
Control Considerations for Scalable Event

Processing

Wei Xu1, Joseph L. Hellerstein2, Bill Kramer1, and David Patterson1

1 Computer Science Dept., University of California, Berkeley, CA
{xuw, pattrsn}@cs.berkeley.edu, kramer@lbl.gov

2 IBM T.J. Watson Research Center, Hawthorne, NY, USA
hellers@us.ibm.com

Abstract. The growth in the scale of systems and networks has created
many challenges for their management, especially for event processing.
Our premise is that scaling event processing requires parallelism. To this
end, we observe that event processing can be divided into intra-event
processing such as filtering and inter-event processing such as root cause
analysis. Since intra-event processing is easily parallelized, we propose an
architecture in which intra-event processing elements (IAPs) are repli-
cated to scale to larger event input rates. We address two challenges in
this architecture. First, the IAPs are subject to overloads that require
effective flow control, a capability that was not present in the compo-
nents we used to build IAPs. Second, we need to balance the loads on
IAPs to avoid creating resource bottlenecks. These challenges are fur-
ther complicated by the presence of disturbances such as CPU inten-
sive administrative tasks that reduce event processing rates. We address
these challenges using designs based on control theory, a technique for
analyzing stability, accuracy, and settling times. We demonstrate the
effectiveness of our approaches with testbed experiments that include a
disturbance in the form of a CPU intensive application.

1 Introduction

The advent of the Internet, sensor networks, and peer-to-peer networks has
greatly increased the scale of distributed systems, making it more difficult to
process events to detect and diagnose problems. Scaling event processing re-
quires an architecture that incorporates parallelism. Herein, we address con-
trol challenges in providing such parallelism, namely: (a) providing flow control
within replicated elements to avoid overload conditions and (b) balancing load
in the presence of variable processing demands and other disturbances. Our so-
lution to both of these challenges employs control theory, a formal approach to
designing feedback loops.

Event streams consist of many kinds of data. For example, there are notifica-
tions of requests for service such as requests to a DNS (Domain Name Service)
for name resolution; performance statistics such as response times; and trouble
tickets that describe actions taken. These data are input to event processing

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 233–244, 2005.
c© IFIP International Federation for Information Processing 2005

234 W. Xu et al.

components that detect abnormal situations, anticipate future problems, and
diagnose existing problems.

Our motivation for scaling event processing comes from a company that is key
to the eCommerce ecosystem. At the heart of this business is a DNS root server
that generates events at a rate of 11 million to 42 million per hour. Many off-the-
shelf products provide event processing capabilities, such as HP OpenView[5],
IBM Tivoli[6] or Microsoft Operations Manager[7]. However, all are severely
challenged by such high event rates.

Much related work exists in the area of event processing. Yemini et al. con-
sider how to associate problem causes with symptoms using a code book algo-
rithm [15]. Hofmeyr et al. develop techniques that discriminate between normal
and abnormal operations [10]. Pinpoint System deals with the localization of
failures on a production eCommerce system based on decision trees that analyze
event data [3] and further extended to detect anomalies and failed components
by automated analysis of execution paths in J2EE(Java 2 Enterprise Edition)
applications [4]. Vilalta et al. predict critical events in computer system such
as high CPU utilization and router failures by applying temporal data mining
and time series analysis [14]. Burns et al. describe how to construct processing
rules from event data [1]. These results identify requirements for event analysis,
such as the need to have events in time serial order and to estimate accurately
statistics such as the distribution of event sources and response times.

Supporting large scale event processing requires a scalable infrastructure.
Astrolabe [13] and PIER [11] provide scaling by collecting and analyzing data
on the nodes where they are generated. However, this approach limits the scope
of the events analyzed to a single node. The Siena system [2] provides a pub-
lish/subscribe event-notification service with considerations for efficiencies and
scaling. However, since this is a general infrastructure, it does not exploit the
characteristics of event processing such as the opportunity to do intra-event
processing in parallel.

