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Abstract. We present a novel technique for the automatic formation of
vascular trees from segmented tubular structures. Our method combines
a minimum spanning tree algorithm with a minimization criterion of the
Mahalanobis distance. First, a multivariate class of connected junctions
is defined using a set of trained vascular trees and their corresponding im-
age volumes. Second, a minimum spanning tree algorithm forms the tree
using the Mahalanobis distance of each connection from the “connected”
class as a cost function. Our technique allows for the best combination of
the discrimination criteria between connected and non-connected junc-
tions and is also modality, organ and segmentation specific.

1 Introduction

Segmentation of vascular structures from volume images reflects several chal-
lenges. Among them, accuracy of centerline extraction as well as complex for-
mation of the vascular trees have led to powerful algorithms.

Several segmentation techniques have shown high accuracy and robustness
in extracting vascular structures from MR and CT datasets. In fact, the curve
evolution algorithm [5] produces accurate vascular segmentations by combining
the modified curvature diffusion equation (MCDE) with a level-set based tech-
nique. On the other hand, Aylward et al. [1] use a ridge traversal technique
with width estimation to extract vascular centerline and estimated radius at
each point along blood vessels. Both techniques have shown robustness to noise
and high accuracy. However, most of the vascular segmentation algorithms do
not form trees at the time of extraction but rather consider each blood vessel
independently.

Being able to visualize the vascular tree is a real motivation. In fact, neuro-
surgeons and interventional radiologists must often occlude blood vessels during
vascular procedures. The risk of stroke to the patient depends largely upon the
collateral flow provided by other parts of the circulation. It is therefore impor-
tant for the clinician to visualize vascular connections in order to make correct
decisions about vessel occlusion. Moreover, in parenchymal organs, the identifi-
cation of vascular territories is crucial for providing resection proposals as well as
for preoperatively estimating resection volumes and patient outcome [4]. Some
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recent model-to-image registration methods also rely on a vascular network to
perform a hierarchical registration strategy [2].

The most closely related work for tree creation has been done by Bullitt et
al. [3]. They have shown that by using a combination of both linear distance and
image intensity in suspected regions of connection, a tree can be formed with
high accuracy. The combination of the distance and image intensity as a cost
function for the minimum spanning tree algorithm is described by the following
weighted equation: 4 · I + d, where I is the ratio of mean intensities along the
centerline µc of a cylinder centered on the vessel junction (radius larger than
that of the child) and on the surface of that same cylinder µe such that I = µe

µc
.

Our method differs from the previous technique in that it combines multiple
criteria for connection in an optimal way using a linear discriminant strategy.
Moreover, by creating training classes, our algorithm can be made specific to a
particular modality, organ and even extraction method.

2 Methods

Our method relies on the centerline representation of a blood vessel. In fact, each
extracted blood vessel is defined as centerline points (x, y, z) with associated
radius r. The tangent t and normal plane (n1, n2) are computed using finite
differences.

2.1 Minimum Spanning Tree and Mahalanobis Distance

Our technique makes use of the minimum spanning tree algorithm based on
Prim’s method [6]. The main difficulty in forming such vascular tree lies in
defining an effective cost function for the junctions and, even with a set of
“good” criteria, it can be difficult to find an appropriate linear combination of
these values. By definition, in a tree structure, a child can only have one parent.
Moreover, a vascular network is usually formed of several trees and if those trees
overlap, i.e portal and hepatic vascular systems in the liver, it is often the case
where an automated algorithm has to make the choice between two (or more)
parents.

Figure 1 shows an example of vascular configuration with two trees. In this
case, vessel 5 can be connected to two parents and relies on the cost function to
decide the best connection between C35 and C45.

Our method provides an optimal way to combine the criteria defining junc-
tions using the Mahalanobis distance. The Mahalanobis distance is a statistic
value which measures the distance of a single data point from the sample mean
or centroid in the space of the independent variables used to fit a multiple re-
gression model. The Mahalanobis can be formulated as:

dS(x, y) =
√

(x − y)tS−1(x − y) (1)

where y is the corresponding mean from the class and S its covariance matrix.



