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Abstract. We propose a novel method for quantitative interpretation of
uncalibrated optical images which is derived explicitly from an analysis
of the image formation model. Parameters characterising the tissue are
recovered from images acquired using filters optimised to minimise the
error. Preliminary results are shown for the skin, where the technique
was successfully applied to aid the diagnosis and interpretation of non-
melanocytic skin cancers and acne; and for the more challenging ocular
fundus, for mapping of the pigment xanthophyll.

1 Introduction

Optical imaging methods have recently assumed a much more important role
in medicine: light is non-ionising and relatively safe; and increasingly powerful
computers make it possible to implement detailed models of image formation.
These can provide principled means of relating image values to physical prop-
erties of the tissues being imaged. A common problem is the interpretation of
images taken under conditions of varying illumination. The magnitude of light
reaching the detector depends on many factors not related to tissue proper-
ties, including the magnitude, direction and spectral composition of the incident
light; the object geometry; the presence of other objects in the scene, etc. In
some cases these factors can be controlled and compensated for by calibrating
against objects with known reflectance, but this is impossible in many cases. We
show how a physical model of image formation can be used to derive quantitative
properties of tissue from uncalibrated optical images.

Earlier work [1,2] has laid down the foundations for a physics-based image
interpretation method capable of deriving quantitative parameters characteris-
ing tissue histology from in vivo multi-spectral images. The method was first
applied to skin imaging, and shown to be successful in the early detection of
melanoma [1,3]. Although the principles of that work are generic, many human
tissues present major additional challenges in comparison to the skin.

The existing approach assumes that the absolute reflectance of the tissue can
be deduced from a simple measurement. This is usually accomplished by placing
an object of known reflectance (a “standard”) alongside the tissue, but this
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is inappropriate where the image is of a non-planar object; the illumination is
spatially non-uniform; or when the tissue under investigation cannot be accessed
in order to place the standard. We have developed a method for compensating for
spatial variations in illumination and geometry in an image. The method does
not require any form of reflectance standard to be used and is quite general.
We provide objective criteria which ensure that parameter recovery from such
uncalibrated images is both unique and of sufficient accuracy.

2 Compensating for Geometric Variations in Illumination

The proposed technique is based upon an analysis of the imaging process. When
capturing an image on a CCD-based device, using a filter with transmittance
Fn(λ) at wavelength λ, the signal recorded at position x is

in(x) = C

∫
Λ

I0(λ,x)R(λ,x)Fn(λ)Q(λ)dλ, (1)

where Q(λ) is the quantum efficiency of the CCD, I0(λ,x) defines the illuminant,
and R(λ,x) is the reflectance of the tissue. The constant C scales the signal
onto the range of the detector and is determined by factory calibration. We have
assumed that Fn(λ) and Q(λ) are spatially uniform. Clearly the reflectance of
the tissue varies with position as its composition changes, and the intensity
of illumination can also vary spatially due to surface irregularities, beam edge
effects or surface curvature. We can generally assume all variations in system
geometry can be included in I0(λ,x), and that these variations are independent
of wavelength in diffuse imaging. We can therefore write I0(λ,x) = A(x)S(λ),
a product of spatial A(x) and spectral S(λ) terms. The geometric properties of
the system are then contained solely in A(x). Substituting for I0 in Eqn. (1),
and noting that A(x) does not depend on λ we obtain

in(x) = CA(x)
∫

Λ

S(λ)R(λ,x)Fn(λ)Q(λ)dλ. (2)

All geometric information is contained in the pre-factor to the integral. We
may therefore eliminate system geometry by considering quantities qmn(x) =
im(x)/in(x), the so-called image quotients. In the next section we will define
objective criteria for the selection of image quotients, and show how they can be
used to recover tissue parameters from appropriate images.

3 Modelling of Uncalibrated Imaging

In Ref. [2], Preece and Claridge described the process of image formation as a
sequence of mappings. They assumed that the optical properties of tissue can
be described by a vector of K parameters p = {pk}k=1...K , p ∈ P , where P
is the space of all possible parameter vectors for a given tissue type. The first
stage in the imaging process is the formation of the reflectance spectrum of the
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tissue: r = r(λ), r ∈ R, where R is the space of all possible reflectance spectra.
We define a mapping a : P �→ R describing the relationship between tissue
parameters and spectral reflectance. This mapping can be realised using Monte
Carlo simulation [4].

