
J. Dalmau and G. Hasegawa (Eds.): MMNS 2005, LNCS 3754, pp. 254 – 265, 2005. 
© IFIP International Federation for Information Processing 2005 

Web Services Based Configuration Management for IP 
Network Devices* 

Sun-Mi Yoo1, Hong-Taek Ju2, and James Won-Ki Hong1 

1 Dept. of Computer Science and Engineering, POSTECH 
{sunny81, jwkhong}@postech.ac.kr 

2 Dept. of Computer Engineering, Keimyung University 
juht@kmu.ac.kr 

Abstract. The tasks of operating and managing diverse network devices from 
multiple vendors are getting more difficult and complicated. For that reason, 
IETF Netconf Working Group has been standardizing network configuration 
management. The Netconf protocol is an output of that standardization and can 
be used to effectively manage various devices on a network. However, it is still 
problematic for the manager to discover and manage configurable parameters in 
various devices. This paper proposes a method that can quickly discover 
devices and their parameters as well as methods to manipulate the configuration 
information on them. We present the architecture for XCMS-WS which meets 
this mechanism. Using the Web Services technologies, we have develioed a 
more powerful and flexible system than our previous XCMS. For validation, we 
have applied XCMS-WS for the configuration management of NG-MON, a 
distributed, real-time Internet traffic monitoring and analysis system. 

1   Introduction 

The rapid pace of Internet evolution is currently witnessing the emergence of diverse 
network devices from multiple vendors. Current networks are complex and are 
composed of various network devices. Efficient network management systems are 
necessary to manage these networks and devices effectively. Most configuration 
management systems for network devices are inefficient, because they use CLI 
depending on the proprietary operating systems of the vendors. To solve these 
problems, XML [1] technologies have been applied to configuration management. A 
standardization process of configuration management for network devices is also in 
progress. The standardization uses XML technologies and is consisted of protocol 
message and communication protocol. The IETF Network Configuration Working 
Group (Netconf WG) [2] is responsible for this standardization work, which attempts 
to fulfill operational needs for the manager and agent on diverse network devices 
manufactured by different vendors and guarantees interoperability. The Netconf 
standard protocol helps to send and receive configuration information between 
managers and agents, and to manage various network devices of different vendors. 
                                                           
* This work was in part supported by the Electrical and Computer Engineering Division at 

POSTECH under the BK21 program of Ministry of Education, and the Program for the 
Training of Graduate Students in Regional Innovation of Ministry of Commerce, Industry and 
Energy of the Korean Government. 



 Web Services Based Configuration Management for IP Network Devices 255 

Current networks are still hard to manage with only Netconf protocol in 
configuration information management. The network administrators need to perform 
various configuration tasks for the newly added devices. For such configuration tasks, 
they should input appropriate parameters to the manager. More efficient configuration 
tasks are possible if each device can register their parameters to UDDI [3] on their 
own and the manager find the device parameters accordingly. A set of parameters 
only needs to be changed while performing a number of similar configuration tasks on 
single or multiple devices. We used WSDL [5] to minimize any redundancy of the 
tasks. In this paper, we propose a configuration management system and mechanisms 
to solve this inefficiency issue. The Netconf agents register and the Netconf manager 
operates configuration management with reference to the information registered. This 
mechanism applies Web Services technologies [3], namely UDDI, WSDL, and SOAP 
[6] to configuration management. 

We have previously developed an XML-based Configuration Management System 
(XCMS) [7] which was based on the sixth draft version of Netconf protocol [10]. We 
have developed XCMS-WS which has extended XCMS by applying the Web 
Services technologies and the latest draft version of Netconf protocol [5]. The XCMS-
WS system designed based on the above mechanism can communicate between a 
manager and agents using the Netconf protocol, quickly and effectively find device 
agents and provide instructions for the operations of devices. XCMS-WS can send 
and receive messages between a manager and agents and more effectively manage 
configuration information using Web Service technologies. We have verified our 
proposed mechanism by applying it to the NG-MON system [8]. 

2   Related Work 

In this section, we explain Web Services technologies and Netconf protocol. We also 
introduce related work on XML-based network management by others and describe 
earlier our work. 