808 J. Jomier, V. LeDigarcher, and S.R. Aylward

Fig. 1. Example of tree configuration. Vessel 5 should only have one parent. The choice
is based on the minimum Mahalanobis distance between C35 and C45.

We first define a multivariate class of connected junctions using five criteria:

1. Distance from the first point of the child vessel to the closest parent point.
2. Angle between the tangent direction of the parent point and the first point

of the selected child.
3. Ratio between the radius of the parent point and the selected child.
4. Difference between the radius of the parent point and the selected child.
5. Ridgeness, defined as the mean of the ridgnesses rn at each point from

the parent point and the first point of the selected child. rn is defined as
follows: rn = ‖d · V3‖ · λ2

λ1
· (1− λ3

λ2
) ·λ2, where d is the direction of the vessel

at that point; V3 is the eigen vector corresponding to the minimum eigen
value of the Hessian of the image intensities λ1, λ2 and λ3 the corresponding
decreasing set of eigen values.

For each connected junction in the training set, the five criterion values are
computed and define the “connected” class. A minimum spanning tree algorithm
is then performed using the Mahalanobis distance of the selected connection
criteria and the previously defined class. One can notice that the criterion values
do not have to be especially minimize - they can be maximized - as long as the
class definition and the corresponding Mahalanobis distance are computed with
the same criteria. Moreover, our algorithm does not rely on the number of criteria
or the quality of the criterion used since the linear discrimination will select the
“best” features.

One constraint of this approach is that the Mahalanobis assumes a normal
distribution of the variables. However, some of our criteria, i.e the ridgeness,
does not fulfill this assumption since the ridgeness is linearly proportional to the
significance of a connection. In order to approximate a normal distribution we use
the exponential value of the ridgeness centered on zero mean. For each ridgeness
value we actually define two values: e−rn and −e−rn in the class definition.

2.2 Robust Class Definition

The definition of the “connected” class requires a set of trained vascular trees and
corresponding dataset volumes. Each trained vascular tree is formed manually
by an expert. However, the high number of possible connections (100 to 300)
and the quality of the segmentation makes this task difficult. Therefore, we
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perform a robust algorithm to remove any outliers left in the training set. First
the multivariate class is computed using all the possible connections available.
Second, the Mahalanobis distance of each connection is checked against the
defined class. Outliers are removed if their Mahalanobis distance is more than
2σ from the mean distances.

3 Results

We have tested our algorithm on nine brain MR and nine liver CT datasets.
CT volumes are contrast enhanced 1 × 1 × 3mm3 voxels and MRA volumes are
time-of-flight data with 1 × 1 × 1mm3 voxels. The class of connected junctions
for both organs are reported in figure 2. As one can see, the connection criteria
may have large differences depending on the modality and the organ concerned.
This shows the importance of having an organ and modality specific “connected”
class. Moreover, the radius ratio in the brain connected cases is close to one and
has a small standard deviation compared to the radius ratio obtained for the
liver datasets. In fact the segmentation algorithm used [1] is less robust close
to the branching regions. This is especially true for our liver datasets where the
blood contrast tends to weaken around branch points.

To show that the class definition is reliable across datasets, we perform a
leave-one-out analysis. For each organ, the “connected” class is defined using

Criterion Mean (σ) brains Mean (σ) livers
Distance 0.534 (1.450) 3.441 (2.696)
Tangent -0.021 (0.553) 0.038 (0.604)

Radius difference 0.216 (0.338) 1.200 (1.063)
Radius ratio 1.038 (0.273) 1.701 (0.996)
Ridgeness 0.000 (0.274) 0.000 (0.186)

Fig. 2. Criteria for connected junctions for brain and liver datasets
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Fig. 3. Percentile of effective connections given a threshold for the Mahalanobis dis-
tance for nine brain MRI (left) and nine liver CT (right).
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eight vascular systems and the Mahalanobis distance is computed for each con-
nection in the remaining vasculature. Figure 3 shows the percentile of accurate
connections found given a threshold for the Mahalanobis distance. As one can
see, (a) the curves are very similar meaning that the class definition and the
Mahalanobis distance are reliable; (b) the thresholds to achieve 100% of connec-
tions are different for the brains and livers which strengthen the statement that
an organ/modality specific class is necessary.

