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Abstract. A 4D image registration method is proposed for consistent estimation 
of cardiac motion from MR image sequences. Under this 4D registration 
framework, all 3D cardiac images taken at different time-points are registered 
simultaneously, and motion estimated is enforced to be spatiotemporally 
smooth, thereby overcoming potential limitations of some methods that typi-
cally estimate cardiac deformation sequentially from one frame to another, in-
stead of treating the entire set of images as a 4D volume. To facilitate our image 
matching process, an attribute vector is designed for each point in the image to 
include intensity, boundary and geometric moment invariants (GMIs). Hierar-
chical registration of two image sequences is achieved by using the most dis-
tinctive points for initial registration of two sequences and gradually adding 
less-distinctive points for refinement of registration. Experimental results on 
real data demonstrate good performance of the proposed method in registering 
cardiac images and estimating motions from cardiac image sequences. 

1   Introduction 

Heart attack, stroke and other cardiovascular diseases have been the leading cause of 
death since 1919 [1]. Importantly, cardiovascular disease kills more Americans than 
the next seven causes combined, including cancer. Cardiac imaging techniques were 
developed for providing qualitative and quantitative information about the morphol-
ogy and function of the heart [2]. In particular, spatiotemporal imaging is a valuable 
tool for understanding cardiac motion and perfusion, and their relationship with the 
stages of disease. For assisting the diagnosis and treatment of cardiac diseases, auto-
mated methods are needed to analyze a large set of cardiac images and to extract 
clinically relevant parameters. 

Cardiac motion estimation is an important step for quantification of the elasticity 
and contractility properties of the myocardium, related to the regional function of 
heart. In the setting of ischemic heart disease, localized regions with abnormal motion 
are related to the existence of infarcted or hibernating segments, the function of which 
has been affected by insufficient tissue microcirculation. Extensive research has 
shown that regional function measures, i.e., wall-thickening, strain, and torsion, may 
be earlier sub-clinical markers for examining left ventricular dysfunction and myo-
cardial diseases, although ventricular mass, volume, and ejection fraction are consid-
ered as a standard for evaluating global function of heart [3]. 
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Many motion estimation methods have been developed for quantification of the de-
formation of regional myocardial tissue, and they fall into three categories. The first 
category of methods tracks invasive or noninvasive markers in cardiac images. Im-
planting invasive markers into the myocardium tends to influence the regional motion 
pattern of the wall muscle. Accordingly, MR tagging was developed to provide non-
invasive mathematical markers inside the myocardium, which can deform with myo-
cardial motion [4]. MR imaging and especially tagged MR are currently the reference 
modalities to estimate dense cardiac displacement fields with high spatial resolution. 
The deformation fields, as well as the derived motion parameters such as myocardial 
strain, can be determined with accuracy [5,6]. The second category of methods uses 
segmentation of the myocardial wall, followed by geometrical and mechanical model-
ing using active contours or surfaces to extract the displacement field and to perform 
the motion analysis [5,7,8]. For matching two contours or surfaces, curvatures are 
frequently used to establish initial sparse correspondences, followed by the dense 
correspondence interpolation in other myocardial positions by regularization or me-
chanical modeling [5,9]. The third category of methods uses energy-based warping or 
optical flow techniques to compute the displacement of the myocardium [10-12]. 
There also exists a method taking advantages of both the second and the third catego-
ries, i.e., tracking the cardiac boundaries by image curvatures [13]. Recently, 4D 
models are also proposed for cardiac registration and segmentation [14,15,16].  

We propose a 4D deformable registration method for consistent motion estimation 
from 3D cardiac image sequences. The main premise of the proposed method is that, 
if suitable attribute vectors can be designed to serve as morphological signatures for 
distinctive points in a cardiac image sequence, then by hierarchically matching those 
attribute vectors along with appropriate regularization we can yield an accurate esti-
mation of cardiac motion. Also, by integrating all temporal cardiac images into a 
single 4D registration framework, it is possible to estimate temporally consistent 
cardiac motion, since the constraints of temporal smoothness and consistency can be 
performed concurrently with the image registration procedure.  

