
Resolving Observability Problems in Distributed

Test Architectures

J. Chen1, R.M. Hierons2, and H. Ural3

1 School of Computer Science, University of Windsor,
Windsor, Ontario, Canada N9B 3P4

xjchen@uwindsor.ca
2 Department of Information Systems and Computing, Brunel University,

Uxbridge, Middlesex, UB8 3PH United Kingdom
rob.hierons@brunel.ac.uk

3 School of Information Technology and Engineering, University of Ottawa,
Ottawa, Ontario, Canada K1N 6N5

ural@site.ottawa.ca

Abstract. The introduction of multiple remote testers to apply a test or
checking sequence in a test architecture brings out the possibility of con-
trollability and observability problems. These problems often require the
use of external coordination message exchanges among testers. In this
paper, we consider constructing a test or checking sequence from the
specification of the system under test such that it will be free from these
problems and will not require the use of external coordination messages.
We give an algorithm that can check whether it is possible to construct
subsequences from a given specification that eliminate the need for using
external coordination message exchanges, and when it is possible actu-
ally produces such subsequences.

Keywords: Finite state machine, testing, test architecture, observabil-
ity, controllability.

1 Introduction

In a distributed test architecture, a tester is placed at each port of the system un-
der test (SUT) N to apply an input sequence constructed from the specification
M of N . When N is a state based system whose externally observable behaviour
is specified as a finite state machine (FSM) M , the input sequence applied to N
is called a test sequence [13,14] or a checking sequence [6,8,10]. The application
of a test/checking sequence in the distributed test architecture introduces the
possibility of controllability and observability problems. These problems occur
if a tester cannot determine either when to apply a particular input to N , or
whether a particular output from N has been generated in response to a specific
input, respectively [12].

It is nesessary to construct a test or checking sequence that causes no con-
trollability or observability problems during its application in a distributed test

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 219–232, 2005.
c© IFIP International Federation for Information Processing 2005

220 J. Chen, R.M. Hierons, and H. Ural

architecture (see, for example, [1,5,7,9,11,15–17]). For some specifications, there
exists such an input sequence in which the coordination among testers is achieved
indirectly via their interactions with N [14,12]. However, for some other speci-
fications, there may not exist an input sequence in which the testers can coor-
dinate solely via their interactions with N [1,15]. In this case it is necessary for
testers to communicate directly by exchanging external coordination messages
among themselves over a dedicated channel during the application of the input
sequence [2].

It is argued that both controllability and observability problems may be over-
come through the use of external coordination messages among remote testers
[2]. However, there is often a cost associated with the use of such messages which
is composed of the cost of setting up the infrastructure required to allow the ex-
change of such messages and the cost of delays introduced by exchanging these
messages. It is thus desirable to construct a test or checking sequence from the
specification of the system under test such that it will not cause controllability
and observability problems and will not require the use of external coordination
message exchanges.

In [4] we have given a necessary and sufficient condition so that each transi-
tion involved in a potentially undetectable output shift fault can be independently
verified at port p. By verified at port p, we mean we are able to conclude that
the output of this transition at port p is correct according to the correct out-
put sequence of a certain transition path. By indepedently, we mean that the
above conclusion on the output at port p of each transition does not rely on the
correctness of any other transitions. Independence here can be helpful for fault
diagnoses: in the case that the system under test contains only undetectable
output shift faults, we will be able to identify them. In [3] we have given a nec-
essary and sufficient condition so that each transition involved in a potentially
undetectable output shift fault and has a non-empty output at port p can be
independently verified at port p. Based on this we can conclude that each tran-
sition involved in a potentially undetectable output shift fault can be verified
at port p. In this way, we have a weaker condition than that of [4] but we will
no more be able to diagnose the undetectable output shift faults: in the case
that the system under test contains only undetectable output shift faults, we
can only identify those incorrect non-empty outputs at port p. In this paper, we
do not consider the fault diagnosis problem and we show that in this context,
we can have more specifications than those satisfying the conditions in [4] or
[3] with which we can construct a subsequence for each transition involved in
a potentially undetectable output shift fault so that we can conclude that the
outputs at port p of these transitions are correct according to the correct out-
put sequences of the constructed subsequences. We present an algorithm that
identifies whether a given specification falls in this category and when it does so
constructs the subsequences.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminary terminology. Section 3 gives a formal definition of the problem and
identifies the condition that the specification of the system under test is checked

Resolving Observability Problems in Distributed Test Architectures 221

against. Section 4 presents an algorithm for constructing subsequences that elim-
inate the need for using external coordination messages, proves the correctness
of the algorithm, and gives its computational complexity. Section 5 discusses the
related work. Section 6 gives the concluding remarks.