Optical imaging devices typically acquire images by filtering the remitted
spectra to generate a single image value per filter. For N filters {Fn(λ)}n=1...N ,
an image vector i = {in}n=1...N , i ∈ I is recorded, where I is the space of
all possible image vectors for a given tissue. This is represented by a mapping
b : R �→ I, defined by Eqn. (2).

We now introduce an additional step. Given an N -component image vec-
tor, we can form an (N − 1)-component vector of independent image quotients,
q = {qm}m=1...N−1 = {im/iN}m=1...N−1, q ∈ Q. The image quotients are inde-
pendent of surface and illumination geometry, and remove the need for calibra-
tion. We represent this final stage as a mapping c : I �→ Q. The process of form-
ing image quotients is then the composite function f = a◦b◦c : P �→ Q, relating
the composition of the object described by a parameter vector p to image quo-
tients q formed from an image captured by a set of optical filters {Fn(λ)}n=1...N .
We can now, in principle, construct an inverse mapping f−1 : Q �→ P which al-
lows us, given a vector of image quotients q, to deduce the vector of parameters
p that describes the tissue at the point of interest.

There are two important criteria which f and f−1 should meet: f should
be a unique, one-to-one (bijective) mapping between points in P and points
in Q; and when applied to a vector q, f−1 should compute the corresponding
parameter vector p with sufficient accuracy. Preece and Claridge [2] established
objective criteria to ensure that these conditions are met, and our analysis is
similar. We assume that the spectrum of the illuminating source S(λ) and the
quantum efficiency of the detector Q(λ) are known, and that we have control
over the filters {Fn(λ)} used to acquire the image. We first check whether f is
bijective using the criteria defined in Sect. 3.1. Sets of filters which do not meet
this requirement are discarded. We then use an evolutionary algorithm [5] to
select {Fn(λ)} such that they minimise the mean error with which parameters
can be computed from image quotients. This is described in Sect. 3.2.

3.1 Uniqueness of the Mapping

To determine the uniqueness of the forward mapping f , we compute the Jacobi
matrix J with components Jij = ∂qi/∂pj at each point at which the model is
defined. We then compute the Jacobian J = det(J), and test the sign of J at all
points in P . The mapping f is bijective if J is found to be of constant sign (and
non-zero) throughout P . An important consequence of this is that the number
of image quotients must equal the number of object parameters, N − 1 = K.

3.2 Minimisation of Error in f−1

Minimisation of error is essential in medical image analysis. The accuracy of a
clinician’s diagnosis depends on the quality of information that analysis of an
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image provides. We have identified three main sources of error: errors in f ; errors
in the imaging process; and errors in the construction of f−1.

Errors in f can arise from several sources. The data used to characterise the
tissue may not be known accurately; the characteristics of the imaging equipment
may not be known exactly; and the model of tissue reflectance may not be
deterministic. The main source of error in the imaging process is thermal noise
in the CCD. This leads to a small error in the image values recorded by the
camera, and hence in the recorded image quotients. Finally, f−1 cannot generally
be computed exactly and an approximation is necessary (see Sect. 3.3). Each of
these errors reduces the accuracy of the recovered tissue parameters. It is a simple
exercise in error propagation to compute the error which which parameters can
be recovered, given these known sources of uncertainty. The resulting measure
of error is a function of the set of filters chosen, and is used in the optimisation
process to determine optimal filters for the problem.

3.3 Construction of the Inverse Function

When processing an image using these ideas, an explicit implementation of f−1

will be required, but in general, we cannot compute f−1 directly. The forward
model f is defined only at a finite number of points in P , and there are a finite
number of points in Q. A natural approach to the construction of f−1 is to fit
a multi-dimensional surface to the data, but both f and f−1 are often highly
nonlinear, and finding an appropriate functional form for the surface is very hard.
For the two-dimensional model of skin discussed in Sect. 4, a standard surface
fitting algorithm provided good results, but models with higher dimensionality
have proven to be much more difficult. In these cases, acceptable theoretical
results have been obtained using a neural network.