From the foregoing, it seems that there has been little focus on scaling event
processing. Thus, we introduce an approach that provides scaling through par-
allelism by identifying two kinds of processing that take place in event process-
ing. Inter-event processing, such as problem diagnosis, analyzes multiple events
in combination. Intra-event processing, such as filtering events from specific
sources, considers events in isolation. Intra-event processing is easily parallelized
by replicating the elements used for intra-event processing. We refer to these as
intra-event processing elements (IAPs). We have encountered two challenges in
scaling intra-event processing. First, IAPs are subject to overloads that require
effective flow control, a capability that is often missing in off-the-shelf compo-
nents. Second we must balance the load placed on IAPs to avoid bottlenecks.
These challenges are further complicated by the presence of disturbances such as
CPU intensive administrative tasks (e.g., Java Virtual Machine (JVM) garbage
collection) that reduce event processing rates.

The remainder of this paper is organized as follows. Section 2 presents our
architecture for scalable event processing. Section 3 applies control theory to

Control Considerations for Scalable Event Processing 235

designing key elements of a scalable event processing system. Section 4 reports
the results of experiments we conducted to assess scaling. Our conclusions are
contained in Section 5.

2 Architecture

This section describes our architecture for scalable event processing.
Event processing operates on the attributes of events and the relationships

between these attributes. For example, performance events may have attributes
such as IP address, memory utilization, swap utilization, and load average. For
example, an event processing system might employ rules (or other representa-
tions) such as the following:

– Rule 1: Discard performance events from the subnet 92.126.10/24.
– Rule 2: Send an alert if the largest load average exceeds 2 for the hosts on

subnet 92.126.11/24.

Rule 1 might be used to filter events from a test machine. Rule 2 is useful if
all machines on the subnet 92.126.11 are production servers and we want to
determine if there is a resource bottleneck.

Rules 1 and 2 suggest that there are two kinds of event processing: (1) intra-
event processing such as filtering events that are not of interest and (2) inter-
event analysis such as detecting a resource bottleneck. By definition, intra-event
analysis is done on events in isolation. Inter-event analysis establishes relation-
ships between events and so typically processes events in time serial order.

In the sequel, we focus on intra-event processing because of the opportunity
to scale event processing by distributing the work to multiple nodes. Exam-
ples include: sampling events to obtain a representative distribution of response
times; cleansing data to eliminate ill-formed events and unnecessary attributes;
and augmenting events to associate the host name and host type based on host
IP address. Through we only look at one event at a time, the processing can
be expensive. We see that many of these operations require access to other in-
formation sources, such as a table that relates IP address to host name and
type.

These observations led us to the two tier architecture that is depicted in Fig-
ure 1. Incoming events arrive in (rough) time sequence order. The first tier pro-
vides scalable intra-event processing, such as projections to eliminate unwanted
attributes and joins to include additional attributes. There are three types of ele-
ments in this tier: the load splitter, the IntrA-event Pprocessing elements (IAP),
and the combiner. Scaling is provided by having multiple IAPs that operate in
parallel, possibly with different processing speeds and other characteristics. The
load splitter assigns events to an IAP, and the combiner consolidates the results
in time sequence order. We must be sure that we can implement the load splitter
in a very efficient way so that it is not a bottleneck. As we show in Section 3.2,
because the load splitter does not look into the event, it is much faster than the
IAPs.

236 W. Xu et al.

Tier 1:
Intra-Event Processing

Intra-event
Processing
Element
(IAP)

Load
Splitter Combiner

Monitor

Tier 2:
Inter-Event Processing

Events

Alerts

Statistics

Intra-event
Processing
Element
(IAP)

Inter-event
Processing
Element
(IEP)

Fig. 1. A two tier architecture for scalable event processing. The first tier processes

events in isolation. The second tier addresses relationships between events. Scaling is

achieved in the first tier by having multiple IAP elements.

The second tier in Figure 1 performs inter-event processing. The IntEr-event
Processing element (IEP) inputs events in time serial order, and outputs alerts
and higher level events. The monitor calculates statistics that are used as filtering
criteria by the first tier, such as quantiles of response times contained in the
attributes of incoming events that are used to identify exceptional situations.