2.1   Web Services Technologies 

Web Services provide standard means to interoperate between different software 
applications and to run on a variety of operating system and hardware platforms. A 
Web service describes a collection of operations that are network accessible through 
standardized XML messaging. Web services fulfill a specific task or a set of tasks. A 
Web Service can be published and discovered through UDDI. It can also interoperate 
as XML message over the internet protocol (SOAP).  

Web Services technologies [9] consists of certain functional areas, XML 
messaging (e.g., SOAP), transport (e.g., HTTP, FTP and SMTP) and description of 
application interactions (e.g., WSDL) and discovery (e.g., UDDI). XML describes a 
class of data objects called XML documents. SOAP is a lightweight protocol for the 
exchange of information between peer entities in a decentralized, distributed 
environment. It is an XML-based protocol and defines the use of XML and HTTP to 
access services, objects, and servers in a platform-and language-independent manner. 
WSDL is an XML format for describing web services as a set of endpoints operating 
on messages. WSDL describes services starting with the messages that are exchanged 



256 S.-M. Yoo, H.-T. Ju, and J.W.-K. Hong 

between the service requester and the provider. UDDI specifications define methods 
to publish and discover information about web services offerings. 

Web Service is divided into three roles: the service provider, the service requester, 
and the service registry. The objects are the service and the service description. 
Moreover the operations performed by the actors on these objects are published, 
found and bound. A service provider creates a Web Service, defines the services and 
then publishes the service with a service registry based on a UDDI specification. 
Once a Web Service is published, a service requester may find the service via the 
UDDI interface. The UDDI registry provides the service requester with a WSDL 
service description and a URL pointing to the service itself. The service requester 
may then use this information to bind it directly to the service and invoke it. 

2.2   IETF Netconf Protocol Overview 

The IETF Netconf WG was formed in May 2003. It has attempted to standardize a 
protocol suitable for configuration management of multiple heterogeneous network 
devices. It has been defining the Netconf protocol and transport mappings. 

The Netconf protocol [10] uses XML for data encoding and a simple RPC-based 
mechanism to facilitate communication between a manager and agents. The Netconf 
protocol defines messages in a well-defined XML format to manage the configuration 
information easily and to provide interoperability among the devices from different 
vendors. The Netconf protocol obtains configuration information from an agent and in 
reference provides modified configuration management information using the RPC 
mechanism through a structured XML message. 

The state of configuration information is divided into three phases: candidate, 
running, and startup. The ‘running’ is a complete configuration, which is currently 
active on the network device. The ‘candidate’ is a candidate configuration, which can 
be manipulated without impacting the device’s current configuration. The ‘startup’ is 
a copied configuration from the ‘running’ state when the running configuration is 
reliable. Expressing management operations is not easy with only one transmission, 
data, and operation model because the environment of transmission of device 
information, management data, and management operation widely varies. Therefore, 
the transmission message is divided into 4 layers to satisfy the requirements of 
various environments [6]. Table 1 shows four layers defined in Netconf and examples 
of the contents in the layers. 

Table 1. Netconf Protocol Layers 

Layer Contents 
Application Transmission protocol to provide a communication path between agent 

and manager: BEEP, SSH, SOAP over HTTP 

RPC A simple, transport-independent framing mechanism for encoding RPC.: 
<rpc>, <rpc-reply>, <rpc-error> 

Operation 
 

A set of base operations invoked as RPC methods with XML-encoded 
parameters.: <get-config>,<edit-config>,<copy-config> 

Content Configuration data 

 



 Web Services Based Configuration Management for IP Network Devices 257 

The Netconf protocol currently considers three separate application protocol 
bindings for transport: SSH [18], BEEP [19], and SOAP over HTTP [10]. The SOAP 
over HTTP transport mapping uses WSDL for binding services and its specification 
proposes standardized WSDL. 

2.3   University of Twente Research on Web Services Based Management 

Aiko Pras et. al have published several papers in which they suggested uses for Web 
services based management. As part of their research, the performance differences 
between SNMP and Web Services-based management have been investigated [16]. 
To compare performance, they investigated bandwidth usage, CPU time, memory 
requirements and round trip delay. To conduct tests, they implemented several Web 
services based prototypes and compared the performance of these prototype to various 
SNMP agents. That tests showed that there is a significant difference in the bandwidth 
requirements of SNMP and Web services. They concluded that SNMP is more 
efficient in cases where only a single object is retrieved but Web services is more 
efficient for larger number of objects. Web services management is more suitable for 
large scale networks such as an enterprise network. 