2 Preliminaries

An n-port Finite State Machine M (simply called an FSM M) is defined as
M = (S, I, O, δ, λ, s0) where S is a finite set of states of M ; s0 ∈ S is the initial
state of M ; I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i, and Ii ∩ Ij = ∅

for i, j ∈ [1, n], i �= j; O =
∏n

i=1(Oi ∪ {−}), where Oi is the output alphabet of
port i, and − means null output; δ is the transition function that maps S × I
to S; and λ is the output function that maps S × I to O. Each y ∈ O is a
vector of outputs, i.e., y =< o1, o2, ..., on > where oi ∈ Oi ∪ {−} for i ∈ [1, n].
We use ∗ to denote any possible output, including −, at a port and + to denote
non-empty output. We also use ∗ to denote any possible input or any possible
vector of outputs. In the following, p ∈ [1, n] is a port. A transition of an FSM
M is a triple t = (s1, s2; x/y), where s1, s2 ∈ S, x ∈ I, and y ∈ O such that
δ(s1, x) = s2, λ(s1, x) = y. s1 and s2 are called the starting state and the ending
state of t respectively. The input/output pair x/y is called the label of t and t

will also be denoted as s1
x/y−−−→ s2. p will denote a port and we use y |p or t |p

to denote the output at p in output vector y or in transition t respectively. We
use T to denote the set of all transitions in M .

A path ρ = t1 t2 . . . tk (k ≥ 0) is a finite sequence of transitions such that
for k ≥ 2, the ending state of ti is the starting state of ti+1 for all i ∈ [1, k − 1].
When the ending state of the last transition of path ρ1 is the starting state
of the first transition of path ρ2, we use ρ1@ρ2 to denote the concatenation of
ρ1 and ρ2. The label of a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk)
(k ≥ 1) is the sequence of input/output pairs x1/y1 x2/y2 . . . xk/yk which is an
input/output sequence. The input portion of a path (s1, s2, x1/y1) (s2, s3, x2/y2)
. . . (sk, sk+1, xk/yk) (k ≥ 1) is the input sequence x1x2 . . . xk. We say t is con-
tained in ρ if t is a transition along path ρ.

When ρ is non-empty, we use first(ρ) and last(ρ) to denote the first and last
transitions of path ρ respectively and pre(ρ) to denote the path obtained from
ρ by removing its last transition.

We will use 2-port FSMs to show some examples. In a 2-port FSM, ports
U and L stand for the upper interface and the lower interface of the FSM. An
output vector y = 〈o1, o2〉 on the label of a transition of the 2-port FSM is a
pair of outputs with o1 ∈ O1 at U and o2 ∈ O2 at L.

Given an FSM M and an input/output sequence x1/y1 x2/y2 . . . xk/yk of M
a controllability (also called synchronization) problem occurs when, in the labels
xi/yi and xi+1/yi+1 of two consecutive transitions, there exists p ∈ [1, n] such
that xi+1 ∈ Ip, xi �∈ Ip, yi |p= − (i ∈ [1, k−1]). If this controllability problem oc-
curs then the tester at p does not know when to send xi+1 and the test/checking
sequence cannot be applied. Consecutive transitions ti and ti+1 form a synchro-

222 J. Chen, R.M. Hierons, and H. Ural

nizable pair of transitions if ti+1 can follow ti without causing a synchronization
problem. Any path in which every pair of transitions is synchronizable is called
a synchronizable path. An input/output sequence is synchronizable if it is the
label of a synchronizable path.

We assume that for every pair of transitions (t, t′) there is a synchronizable
path that starts with t and ends with t′. If this condition does not hold, then
the FSM is called intrinsically non-synchronizable [1].

A same-port-output-cycle in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2)
. . . (sk, sk+1, xk/yk) (k ≥ 2) such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and
there exists a port p with yi |p �= − and xi �∈ Ip for all i ∈ [1, k]. An isolated-
port-cycle in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk)
(k ≥ 2) such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and there exists a port p
with yi |p= − and xi �∈ Ip for all i ∈ [1, k].

A transition t is involved in a potentially undetectable output shift fault at
p if and only if there exists a transition t′ and a transition path ρ such that at
least one of the following holds.

1. tρt′ is a synchronizable path, no transition in ρt′ contains input at p, the
ouputs at p in all transitions contained in ρ are empty, and t |p= − ⇔ t′ |p �=
−. In this case an undetectable output shift fault can occur between t and
t′ in tρt′. If t |p= − we call it a backward output shift fault and if t |p �= −
we call it a forward output shift fault.

2. t′ρt is a synchronizable path, no transition in ρt contains input at p, the
ouputs at p in all transitions contained in ρ are empty, and t |p= − ⇔ t′ |p �=
−. In this case an undetectable output shift fault can occur between t and
t′ in t′ρt. If t |p= − we call it a forward output shift fault and if t |p �= − we
call it a backward output shift fault.

When ρ is empty, we also say that t is involved in a potentially undetectable
1-shift output fault.

The observability problem occurs when we have potentially undetectable
output shift faults in the specification of the FSM.