4 Application: Non-contact Skin Imaging

The original parameter recovery method developed for skin imaging by Cotton
and Claridge [1] requires calibrated, illumination-invariant image data. This is
fairly simple to achieve for small areas of the skin by contact photography, but
larger, curved or uneven surfaces cannot be imaged in this way.

We have implemented a system for uncalibrated non-contact imaging of the
skin and have carried out a preliminary evaluation for a number of medical condi-
tions including non-melanocytic skin cancers and acne. For practical reasons we
have based the system on an off-the-shelf digital camera which involved making
small departures from the generic interpretation scheme described above.

An accurate optical model of the skin requires three parameters: concentra-
tion of epidermal melanin, concentration of dermal blood and thickness of the
dermal layer [6]. Appropriate ranges for each of these parameters were taken
from Ref. [6]. For each parameter vector, the mapping a : P �→ R was im-
plemented using a Monte Carlo simulation. The standard RGB camera used
provides only three filters {Fn(λ)} = {R, G, B}, allowing only two of the three
parameters to be recovered. Blood and melanin were chosen because of their
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clinical importance, but also because of their significantly greater local variabil-
ity in comparison with collagen. A constant value of collagen of 0.2mm was
assumed [6]. The thickness of collagen does change the absolute magnitude of
the reflectance spectrum, but has only a small effect on the relative magnitudes
of the image quotients. Since {Fn(λ)} were predefined, the optimisation was
reduced to selecting one of the R, G or B bands to play a role of the denomina-
tor in the image quotients, and testing whether the uniqueness of the mapping
is preserved. The quotients B/R and G/R were found to give the best unique
mapping. The correctness of this mapping was tested by comparison with the
original method, which does require calibration.

The imaging system uses a Cannon G5 Powershot digital camera capable
of taking images ranging in size from half-body to 5mm patches. Illumination
is provided by a ring flash mounted in the camera lens plane with a system
of polarising filters to prevent flash artifacts. Images are taken under ambient
illumination. Parametric maps are computed in ∼ 2 seconds on a standard PC.
Two pilot studies described here investigate the pre-therapeutic characterisation
of non-melanocytic skin lesions, and the objective assessment of severity of acne.

Non-melanocytic skin cancers. Basal Cell Carcinoma (BCC) and Squamous
Cell Carcinoma (SCC) are the most common forms of skin cancer. These can
be difficult to differentiate from non-cancerous and non-invasive lesions. A non-
invasive alternative to biopsy would reduce the likelihood of unnecessary surgery
and patient trauma. In a pilot study 150 images of non-melanocytic skin lesions
were obtained and parametric maps of blood and melanin were examined by a

Fig. 1. First row: an infiltrative BCC, (a) colour image; (b) blood map; (c) melanin
map. The lesion (dark arrow in (a)) shows increased vascularity and tortuous engorged
vessels in (b). Two nearby lesions (seborrhoeic keratoses, marked by white arrows),
show no increase in vasculature (b), and their pigment content contrasts with the non-
pigmented BCC in (c). Second row: a moderately differentiated SCC: (a) colour image;
(b) blood map; (c) melanin map. A nodular area (arrow in (a)) is highly vascular (arrow
in (b)), possibly reflecting tumour activity. Low melanin values in (c) demonstrate the
non-pigmented nature of this lesion.
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Fig. 2. Acne Lesions. (a) Colour photograph; (b) parametric map of blood; (c) extent
of the lesions identified from (b) and overlaid on the original photograph.

dermatologist for diagnostically useful features. The tumour vascularity, clearly
visible in the blood map shown in Fig. 1b (second row), was identified as a highly
relevant sign of BCC. A combination of features in blood and melanin maps was
useful in eliminating suspicious lesions as non-cancerous (Fig. 1, first row). An
in-vivo examination of these histological, diagnostically relevant signs of cancer
is at present not possible in any other way.

Acne. In acne, bacteria caught in the skin pores causes an inflammatory skin
reaction. The treatment depends on the severity and extent of the condition,
however the assessment of these factors is highly subjective. In a small study
involving 20 patients, clinical scores were compared with scores derived from
parametric maps of the blood distribution. The ’extent’ score was computed as
a percentage of skin with blood levels above the mean in the region of interest
(outlined in Fig. 2c). The ’severity’ score of the inflammation was computed as
the mean of the blood level values in the affected area. The correlation between
clinical and computer-derived scores was R2 = 0.82 for the severity and R2 =
0.8 for the extent, indicating good agreement.