2   Method 

2.1   Formulating Motion Estimation as Image Registration  

Cardiac motion estimation is a problem of finding a transformation to describe how 
each point x in the heart moves over the time t. If each point x in the image at a cer-
tain time-point can be related to its corresponding position in the images at other 
time-points by an image registration method, cardiac motion can be immediately 
estimated. Thus, for estimating cardiac motion from end-diastole to other times in a 
periodic sequence of N 3D images, i.e., }1,{),x( NtItI t ≤≤=  with I1 as an end-
diastolic image, we need only to register end-diastolic image I1 to images at other 
time-points.  

In order to use a 4D image registration for simultaneously estimating the motion 
from the end-diastolic image I1 to all other time-points {It}, we generate a new 4D 
image, i.e., a new image sequence },...,{),( 11 IItT =x , which repeats the end-diastolic 
image I1 as images at N different time-points (Fig 1). Thus, by registering the 4D 
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images I(x,t) to T(x,t) via a spatial transformation h(x,t), we can estimate motion for 
each point x in the end-diastolic I1 to all other time-points in a cardiac sequence. No-
tably, the transformation h(x,t) is restricted to 3D spatial deformations at the same 
time-point, since no temporal differences exist in the generated image sequence T(x,t) 
and thus no need to consider temporal variations. 

I1 I1 I1

I1 Ii IN 

T(x,t) 

I(x,t) 

h-1(x,t)h(x,t) 

 

Fig. 1. Formulation of cardiac motion estimation as a 4D image registration problem 

2.2   Attribute Vector 

In order to register two image sequences accurately, we design for each point a mor-
phological signature, i.e., an attribute vector a(x,t), for the purpose of minimizing the 
ambiguity in image matching and correspondence detection during the deformable 
registration procedure. Each attribute vector includes not only image intensity, but 
also boundary and Geometric Moment Invariants (GMIs) [17], all of which are com-
puted from the 3D spatial images. For generated image sequence T(x,t), we need only 
to compute attribute vectors for one 3D image and other identical images just take the 
same set of attribute vectors. GMIs are computed from different neighborhood sizes, 
and are concatenated into a long attribute vector. GMIs at a particular scale are calcu-
lated by placing a spherical neighborhood around each voxel and calculating a num-
ber of parameters that are invariant to rotation. The detailed definitions for attribute 
vectors and their similarities are the same as in [17].  

2.3   Energy Function 

The 4D image registration is completed by hierarchically matching attribute vectors in 
the two image sequences. To make the registration independent of which of the two 
sequences is treated as the template [18,17], the energy that evaluates the match of 
two image sequences should be symmetrically designed for two image sequences 
under registration. That means, both the forward transformation h(x,t) and backward 
transformation h-1(x,t) should be evaluated in a single energy function, and forced to 
be consistent with each other.  

To allow the registration algorithm to focus on different sets of image points adap-
tively during different stages of image registration, each point should have its own 
energy term and the whole energy function should be a weighted summation of all 
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points’ energy terms. Therefore, by hierarchically assigning those weights according 
to the distinctiveness of attribute vectors, i.e., assigning large weights for the energy 
terms of the points with distinctive attribute vectors (such as points with high curva-
tures along the left ventricular border) and zero weights for the energy terms of other 
points, we can focus on the most suitable points to actively drive the image registra-
tion. Effectively, this procedure approximates what would be a very high-dimensional 
(equal to the number of points in the two image sequences) cost function, by a signifi-
cantly lower-dimensional function of only the active points. This latter function has 
few local minima, because it is a function of the coordinates of active points, for 
which relatively unambiguous matches can be found. Therefore, using this strategy, 
we can speed up the performance of image registration and also reduce the chances of 
local minima, which in part result from ambiguities in determining the matching pairs 
of points. 

Also, the transformation h(x,t) should be smooth spatially and temporally. Since the 
image sequences are periodic, i.e., the first image I1 and the last image IN are also 
temporal neighbors as indicated by solid arrows in Fig 1, the temporal smoothness 
constraint should be applied between the first and the last images in the periodic se-
quence. In this way, after completing 4D image registration, it is ensured that each 
point x moves smoothly along the temporal direction from the end-diastolic image I1 
to other time-points, and importantly moves back to its original position since the first 
images respectively in the two sequences are identical and transformation between 
them is thus forced to be exactly zero during the entire registration procedure.  