E

E E
E

E

E E

E

E

E

E

Tier 1

Tier 2

E

E

E

E

E E

E

E

E

E

E

E

Tier 1

Tier 1

Tier 1

Tier 2

Event
Sources

Fig. 2. Generalized architecture for scalable event processing

Figure 2 generalizes the architecture in Figure 1 to handle large scale dis-
tributed systems by treating tier 1 and tier 2 as components that can be repli-
cated as needed. For example, network utilizations and communication delays
are reduced by filtering events close to their origin. This argues for having in-
stances of the first tier in many locations, such as satellite campuses and local

Control Considerations for Scalable Event Processing 237

area networks for critical servers. In contrast, a second tier instance may be quite
distant from event sources in order to have a sufficient scope of events to do root
cause analysis and obtain accurate statistical distributions. Thus, multiple first
tier instances may feed into a single second tier. It may also be that there is
a hierarchy of second tier instances, such as for event processing that occurs
based on geographic scale (e.g., city, state, country). Thus, multiple second tier
instances may input events to another second tier instance.

We focus on the requirements for scaling in the first tier. To better understand
these issues, we implemented an IAP that embeds a TelegraphCQ (TCQ) system
[12] to handle SQL based processing of event streams within the IAP. Our studies
reveal two issues with increasing the event input rate. The first issue relates to
flow control within IAP nodes. The second concerns balancing the loads of the
IAPs.

3 Control Design

This section describes how we address issues in scaling intra-event processing,
namely—(1) flow control within IAP nodes and (2) load balancing across IAPs.

3.1 Flow Control Within IAP Nodes

We begin by studying the effect of load on an IAP. Since our IAPs embed a TCQ,
we represents events as data tuples in a object-relational schema and quantify
throughput by using the TCQ metric tuples/sec, which is the same as events/sec.
Figure 3 reports the results of experiments conducted on a single IAP node. We
see that at moderate to heavy loads, tuples are dropped. This is problematic
for two reasons. First, drops are not selected at random and so the presence of
drops can bias the event statistics that are used for threshold-based filters and
other purposes. Second, as we can see in the next paragraph, the drop happens
after all processing on that tuple is done. Thus, dropping a tuple does not reduce
workload on a server.

Going into more detail, a TCQ is structured into two parts: (a) a front-end
process that interacts with requesters, parses inputs and translates them into in-
ternal data structures and (b) a set of back-end processes that perform relational
database operations. The output of the back-end is placed into a result queue
whose entries are retrieved by the front-end to respond to in-coming requests.
The drops are a consequence of an overflow of the result queue, which is evident
in Figure 3 since drops occur as the free space goes to 0.

One solution to the drops problem is to have front-end processes block when
the result queue is full. Thus, the tuple is either dropped or throttled via admis-
sion control. Unfortunately, this can cause unpredictable effects on other queries
because of the complex sharing that takes place. A second approach is to make
the result queue very large to avoid having drops. But this means there is less
memory available for front-end and back-end processes, which reduces through-
put. A third technique is to do off-line experiments to determine the processing

238 W. Xu et al.

0 100 200 300 400 500 600 700 800 900
0

1000

2000

3000

Time (sec)

T
up

le
s

pe
r

se
c

0 100 200 300 400 500 600 700 800 900
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

source data rate
rate to TCQ
end−to−end drop rate

Tuples dropped

Fig. 3. Behavior of a TCQ node without regulating result queue length. The top plot

shows the event input rate, and the drop rate. The bottom plot depicts the free space

in the result queue. The drop rate increases with the event input rate.

capacity of an IAP node for a representative set of events. However, this is dif-
ficult to do because certain dynamics affect free space of the result queue, such
as changes in the distribution of event types that in turn affects the amount of
processing done (especially due to the selectivity of database queries).

Our approach to eliminating drops is to implement flow control within the
IAPs by regulating the rate at which events are accepted by front-end processes.
Thus, events are held in a queue within the IAP until there is sufficient space
in the result queue. Such a design avoids the complexities of blocking front-end
processes that hold resources associated with partially completed requests.

Disturbance

u(k)

z –1
(KP+KI)z–KP ++

+

− z –0.985
-134

IAPPI Controller

y(k)e(k)r(k)

Measured free space

Desired
free space

Event
input
rate

Fig. 4. Block diagram of IAP admission control

Figure 4 is a block diagram of the IAP flow control that we propose. This
control system seeks to maximize throughput without dropping events by regu-
lating the free space of the result queue. The reference input is the desired free
space. The controller uses the difference between this reference and the measured
free space of the result queue to adjust the event input rate.