In the next paragraph we show that our algorithm is able to select junctions
even for difficult cases in the brain and in the liver.

3.1 Difficult Cases

We found interesting to test the output of our algorithm in the only region of
the human body where the vascular system forms a circle: the circle of Willis in
the brain. In this particular case we test two junctions, J2 − 3 and J2 − 1, were
the connection effectively exists as shown in figure 4. We trained our algorithm
using the eight brain MR datasets previously presented and we computed the
Mahalanobis distance for the two junctions. The results are shown in Figure 5.

As expected, the two junctions have similar Mahalanobis distances, there-
fore we can assume that they should be both connected (or not connected).
The distance seems high compared to the class definition obtained during the

Vessel 3

Vessel 2

Vessel 1

J2-3

J2-1

Fig. 4. Circle of Willis in the brain

Criterion J2-3 J2-1
Distance 2.369 1.092
Tangent 0.334 -0.819

Radius difference 1.950 1.629
Radius ratio 1.864 2.256
Ridgeness 0.000 0.000

Mahalanobis distance 30.169 34.342

Fig. 5. Mahalanobis distance of the two junctions in the circle of Willis
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Vessel 3
J1-3

Vessel 1
Vessel 2

J2-3

Fig. 6. Difficult case within the liver where the hepatic and portal venous systems
overlap

Criterion J1-3 J2-3
Distance 2.676 1.236
Tangent -0.320 -0.769

Radius difference 1.006 1.692
Radius ratio 2.337 0.475
Ridgeness 0.001 0.316

Mahalanobis distance 1.522 10.329

Fig. 7. Mahalanobis distance of the two junctions in the liver. The distance is inversely
proportional to the probability of connection.

training stage and will be in favor of a non connected function. This is due to
the particularity of these junctions in the circle of Willis where the radius ratio
and difference values are high compared to other connections in the brain. To
test this hypothesis, we have trained and compared the junctions without the
radius ratio and difference criteria and we obtained respectively dJ2−3 = 1.99
and dJ2−1 = 2.25.

We have also tested our method on a difficult case within the liver where
the hepatic and portal venous systems overlap. Figure 6 shows the region of
interest where the vessel 3 can be connected to either vessel 1 or vessel 2. In
fact, due to a bad segmentation of vessel 3, a standard algorithm would make
J2−3 the preferred connection over J1−3. However, the computed Mahalanobis
distances, shown in figure 7, for both junctions are reporting J1 − 3 to be the
selected connection and not J2−3. By looking at the image volume, and also the
ridgeness values, J1−3 appears to be the real connection in this case as predicted
by our algorithm. From the class definition shown in the previous section, one
can see that the ratio between the radius of the child and the radius of the
parent is not a high significant criterion (µ = 1.701, σ = 0.996), therefore the
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linear discriminant will be less sensitive to this particular feature. Moreover, as
one can notice, the value of the non-connected junction is close to the threshold
defined in the previous section.

4 Discussion and Conclusions

We have presented a novel algorithm for automatic vascular tree formation based
on the Mahalanobis distance. The main advantages of our algorithm are (a)
the optimal combination of discrimination parameters and (b) the fact that
the defined class from these criteria can be modality, organ and segmentation
specific. We have also shown that the class definition is consistent among datasets
based on the Mahalanobis distance measure and that our algorithm can detect
real branching with high accuracy.

One of the weaknesses of our approach is that it relies on some information
regarding the segmentation technique. If the segmentation predicts a radius far
from the real radius, our method may fail. However, the other criteria, such as
the tangent direction and the ridgeness can help in this case. We are currently
working on extending our approach to include direction of the blood flow. This
work has been developed using the Insight Toolkit [7].

This work is funded in part by the Whitaker Foundation (TF-04-0008) and
the NIH-NIBIB (R01 EB000219).
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