By considering all of above-described requirements, the energy function that our 
4D registration algorithm minimizes is defined as follows:  

SCBF EEEEE +++= , 

where  

( ) ( )∑∑ ∑
= ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

t tn
ITTF hdtE

1 ),(),(

)),((),,(,
x xz

zazax
τ

ττω  

( ) ( )∑∑ ∑
= ∈

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

t tn
ITIB hdtE

1 ),(),(

1 ),()),,((,
x xz

zazax
τ

ττω  

( ) ( )∑∑ ∑
= ≠∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

t ttn
IITC hthdtE

1 ),,(),(

)),(()),,((,
x xz

zazax
ττ

τε  

TemporalSpatial
SSS EEE ⋅+⋅= βα     

There are four energy terms in this energy function. The first term EF is defined on 
the forward transformation h(x,t), and measures the similarity of attribute vectors 
between each point in the sequence T(x,t) and its corresponding one in the sequence 
I(x,t). The second energy term EB is similar to the first term, while it is defined on 
the inverse transformation h-1(x,t) to make sure that each point in the sequence I(x,t) 
also finds its best matching point in the sequence T(x,t). Specifically, in the first 
energy term, the importance of each point (x,t) in the image registration is deter-
mined by its corresponding parameter ωT(x,t), which is designed to be proportional 
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to the distinctiveness of this point’s attribute vector aT(x,t). The match for each point 
(x,t) is evaluated in its 4D (3D spatial and 1D temporal) neighborhood n(x,t), by 
integrating all differences between the attribute vector aT(z,τ) of every neighboring 
point (z,τ) and the attribute vector aI(h(z,τ)) of the corresponding point h(z,τ) in the 
sequence I(x,t). The difference of two attribute vectors d(·, ·) ranges from 0 to 1 [17]. 
The size of neighborhood n(x,t) is large initially and decreases gradually with the 
progress of the deformation, thereby increasing robustness and accuracy of deform-
able registration.  

The third energy term EC measures the attribute-vector matching of corresponding 
points in different time-point images of the sequence I(x,t). Notably, for each point 
(x,t) in the sequence T(x,t), its corresponding point in the sequence I(x,t) is h(x,t). 
Since the sequence T(x,t) has identical images at different time-points, i.e., same 
end-diastolic image, points }1),,({ Ntt ≤≤x  are N corresponding points in the se-
quence T(x,t); accordingly, N transformed points }1),,({ Ntth ≤≤x  are the established 
correspondences in the sequence I(x,t). In this way, we can require the attribute vec-
tor aI(h(x,t)) of a point h(x,t) in the image I(x,t) be similar to the attribute vector 
aI(h(x,τ)) of its corresponding point h(x,τ) in the neighboring time-point image 
I(x,τ). This requirement is repeated for each position (z,τ) in a 4D neighborhood 
n(x,t), and the total attribute-vector difference is weighted by εT(x,t) to reflect the 
importance of a point (x,t) in the sequence T(x,t). The use of this energy term poten-
tially makes it easier to solve the 4D registration problem, since the registration of 
cardiac images of neighboring time-points is relatively easier and thus it can provide 
a good initialization for 4D image registration by initially focusing only on energy 
terms of Ec and ES. 

The fourth energy term ES is a smoothness constraint for the transformation h(x,t). 
For convenience, we separate this smoothness constraint into two components, i.e., a 
spatial smoothness constraint Spatial

SE  and a temporal smoothness constraint Temporal
SE , 

and these two constraints are linearly combined by their own weighting parameters α 
and β. For the spatial smoothness constraint, we use a Laplacian operator [17] to 
impose spatial smoothness. Notably, all images in the sequence T(x,t) are identically 
the end-diastolic image. Thus, for registering two image sequences T(x,t) and I(x,t), 
we have to register the end-diastolic image with the end-systolic image by a large 
nonlinear transformation, which might be over-smoothed by the Laplacian operator. 
To avoid this over-smoothing problem, we use a multi-resolution framework, i.e., 
multi-level transformations, to implement our registration algorithm. Each resolution 
will estimate its own level of transformation based on the total transformations esti-
mated from the previous resolutions, and the final transformation used to register two 
image sequences is the summation of all levels of transformations respectively esti-
mated from all resolutions. Notably, the Laplacian operator is only allowed to smooth 
the current level of transformation being estimated in the current resolution, which 
effectively avoids smoothing the transformations estimated from the previous resolu-
tions. As for the temporal smoothness constraint, we use a Gaussian filter to obtain an 
average transformation in a 1D temporal neighborhood around each point (x,t), and 
force the transformation on this point (x,t) to follow its average transformation in 
temporal neighborhood.  
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3   Results 