2.4   XCMS 

In our previous work, we had developed an XML-based configuration management 
system called XCMS which implemented the first draft IETF Netconf specification. 
XCMS proposed XPath which has been standardized since the fourth draft and used 
SOAP over HTTP as a transport mechanism. XCMS supports the fifth draft IETF 
Netconf protocol specification. In XCMS, a centralized manager controls the 
configuration information of network devices equipped with Netconf agents. XCMS 
works like Web Service with Netconf protocol. XCMS can manage configuration 
information of diverse devices. Yet, we found limitations of XCMS on networks 
where various network devices change dynamically. XCMS has difficulty when it 
searches for devices to operate configuration management and it uses configuration 
operations of unfamiliar devices. So, we have developed a new configuration 
management system called XCMS-WS by extending XCMS. 

3   Proposed Method 

We have mentioned the limitations of configuration management for network devices 
using only the Netconf protocol. Our proposed mechanism for solving these problems 
incorporates Web Services into configuration management. 

3.1   Registration and Search for Configuration 

The Netconf protocol allows managing various devices from diverse vendors. 
However, the discovery of necessary parameters for configuration tasks is not trivial. 
If the Netconf manager can find device parameters which are managed by Netconf 
protocol in a repository, it can more easily and efficiently manage the devices. 

Netconf protocol uses WSDL and SOAP with the ‘SOAP over HTTP’ transport 
mapping [20]. But, that does not provide a registry function. We apply UDDI as a 



258 S.-M. Yoo, H.-T. Ju, and J.W.-K. Hong 

registry for configuration management. The UDDI structure in our system consists of 
four factors: businessEntity, businessService, bindingTemplate, and tModel. The 
businessEntity represents information about a business. Each businessEntity contains 
a unique identifier, the business name, a short description of the business, some basic 
contact information [12]. Each businessService entry contains a description of the 
service, a list of categories that describe the service, etc. The bindingTemplate 
provides technical description about how and where to access a specific service. A 
tModel includes descriptions and pointers to external technical specifications. XCMS-
WS adapts the above structure; however the contents are different. businessService 
and bindingTemplate represent configuration parameters and the location of WSDL 
containing the descriptions of configuration parameters, respectively. 

The Netconf manager sends out requests to discover parameters of network 
devices, which manage configuration information using the Netconf agent in the 
UDDI registry. The UDDI registry searches the business using a query on the 
structured data contained in a UDDI registry and then provides information of the 
business. This business is a set of parameters of the network device. This process 
brings business entry XML data into a Netconf manager. It finds the 
NETCONF_AGENT of businessService in the data and analyzes the entry list. The 
entry information includes the tModel instance info and the description of the Netconf 
agent service. The Netconf agent can be searched through the WSDL description 
which is pointed to by the overviewURL. The Netconf manager accesses the Netconf 
agent using information provided by the UDDI registry. Then, the manager operates 
configuration management to the device using the Netconf protocol with the 
parameters. 

We use a private UDDI because private UDDI provides more valuable functions in 
a private setting. When using a public UDDI registry, it publishes local devices on the 
whole Internet creating some major security problems. However, a private UDDI 
registry is accessible by entities internal to an organization. This registry will be 
behind the organization’s firewall and only accessible via the organization’s intranet. 
The devices are managed by the administrator only. A private UDDI registry can also 
simplify organization’s extranet operations. 

3.2   WSDL for Netconf Agents 

When a new network device is added or a network device’s software changes, 
operations are updated on network. Sometimes, on a network consisting of many 
network devices, the configuration management work can be done perfectly after 
configuration information of several devices linked to the work is modified. 
Moreover, the work may be repeated many times. For instance, the operation which 
changes and reverts to a network configuration for network upgrade is often needed. 
In the case of repeated configuration management, it is better to describe the task. 
There exist many approaches for describing configuration management. We use 
WSDL for the configuration management task.  