We design the controller as described in [9]. The first step is to model how
the event input rate affects free space of the result queue. Let y(k) be the free
space at time k, and let u(k) be the event input rate. We use the first order
model

Control Considerations for Scalable Event Processing 239

y(k + 1) = ay(k) + bu(k) (1)

since [9] contains many examples in which this works well for real systems.
Values of the parameters a and b are estimated from data obtained from studies
of a testbed system, yielding a = 0.985 and b = −134. With this, we express
the relationship in Equation (1) as a transfer function, a representation that
expresses time serial effects in terms of z (which can be interpreted as a delay
operator). The transfer function here is

−134
z − 0.985

. (2)

The transfer function in Equation (2) provides several insights. First, consider
the transfer function’s steady state gain, a quantity that indicates the effect of a
small change in event input rate on free space. Steady state gain is obtained by
evaluating Equation (2) at z = 1, which is -3,190. Having a negative steady state
gain means that free space declines as the event input rate increases, which is
consistent with intuition. A second insight from Equation (2) relates to its poles,
the values of z for which the denominator is zero. Equation (2) has a single
pole at 0.985. The poles of the transfer function must lie within the unit circle
of the complex plane for the system to be stable, which is the case for this
transfer function. Further, poles that are closer to the unit circle indicate a
system with a longer settling time (convergence time). From [9], settling time ks

is approximately
ks ≈ −4/ln|a|. (3)

Applying Equation (3) to Equation (2), we determine that the open loop settling
time is approximately 264 sec. That is, if there is a transitory change in the event
input rate, it will take the IAP 264 sec to return to its previous state.

We design the controller with two objectives in mind. First, we want to accu-
rately regulate free space. Second, we want to minimize the effect of disturbances
such as changes in the types of events and the execution of administrative tasks
(e.g., garbage collection) on IAP nodes. We employ proportional-integral (PI)
control, an approach that is widely used because it ensures that the measured
output converges to the reference input, and a PI controller is easy to under-
stand and implement. The control law for a PI controller is:

u(k) = u(k − 1) + (KP + KI)e(k) − KP e(k − 1) (4)

where KP and KI are controller parameters that are determined by design.
We want the controller to settle (converge) quickly and so choose as our ob-

jective that the closed loop settling time should be 5 time units. This is achieved
by properly choosing the parameters Kp and KI . The first step is to invert
Equation (3), yielding a ≈ e−ks/4. For ks = 5, a ≈ 0.449. Next, we derive
the denominator of the transfer function of the closed loop system, which is the
polynomial z2− (134KP +134KI +1.985)z+134KP +0.985. Setting the poles of
the polynomial according to ks and a, we get KP = −0.00614 and KI = 0.02168
causes this polynomial to have zeros at 0.046 ± 0.4i. Since |0.046 ± 0.4i| ≈ 0.4,
the closed loop system has a settling time of approximately 5 time units.

240 W. Xu et al.

3.2 Load Balancing Between IAPs

Load balancing provides a way to reduce response times by reducing the uti-
lization of bottleneck resources, those resources that largely determine the re-
sponse time of a system. Load balancing is particularly important in parallel
computation systems involving synchronization because having an imbalance in
processing speeds causes faster nodes to wait for slower nodes. In our system,
the combiner is a barrier coordinator. A slow IAP forces the combiner to wait,
slowing the progress of events to the second tier. The load balancer must be
efficient enough to avoid being a bottleneck. It must decide where the event
should go upon event arrival. It does not have time to route based on the content
of the event, or hold events in a buffer for delayed decision making.