The first experiment is designed to show the performance of the proposed method in 
estimating cardiac motion and deformation fields. There are 33 different time-point 
images in total, taken from a cardiac cycle of a normal volunteer, with the first time-
point at end-diastole. Some selected cardiac images are shown in Fig 2(a). With the 
transformations established between end-diastolic frame and other frames, we can 
warp the end-diastolic image to any of the other frames, as shown in Fig 2(b), which 
becomes very similar to the corresponding frame, partly indicating the accuracy of 
our registration algorithm. Also, from Fig 2(c) that shows the deformation fields 
around the left ventricle at end-diastole to other time-points, we can observe that the 
deformation fields are very smooth in each time-point, and consistent over time.  

The accuracy of motion and deformation estimation can also be reflected by the 
performance of the boundary tracking/labeling results provided by the 4D registration 
method. For example, if the boundaries of interest have been labeled in the end-
diastolic image, we can warp these labeled boundaries to other time-points and obtain 
the boundary tracking/labeling results at other time-points. Fig 3 shows our semi-
automatically labeled boundaries of interest as red contours in two images with black 
borders, respectively called long-axis and short-axis views at end-diastole. The track-
ing/labeling results at other time-points are shown by red contours in other images in 
Figs 3(a) and 3(b). Moreover, we can display the temporal views of short-axis lines to 

 

     
(a) Original images 

                                
                         (b) The end-diastolic image warped to other time-points 

                              
                    (c) Estimated deformations around the endocardial border of left ventricle 

Fig. 2. Estimating deformations from end-diastole to other time-points. (a) 5 selected cardiac 
images, (b) the results of warping end-diastole to other time-points, (c) deformations around 
left ventricle, estimated from the end-diastolic image and cropped here for clear display.  
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(a) Long-axis view 

     
(b) Short-axis view 

Fig. 3.  Tracking/labeling the boundaries of interest in a cardiac sequence 

 
 

                    
 

                                      (a)                                                                                        (b) 

Fig. 4. Tracking/labeling results in temporal views of two short-axis lines. The red colors indi-
cate the labeling results on the left and right ventricular boundaries.   
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Fig. 5. Left ventricular volume of a selected subject, segmented by our algorithm (solid curve) 
and by hand (dotted curve) over all frames in a cardiac cycle 

show the temporal tracking/labeling results. As shown in Fig 4, the proposed algo-
rithm is able to track/label the two short-axis lines over time.  

We also validated our method on a small dataset of 3D cardiac image sequences, by 
comparing the left-ventricular volumes obtained respectively by manual and auto-
matic segmentations. Average volume error is 3.37%, with standard deviation 2.56%; 
and average volume overlap error is 7.04%, with standard deviation 3.28%. Correla-
tion coefficient between manual and automatic segmentations is 0.99. Fig 5 shows the 
comparison on a selected subject over a whole cardiac cycle.  

 1 19 1613 7 

 1 19 1613 7 
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4   Conclusion 

We have presented a 4D deformable registration method for estimation of cardiac 
motions from MR image sequences. The experimental results show consistent motion 
estimation by our method. This performance is achieved by formulating the cardiac 
motion estimation as a 4D image registration problem, which simultaneously consid-
ers all images of different time-points and further constrains the spatiotemporal 
smoothness of estimated motion fields concurrently with the image registration pro-
cedure. Also, compared to other motion estimation methods that use very simple 
features such as curvature of the left ventricular border, our method uses a rich set of 
attributes, including GMIs, to distinguish the corresponding points across different 
time-points, thereby maximally reducing ambiguity in image matching. Finally, by 
hierarchically selecting the active points to match, based on the distinctiveness de-
grees of their attribute vectors, our registration algorithm has more opportunities to 
produce a global solution for motion estimation.   

Our 4D registration method for cardiac applications needs extensive validation in 
the future, by using both simulated and real data. For simulated data, we will validate 
the accuracy of our registration algorithm by directly comparing our estimated mo-
tions with ground-truth motions that we simulate. For real data, we will compare the 
algorithm-detected correspondences with the manually placed correspondences in the 
different frames, in order to validate the motions estimated.  
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