WSDL can be used as a task description. Its operations and messages are described 
abstractly, and it provides a concrete protocol and message format to define a 
concrete endpoint. The Netconf Manager connects to the Netconf agent in a network 
device which is going to operate configuration task. This process needs a description 
that provides all the details necessary to communicate between a Netconf manager 



 Web Services Based Configuration Management for IP Network Devices 259 

and a Netconf agent. So, the Netconf WG proposes the standardization of WSDL used 
on Netconf protocol. And then a Netconf manager operates configuration information 
of a network device. For correct configuration management of the network device, the 
Netconf agent describes the message format, data types, operations and a location 
where the service called is binding in WSDL. The manager can perform configuration 
management by changing the parameters belonging to the WSDL defined tasks. Also, 
it would be more efficient to conduct multiple configuration tasks. 

 

<message name="NetconfdRequest"> 
   <part name="req-msg" type="xsd:string" />
  </message>

<message name="NetconfdResponse">
   <part name="rpl-msg" type="xsd:string" />
  </message>

<portType name="NetconfdPortType">
<operation name="Netconfd"> 

      <documentation>Service definition of function ns__Netconfd</documentation>
    <input message="tns:NetconfdRequest" /> 

      <output message="tns:NetconfdResponse" /> 
    </operation>
  </portType>

<binding name="Netconfd" type="tns:NetconfdPortType">
   <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="Netconfd">
        <SOAP:operation soapAction="" />

      <input> 
          <SOAP:body use="encoded" namespace="urn:Netconfd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
        </input>

<output>
          <SOAP:body use="encoded" namespace="urn:Netconfd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
        </output>

    </operation>
   </binding>

<service name="Netconfd"> 
      <documentation>gSOAP 2.7.0d generated service definition</documentation>

 <port name="Netconfd" binding="tns:Netconfd">
 <SOAP:address location="http://141.223.82.6:5455" />

 </port>
</service>  

Fig. 1. WSDL of NETCONF agent 

Fig. 1 is a fragment of the WSDL used by a XCMS-WS agent. An XCMS-WS 
manager can operate configuration information of Netconf agents as calling a service 
daemon, ‘Netconfd’. The manager can realize new information changed of the device 
as analyzing the WSDL and UDDI. The Netconf manager can recognize devices 
which are new installed or modify functions. And it can also know that devices 
software is changed or operations are updated. When the Netconf manager makes a 



260 S.-M. Yoo, H.-T. Ju, and J.W.-K. Hong 

request message for operating configuration task of a device, it can refer useless 
information from WSDL of the device. A Netconf agent operates configuration tasks 
based on request message from the Netconf manager. 

4   Architecture for XCMS-WS 

In this section, we present the design of XCMS-WS, XML-based Configuration 
Management System using Web Services. XCMS-WS consists of a manager, an agent 
and a private UDDI registry. Fig. 2 illustrates the detailed architecture of XCMS-WS, 
in which a centralized XML-based manager controls the configuration information of 
agents. A Netconf protocol request message is generated by the manager and sent to 
the agent. The agent analyzes this message and performs the configuration 
management function. 

UI
(CLI, GUI)

Manager

UDDI Finder

NETCONF
Protocol
Message

Generator

Presenter

Dynamic
Invoker

SOAP
Engine

NetConf
Request
Message

NetConf
Response
Message

LOG Configuration Information

AGENT

SOAP
Engine

(gSOAP)

Operations

get-config

edit-config

copy-config

Kill Session

Notify

Protocol
Analyzer

NetConf
Request
Message

NetConf
Response
Message

Configuration Data Store

Candidate Running Startup

DEVICE Module

NetConf
Request
Message

W
S
D
L

NetConf
Response
Message

Private UDDI

UDDI
Search
Query

UDDI
Result

Message

Publish

Request
Message

 

Fig. 2. Detailed Architecture of XCMS-WS Manager 

A manager consists of five elements: UI, Protocol Message Generator, UDDI 
Finder, Dynamic Invoker, and SOAP Engine. The UI is used by the administrator to 
input request messages. A XCMS-WS manager provides CLI which is required 
essentially by Netconf standardization and also provides a GUI for the Web 
environment. In GUI, the administrator does not need to type the entire request 
message. A XCMS-WS manager semi-automatically creates a request message based 
on objects selected by the administrator using the GUI. The request message which is 
inputted by the administrator is translated into a Netconf protocol request message by 
the XML parser module of the manager. The XML parser module is a NETCONF 
Protocol Message Generator, which translates just an XML message to a Netconf 
request message using Netconf message formats. The Netconf protocol response 
messages are analyzed by the Presenter. Agents which can be managed by XCMS-
WS are discovered and registered at the UDDI registry. The UDDI Finder module 



 Web Services Based Configuration Management for IP Network Devices 261 

discovers device agents. If you get agent information from the UDDI Finder module, 
you can know the location of WSDL which is a description of the agent’s service, and 
then you can do remote call through WSDL. 

