) Any set of data may be re-expressed as a trained NN. 
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c)  If a GMP is able to duplicate the workings of a NN it is possible to work 
with the resulting algebraic expression. 

d) The optimization process can be performed on the polynomial with 
traditional calculus’ tools. 

 

 

Fig. 1. Three-layered Perceptron Network 

3.1   Experiments 

Data was divided in two sets: a training set and a test set. The training set 
encompasses 80% of the data; the test set consists of the remaining 20%. Both NNs 
and GMPs were trained using the training set. Then both methods were tested for 
performance on the test set, which they had not previously “seen”. The number of 
weights for the NNs were calculated from (6); the number of monomials in the GMP 
was set accordingly. In the following table we show the actual errors found from the 
trained NNs and GMPs for the selected functions. Eight types of error were compiled: 
a) Maximum training error for NNs and GMPs; b) RMS training error for NNs and 
GMPs; c) Maximum test error for NNs and GMPs; d) RMS test error for NNs and 
GMPs. 

Table 2. Error Comparison for Selected Functions (NN and GMP) 

 



 Genetic Multivariate Polynomials: An Alternative Tool to Neural Networks 269 

4   Conclusions 

Table 2 shows the remarkable performance of NNs and GMPs for this set of 
problems. For instance, the RMS test error was always of O(0.1) which directly bears 
on the generalization properties of the model. NNs behavior was expected but GMP’s 
was not as obvious: with two exceptions, GMPs showed better generalization 
capabilities than their neural counterparts. 

That maximum errors were smaller for GMPs may be explained easily, since the 
norm focuses on their minimization. That, in the majority of cases, GMPs RMS errors 
were comparable was not so clear, particularly since the number of monomials and 
weights were the same. In the perceptron networks the underlying functions (based on 
a sigmoidal transformation of the local induced field) are much more complex and, in 
principle, richer than linear combinations of monomials. However, as attested by the 
results, the VGA does a fine job in finding the best such combinations. 

The polynomial expression shows explicitly which powers of the independent 
variables bear on the behavior of the function and to what extent. It also allows for 
simple algebraic manipulation of the different terms. For instance, finding the partial 
derivatives with respect to any of the input variables is trivial and allows for the 
simple analysis of the function’s behavior. 

On the other hand, given the reliable representation of the original data, the method 
suggests a general algorithm to tackle constrained optimization problems as follows:  

a) Sample the feasible domain of the constrained function 
b) Synthesize the function appealing to a GMP 
c) Optimize utilizing traditional algebraic or numerical tools. 

We do not claim that the optimization process proposed herein will be able to 
deliver a global optimum. However, in general, it will certainly approach one or more 
(depending on the starting VGA’s population) local optima. These may be utilized to 
refine the search using other techniques. 

Finally, we would like to emphasize the fact that GMPs are not limited to use 
simple monomials as units. Other basis are applicable and it only remains to see 
whether the extra computational cost implied in more complex units yields cost 
effective results. 

References 

[VV95]  Vapnik, V., “The Nature of Statistical Learning Theory”, Springer-Verlag, 1995. 
[SH99]  Haykin, S., “Neural Networks. A Comprehensive foundation”, 2nd Edition, Prentice 

Hall, 1999. 
[BB92]  Boser, B. E., I.M. Guyon and V. N. Vapnik, “A training algorithm for optimal margin 

classifiers”, Proc. 5th Annual ACM Workshop on Computational Learning Theory, 
pp. 144–152, 1992. 

[KG02]  Kuri, A., Galaviz, J., “Algoritmos Genéticos”, Fondo de Cultura Económica, México, 
2002, pp. 165-181. 

[GR94]  Rudolph, G., “Convergence Analysis of Canonical Genetic Algorithms”, IEEE 
Transactions on Neural Networks, 5(1):96-101, January, 1994. 



270 A.F. Kuri-Morales and F. Juárez-Almaraz 

[AK00]  Kuri, A., “A Methodology for the Statistical Characterization of Genetic Algorithms”,  
Lectures Notes in Artificial Intelligence No 2313, pp. 79-89, Coello, C., Albornoz, A., 
Sucar, L., Cairó, O., (eds.), Springer Verlag, April 2000.  

[KV98]  Kuri, A., Villegas, C., “A Universal Genetic Algorithm for Constrained 
Optimization”, EUFIT '98, 6th European Congress on Intelligent Techniques and Soft 
Computing, Aachen, Germany, 1998. 


	Introduction
	Statistical Systems

	Genetic Multivariate Polynomials
	Minimax Approximation to a Set of Size m
	Exchange Algorithm
	Genetic Algorithm

	Neural Networks and GMPs
	Experiments

	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