Let L = (L1, · · · , LN) be the load in events/sec applied to the N IAPs, and
let R1, · · · , RN be their response times at these loads. One way to formulate the
objective of load balancing is to find L that minimizes

∑
i(Ri − R̄)2 (where R̄

is the average response time) subject to the constraint that
∑

i Li is constant.
Unfortunately, this is a non-linear optimization that is quite complicated to
solve.

d1(k)

−+
++

+

− ++

IAP 1
1N,1

N

dN(k)

R1(k)

RN(k)

e1(k)

eN(k)
uN(k)

u1(k)

I

I

w(k)

++

++

d1(k)O

dN(k)O

w1(k)

wN(k)

Load Splitter

IAP N

Controller 1

Controller N

Fig. 5. Block diagram of a load balancing controller

Figure 5 depicts an approach to load balancing based on classical control
theory. Employing the results in [8], load balancing is accomplished through
regulatory control by having the reference input be the mean value of the (dis-
turbance adjusted) response times of the IAPs. Such an approach allows us to
regulate the IAPs so that they converge to the same value, the mean response
time. In the studies we conduct in Section 4, only two IAPs are used and so
the foregoing is simplified in that we need only to regulate the difference in the
outputs from the two IAPs (a design that requires only one controller in the load
splitter).

Control Considerations for Scalable Event Processing 241

For small values of N , the controller can be derived in a manner similar
to that done in the last section. However, for larger N , more sophistication is
required. A control theory technique that is well suited to this situation is linear
quadratic regulation (LQR). LQR provides a framework for constructing optimal
controllers. [8] describes how to use LQR for the block diagram in Figure 5.

4 Experiments

This section describes experiments conducted to assess the control designs in
Section 3.

First, we evaluate the effectiveness of the flow control system in Section 3.1
for regulating free space of the result queue. The controller is implemented as
the manager of an input buffer. Every 2 sec, the controller reads the TCQ log
to obtain the current size of the result queue, and uses the PI control law to
calculate the number of events to send to the IAP over the next 2 seconds.
Tuples that are not sent remain in the input buffer.

0 100 200 300 400 500 600 700 800 900
0

1000

2000

3000

Time (sec)

T
up

le
s

pe
r

se
c

source data rate
rate to TCQ
end−to−end drop rate

0 100 200 300 400 500 600 700 800 900
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

Fig. 6. Regulation of TCQ free space using a PI controller. The reference input is 400

MB. A CPU hog is introduced at time 180. The system quickly adapts the input rate

so that free space returns to 400 MB.

Figure 6 plots the results of an experiment in which the reference input
for the result queue is 400 MB. In the figure, the decline in free space at 100
sec is the result of a TCQ start-up effect that the controller corrects in a very
short time. An input disturbance in the form of a CPU intensive application
(hereafter CPU Hog) is introduced at time 160 sec, which causes a reduction in
the TCQ throughput. However, when the CPU Hog completes at time 500, TCQ
throughput returns to its previous level. Note that from time 100 sec through
500 sec, the input load on the TCQ is greater than its maximum capacity. Even
so, the controller maintains the free space at 400 MB, and the excess load is held
on the input queue for further processing, such as load balancing.

Next we assess the load balancing controller described in Section 3.2 for use
as the load splitter in Figure 1. The testbed developed for this assessment is

242 W. Xu et al.

Load
Splitter

TCQ 1

IAP 1

TCQ 2

IAP 2

Combiner

Fig. 7. Testbed used to evaluate the load balancing controller used as a load splitter.

Boxes with solid lines are separate dual CPU computers with 1.5GB of RAM.

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

Time (sec)

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

Time (sec)

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

Fig. 8. LEFT: Average delay using a round-robin scheme to assign events to IAPs.

RIGHT: Average delay using a well designed controller.

0 50 100 150 200 250 300 350 400 450 500
0

5000

10000

Time (sec)

T
up

le
s

pe
r

se
c source data rate

rate to TCQ
end−to−end drop rate

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

Fig. 9. Performance of an incorrectly constructed load balancing controller

depicted in Figure 7. There are two IAP nodes, and all boxes with solid lines
indicate separate dual CPU computers with 1.5GB of RAM.

Figure 8 (LEFT) plots response times using a round robin scheme for the load
balancing controller. This assessment includes a disturbance in the form of a CPU
Hog that is started on one IAP node at time 160. We see that end-to-end delays
grow to be quite large. In contrast, Figure 8 (RIGHT) plots response times when
the load balancing controller is used. As in the plot on the LEFT, a CPU Hog is
started on one IAP node at time 180. The load balancing controller handles this
disturbance well, moderating the impact of this disturbance so effectively that
there is almost no detectable change in end-to-end delays.