An agent is composed of the SOAP Engine module to deliver messages and the 
Protocol Analyzer module to parse messages. An agent also provides the service of 
processing the operation that is included in the configuration management message. 
There is a Configuration Data Store which stores data corresponding to ‘candidate’, 
‘running’ and ‘startup’ as the configuration information model. One of these, 
‘running’ synchronizes with real device modules and this information describes the 
present running state. Processing Netconf protocol messages through the SOAP 
engine needs architecture like a message-queue style architecture because of the delay 
in processing messages as they arrive at the agent. Using a message queue can solve 
message loss problems that can occur because of multiple requests from several 
managers and processing delays. It also provides architecture for synchronizing 
configuration information. The protocol interpreter is a very important module related 
to the Netconf protocol, it extracts operation names described as XML tag and 
parameters which are needed for operating from the requirement message. Operations 
are called from this extracted information. When an agent executes operations, each 
operation reads and modifies information stored in the configuration information 
stores. The operating results are loaded on a Netconf protocol message and are 
transmitted to manager. 

The configuration information of agents must be managed automatically by a 
manager in network management. Managers and agents synchronize state information 
of agent through Private UDDI. If an address of an agent is changed and the agent 
changes its address at UDDI, managers can automatically provide a layout changing 
the address. 

5   Implementation 

We have implemented an XML-based configuration management system based on the 
XCMS-WS design presented in Section 4. The distributed system applying the 
architecture of XCMS-WS is NG-MON which is a passive network monitoring 
system with a clustered and pipelined architecture for load balancing and distribution. 
This section explains the XCMS-WS implementation environment and describes 
about the manager, the agent, and UDDI registry in detail. 

5.1   Implementation Environment 

The manager of the XCMS-WS is on a Pentium IV 2.4 GHz CPU and 500 MB RAM 
server running Redhat Linux 9. The platform of the agent is different depending on 
the platform of the device agent. The manager uses various XML technologies to 
provide Web-based user interfaces and an XMLDB. We resorted to Apache that 
provides APIs implemented with JAVA. XCMS-WS needs the following APIs: 
Xindice as an XMLDB and AXIS as SOAP engine to apply the SOAP/HTTP 
communication method between the manager and the agents. The manager and the 
agents must setup a Web server for HTTP communications. Following the user 
interface implementation with Java Server Page (JSP), the manager installs TOMCAT 
provided in Jakarta Apache. 



262 S.-M. Yoo, H.-T. Ju, and J.W.-K. Hong 

The manager composes a Dynamic Invocation environment with using WSDL 
when placing a service call. We used WSIF [13] for the Dynamic Invocation 
environment. Consequently, the manager can make a service call only with WSDL 
which is described as a service agent. XCMS-WS can call dynamically using WSDL 
which is discovered at the UDDI Netconf agent. 

The agent uses a parser based on C compiler and gSOAP [14]. If the device agent 
has few resources, as in an embedded system, it must sparse resources. The gSOAP 
provides the smallest and most efficient environment among the SOAP/HTTP sources 
based on C/C++ language. It also guarantees interoperation with other SOAP 
implementation and can transmit SOAP RPC message between a manager and an 
agent. The gSOAP generates a stub, a skeleton, and a WSDL file using the header file 
which declares RPC operations. We select the libxml [15] which is lightweight 
compare to existing XML parsers in the agent. This deployment provides DOM APIs 
which supports to select the specified node, update the selected node value, and read 
management information. The XCMS-WS uses a private UDDI registry in the WSDK 
[15] package provided by IBM. We selected the private UDDI for security reasons. 