It should be stressed that values recorded in the parametric maps correspond
to real physical quantities. For example blood levels can be expressed in units
of mmol/L. For this reason both, the ’extent’ and ’severity’ scores, are truly
objective measures of inflammation which can be compared over time or over a
population of patients. At present there are no other methods, neither clinical,
nor photographic, capable of such objective assessment.

5 Application: Ocular Fundus Imaging

Age-related macular degeneration (ARMD) causes irreversible sight loss in el-
derly patients. Early identification may facilitate preventative treatments, but
at present there are no objective screening methods. The pigment xanthophyll
is thought to play a protective role in ARMD and decreasing levels may indicate
the onset of the disease. Quantitative estimates of the pigment level may be of
considerable clinical value. This section describes work in progress on quantita-
tive interpretation of fundus images.

The model of fundus reflectance is described by five parameters: RPE
melanin, choroidal blood, choroidal melanin, xanthophyll and retinal blood,



Model-Based Parameter Recovery from Uncalibrated Optical Images 515

Fig. 3. (a) Projection of the model (black points) and image (gray points) onto the q1-
q2 subspaces, where q1 = i(507nm)/i(611nm), q2 = i(525nm)/i(611nm). (b) A sample
fundus image in the band centred at 507nm. (c) Distribution of xanthophyll in a healthy
human subject recovered from fundus images.

based on the model proposed by Preece and Claridge [7]. Other properties of
the tissue were assumed to be constant. The parameters were discretised within
their respective ranges and tissue reflectance for each parameter vector was com-
puted using a Monte Carlo simulation. The recovery of five parameters requires
six images, and the optimisation procedure found that the best unique mapping
was provided by filters with central wavelengths 507nm, 525nm, 552nm, 585nm,
596nm with the filter used in the denominator of the image quotients located at
611nm.

Xanthophyll absorbs light at λ < 534nm, and it is possible to recover its
distribution using the quotients at 507nm, 525nm and 552nm. Fig. 3a shows
an example of the relationship between the model vectors and image quotient
vectors in a projected view. Images from twelve normal subjects were taken
using a standard fundus camera coupled to a Retiga EXi monochrome camera
and a VariSpec programmable LCD filter. The VariSpec filter was programmed
to implement the selected filters.

When applied to a normal subject, the inverse mapping yields the distribution
of xanthophyll shown in Fig. 3c. The pigment level shows a significant increase
near the fovea, which is in agreement with the accepted distribution [8]. Areas
showing no xanthophyll include the optic disk, which is not modelled in the
current implementation, and large veins, which obscure the underlying tissue.
Values of xanthophyll range from zero (in the black regions) to 0.6 mmol/L in
the white regions. To our knowledge this is the first time that the distribution
of a single ocular pigment has been deduced by digital imaging and computer
modelling. These results are very encouraging and work is in progress to produce
parametric maps showing the distribution of the remaining model parameters.

6 Discussion and Conclusions

We have developed a generic method for quantitative interpretation of optical
images. The method uses image quotients to effectively normalise the intensity
of illumination, allowing objects with complex geometries and/or large areas to
be interpreted. This is similar to ”discounting the illuminant”, a process used
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to normalise pixel values prior to image segmentation and classification [9,10].
In this paper we have shown for the first time that it is possible to carry out
quantitative analysis of tissue composition from uncalibrated images. This is a
far more ambitious and difficult task than classification, and the merits of quan-
titative image interpretation methods in medical imaging are well recognised. A
clinically important practical advantage of our method is that it does not require
the use of calibration patches and can be used for non-contact imaging. This is
vital when studying, for example, large burns, where the area of interest is likely
to be highly sensitive to the touch and prone to infections.

The theoretical bases and computational methodology of our method are
truly generic. We have demonstrated their successful application to aid the di-
agnosis and interpretation of several skin conditions and to compute the distri-
bution of the pigment xanthophyll in the ocular fundus. The same method has
also been applied to problems in x-ray astronomy [11], and fluorescein imaging
of cancer cells [12] . We anticipate that in the future this work will yield much
insight into the optical imaging of biological tissues in general, and that it will
lead to the development of clinically useful systems.
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