Control Considerations for Scalable Event Processing 243

Last, we describe an experiment that we conducted by accident. Figure 9
plots the end-to-end delays for the system in Figure 7 using an incorrectly de-
signed flow controller. We see that the system is unstable in that there are
oscillations that increase in amplitude with time. At first, these characteristics
seemed to be inconsistent with our control analysis, which predicted a stable
system. Since control theory derives the controller from the model of the target
system, we re-visited the model and discovered that it failed to consider that
control actions take place in the next time interval. Correcting our models and
re-designing the flow controller resulted in the performance displayed in Figure 6.

5 Conclusions

Scaling event processing requires an event processing architecture that incorpo-
rates parallelism. Intra-event processing is easily parallelized. We propose an
architecture to support this parallelism in which intra-event processing elements
(IAPs) are replicated to scale the system to larger event input rates. We address
two challenges in this architecture. First, the IAPs are subject to overloads that
require effective flow control. Second, we need to balance the load placed on
processing elements to avoid resource bottlenecks. These challenges are further
complicated by the presence of disturbances such as administrative tasks (e.g.,
garbage collection) that reduce event processing rates. We employ control theory
to address both challenges since control theory provides a systematic approach
to design that includes considerations of disturbances. Our solution for the flow
control problem is based on regulatory control of the free space of the result
queue, a key resource in our IAP implementation. Our solution for load balanc-
ing employs a technique that transforms an apparent optimization problem into
a regulatory control problem. Studies done on a testbed system show that our
control designs provide good performance under time varying loads and distur-
bances in the form of a CPU intensive application.

One area of future research is to explore the use of techniques from adaptive
control and statistical learning theory to deal with stochastics and nonlinearities
that are more difficult to address with classical control theory. Another direction
is to expand the set of scaling experiments to gain more insight into the limita-
tions of our current designs. Last, we want to make our IAP system available to
system operators and researchers so that others can benefit from our work.

Acknowledgements

This work is in part supported by NSF grant number CNS-0509559 and Micro
award number is 04-072.

References

1. L Burns, JL Hellerstein, S Ma, CS Perng, DA Rabenhorst, and D Taylor. A
systematic approach to discovering correlation rules for event management. In
IEEE/IFIP Integrated Network Management, May 2001.

244 W. Xu et al.

2. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scal-
ability and expressiveness in an internet-scale event notification service. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 219–227, Portland, Oregon, July 2000.

3. Mike Chen, Alice Zheng, Jim Lloyd, Michael Jordan, and Eric Brewer. A statistical
learning approach to failure diagnosis. In International Conference on Autonomic
Computing (ICAC-04), New York, NY, May 2004.

4. Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A. Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In DSN,
pages 595–604, 2002.

5. Hewlett-Packard Development Company. Hp OpenView. http://www.openview.-
hp.com/, 2005.

6. IBM Corporation. Tivoli. http://www.ibm.com/software/tivoli/.
7. Microsoft Corporation. Microsoft Operations Manager. http://www.microsoft.

com/mom/.
8. Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Light-

stone, Sujay Parekh, and Christian Garcia-Arellano. Using MIMO Linear Control
for Load Balancing in Computing Systems. In American Control Conference, pages
2045–2050, June 2004.

9. Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. Wiley-IEEE Press, Aug 2004.

10. Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

11. Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the internet with PIER. In Proceedings of
the 29th VLDB Conference, 2003.

12. Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel Madden, Frederick
Reiss, and Mehul A. Shah. Telegraphcq: An architectural status report. IEEE
Data Eng. Bull., 26(1):11–18, 2003.

13. Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems, 21(2):164–206, 2003.

14. Ricardo Vilalta, Chidanand Apté, Joseph L. Hellerstein, Sheng Ma, and Sholom M.
Weiss. Predictive algorithms in the management of computer systems. IBM Sys-
tems Journal, 41(3):461–474, 2002.

15. S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust
event correlation. IEEE Communications Magazine, 34(5):82–90, 1996.

	Introduction
	Architecture
	Control Design
	Flow Control Within IAP Nodes
	Load Balancing Between IAPs

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