5.2   Verification 

NG-MON [8] consists of five subsystems: a packet capture, a flow generator, a flow 
store, a traffic analyzer, and the presenter of analyzed data. Each subsystem of NG-
MON runs on a Linux server with Pentium III 800 MHz CPU and 256 MB RAM.  

XCMS-WS consists of a manager, agents and private UDDI. The UDDI registry is 
located between a manager and agents for searching devices to be configured. The 
XCMS-WS agent manages the NG-MON module. The NG-MON module loads 
configuration information files from the NG-MON subsystems to manage the 
configuration information of the NG-MON system on the XCMS-WS agent, which it 
synchronizes with real configuration information of the NG-MON system. The 
XCMS-WS manager sends a request message to the XCMS-WS agent and the 
XCMS-WS agent sends this message to the NG-MON module. 
 

<?xml version="1.0"?>
<ng-mon ip="141.223.82.144">

<admin name="DongHyun Kim" 
email="dhkim03@postech.ac.kr"></admin>

<database user="root" password="********"/> 
 <packetcapture>

<device name="eth1"/>
                        ……
 </packetcapture>
 <flowgenerator interval="2">

<subsysip = “141.223.11.3”/>
                    <subsysip = “141.223.11.4”/>
 </flowgenerator>
 <flowstore> 

<p2p file="p2p.xml"/>
 </flowstore> 
</ng-mon>  

Fig. 3. XML-based Structure of the Configuration Information 



 Web Services Based Configuration Management for IP Network Devices 263 

Fig. 3 is an XML-based structure of the configuration information of the NG-MON 
subsystems. The NG-MON module which manages the configuration information is 
loaded on the XCMS-WS agent in the NG-MON system. The manager then can 
manage the configuration information of the NG-MON. 

The UDDI TREE of GUI connects to private UDDI registry with the administrator 
ID and shows the search results that are registered at UDDI. Using the Netconf 
protocol, we can easily select a list of manageable devices from all devices registered 
at the UDDI registry. While retrieving information registered at the UDDI registry  
 
 

<?xml version="1.0" encoding="UTF-8"?>
<BusinessName bizID="DPNM">

<Service serviceID="NETCONF_AGENT">
<TModelInst devID="NETCONF_AGENT1” 

overViewDoc="http://141.223.82.6:8080/xcms-ws/Netconfd.wsdl"/>
<TModelInst devID="NETCONF_AGENT2" 

overViewDoc="http://141.223.82.7:8080/xcms-ws/Netconfd.wsdl"/>
</Service>
<Service serviceID="SNMP_XML_GATEWAY">

<TModelInst devID="SNMP_XML_GATEWAY”
overViewDoc="http://141.223.82.6:8080/axis/services/SNMP_XML_GATEWAY?wsdl"/>

</Service>
</BusinessName>

 

Fig. 4. UDDI Search Result 

 

Fig. 5. Web-based user interface of XCMS-WS 



264 S.-M. Yoo, H.-T. Ju, and J.W.-K. Hong 

into XCMS-WS, our system filters the necessary data and updates information 
automatically using the UDDI registry. Fig. 4 shows that two available devices 
including Netconf agent and a SNMP_XML_Gateway are registered at UDDI. 

The Web-based user interface of XCMS-WS as shown in  
Fig.  provides the following functions: viewing, modifying and searching devices 

from UDDI registry, and creating and sending request messages for configuration 
task. Moreover, it shows responses from Netconf agents and configuration 
information DB tree of the device. 

6   Concluding Remarks 

In this paper, we have proposed a mechanism to manage configuration information 
more effectively using the Netconf protocol and Web Services technologies. Using 
UDDI helps a Netconf manager to quickly and intelligently recognize required 
parameters of network devices to operate configuration tasks. A Netconf manager 
finds a parameter description of a device to manage configuration from a private 
UDDI registry. Using WSDL configuration tasks can be done efficiently and 
repeatedly to operate configuration tasks of several devices.  

We have presented the design and implementation of XCMS-WS, which is based 
on the mechanisms above. The XCMS-WS effectively manages the configuration 
information using Web Services technologies. It automatically modifies configuration 
information of the related devices using the Netconf protocol when the configuration 
information shared with other devices is modified. We applied the XCMS-WS to the 
configuration management system used for NG-MON. 

For future work, we plan to validate the flexibility and extendibility of the XCMS-
WS as applied to other network systems. Finally, we will conduct performance tests 
on XCMS-WS in order to optimize it for adaptation to embedded systems. 

References 

[1] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen, “Extensible Markup Language 
(XML) 1.0”, W3 Recommendation REC-xml-19980210, Feb. 1998. 

[2] IETF, “Network Configuration (Netconf)”, http://www.ietf.org/html.charters /Netconf-
charter.html. 

[3] W3C, “Web Services Technologies”, WASP/D3.1, December 2002. 
[4] OASIS, “Universal Description, Discovery and Integration (UDDI)”, http://www. 

uddi.org/. 
[5] W3C, “Web Services Description Language (WSDL) Version 2.0” W3C Working Draft 

3, August 2004, http://www.w3.org/TR/wsdl20/. 
[6] Enns, R., “NETCONF Configuration Protocol” draft-ietf-Netconf-prot-06, April 26, 

2005, http://www.ietf.org/internet-drafts/draft-ietf-Netconf-prot-06.txt. 
[7] W3C, “SOAP Version 1.2 Part 2: Adjuncts”, W3C Working Draft, Dec. 2001. 
[8] Mi-Jung Choi, Hyoun-Mi Choi, Hong-Taek Ju and James W. Hong, "XML-based 

Configuration Management for IP Network Devices", IEEE Communications Magazine, 
Vol. 41, No. 7, July 2004. pp. 84-91. 



 Web Services Based Configuration Management for IP Network Devices 265 

[9] Se-Hee Han, Myung-Sup Kim, Hong-Teak Ju and James W.Hong, “The Architecutre of 
NG-MON: A Passive Network Monitoring System”, DSOM2002, Montreal, Canada, 
October, 2002, pp. 16-27. 

[10] Goddard, T., “NETCONF over SOAP”, draft-ietf-Netconf-soap-05, October 11, 2005, 
http://www.ietf.org/internet-drafts/draft-ietf-Netconf-soap-05.txt. 

[11] Enns, R., “NETCONF Configuration Protocol”, draft-ietf-Netconf-prot-06, October 27, 
2005, http://www.ietf.org/internet-drafts/draft-ietf-Netconf-prot-06.txt. 

[12] Simeon Semeonov, Building Web Services with Java, SAMS, 2001. 
[13] Apache WebService project, WebService Invocation Frameworks “WSIF”, 

http://ws.apache.org/wsif/. 
[14] Robert A., “gSOAP: Generator Tools for Coding SOAP/XML Web Service and Client 

Applications in C and C++”, http://www.cs.fsu.edu/~engelen /soap.htm/. 
[15] IBM, “Web Services Development Kit (WSDK)”, http://www-106.ibm.com/ 

developerworks/webservices/wsdk/. 
[16] XMLSOFT, libxml, “The XML C parser and toolkit at Gnome”, http://www.xmlsoft.org/. 
[17] A. Pras, T. Drevers, R. v.d. Meent, D. Quartel, “Comparing the Performance of SNMP 

and Web Services-Based Management,” IEEE eTNSM, V1, N2, Dec. 2004, pp. 1-11. 
[18] Wasserman, M., “Using the NETCONF Configuration Protocol over Secure Shell 

(SSH)”, April 9, 2005, http://www.ietf.org/internet-drafts/draft-ietf-Netconf-ssh-04.txt. 
[19] Lear, E., Crozier, K., Enns, R., “BEEP Application Protocol Mapping for NETCONF”, 

March 2005, http://www.ietf.org/internet-drafts/draft-ietf-netconf-beep-05.txt. 
[20] Lear, E., Crozier, K., Enns, R., “BEEP Application Protocol Mapping for NETCONF”, 

draft-lear-Netconfbeep-05, March 2005, http://www.ietf.org/internet-drafts/draft-ietf-
netconf-beep-05.txt. 


	Introduction
	Related Work
	Web Services Technologies
	IETF Netconf Protocol Overview
	University of Twente Research on Web Services Based Management
	XCMS

	Proposed Method
	Registration and Search for Configuration
	WSDL for Netconf Agents

	Architecture for XCMS-WS
	Implementation
	Implementation Environment
	Verification

	Concluding Remarks
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