We will use Tp to denote the set of transitions that are involved in potentially
undetectable output shift faults at p. Let T ′

p = Tp ∩ {t | t|p �= −}. T ′
p denotes

the set of transitions that are involved in potentially undetectable output shift
fault at p and whose output at p are non-empty.

A relation R between elements of a set A and elements of a set B is a subset
of A×B. If (a, b) is an element of relation R then a is related to b under R and
we also write aRb. The set of elements related to a ∈ A under R is denoted R(a)
and thus R(a) = {b ∈ B|(a, b) ∈ R}.

Given a set A, a relation R between A and A is a partial order if it satisfies
the following conditions.

1. For all a ∈ A, aRa.
2. If aRa′ and a′Ra then a = a′.
3. If a1Ra2 and a2Ra3 then a1Ra3.

Resolving Observability Problems in Distributed Test Architectures 223

3 Verifiability of Outputs

To verify the output of transition t at port p, we search for a path ρ containing
t such that

– ρ is synchronizable;
– we are able to determine the output sequence of ρ at p from applying the

input portion of ρ from the starting state of ρ;
– from the correct output sequence of ρ at p we can determine that the output

of t at p is correct.

We require that first(ρ) and last(ρ) have input at p in order to identify a cer-
tain output sequence: no matter how ρ is concatenated with other subsequences,
we can always determine the output sequence produced at p in response to the
first |pre(ρ)| inputs of ρ since this output sequence is immediately preceded and
followed by input at p.

To determine the correct output of (t, p) from the correct output sequence of
ρ at p, we require that

– If the output of (t, p) is nonempty, then all the outputs at p in pre(ρ) are
either also nonempty or already known to be correct.

– If the output of (t, p) is empty, then all the outputs at p in pre(ρ) are either
also empty or already known to be correct.

Example 1. In the given specification in Figure 1, there is an undetectable output
shift fault in t1t3 at port U , because the input of t3 is not at U while there is a
potential output shift of o from t3 to t1. We are interested in constructing a path
to verify that the output of transition t1 and that of t3 at this port are correct.

ρ1 = t1t2 is such a synchronizable path for t1: it has input at U in t1 (first(ρ))
and input at U in t2 (last(ρ)), and according to the output at U between these
two inputs when ρ1 is applied as a subsequence, we are able to verify that the
output of t1 at U is correct.

If we know that the output of t1 at U is correct, then ρ2 = t1t3t1 is also a
desirable synchronizable path for t2: it has input at U in t1 (for both first(ρ)
and last(ρ)), and according to the output at U between these two inputs when
ρ2 is applied as a subsequence, we are able to verify that the output of t2 at U
is correct since we already know that the output of t1 at U is correct.

s2

t1: (s1, s2, i1/<-,+>)

i3 is input at L

t2: (s2, s1, i2/<+,+>)

t3: (s2, s1, i3/<o,+>)
i1, i2 are input at U

i1/<-,+>

i2/<+,+>

i3/<o,+>

s1

Fig. 1. An example where Tp is verifiable at U

224 J. Chen, R.M. Hierons, and H. Ural

Formally, we introduce the following concept.

Definition 1. Let t be a transition, and v a set of transitions in M . ρ is an
absolute verifying path upon v for (t, p) if

– ρ is a synchronizable path;
– t is contained in pre(ρ);
– first(ρ) and last(ρ) and only these two transitions in ρ have input at p;
– t �∈ v and for all t′ contained in pre(ρ), either t′ ∈ v or t′ |p= − ⇔ t |p= −.

Note that given t and ρ we will typically consider a minimal set v that satisfies
the above conditions: if t′ |p= − ⇔ t |p= − then t′ �∈ v.

Example 2. In Example 1,

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

Directly from this definition, we have:

Proposition 1. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set, then ρ is an absolute verifying path upon v for (t′, p) for any
t′ contained in pre(ρ) such that t′ |p= − ⇔ t |p= −.

Proposition 2. Let v be a set of transitions in M , ρ an absolute verifying path
upon v for (t, p). If for every transition t′ in v, the output at p of t′ in the SUT
is correct, then the correct output sequence at p in response to the first |pre(ρ)|
inputs of ρ implies the correct output of (t,p).

Proof. Suppose t |p �= − (The proof for the case when t |p= − is analogous).
Suppose that m inputs from pre(ρ) lead to non-empty output at p in M .

Thus, if we observe the correct output sequence in response to the first |pre(ρ)|
inputs of ρ then we must observe m outputs at p in response to these inputs.

Since t |p �= −, and ρ is an absolute verifying path upon v for (t, p), we know
by definition that for all t′ in ρ′ such that t′ |p= −, the output of t′ at p is correct
(and so is −) in the SUT. So, we know that the corresponding |pre(ρ)|−m inputs
in pre(ρ) lead to empty output at p. Thus we can map the observed outputs at
p, in response to the input portion of pre(ρ), to the inputs that caused them and
so if the correct output sequence is observed then the output of p at t must be
correct.

To verify the output of (t, p), we try to find a path ρ that is an absolute
verifying path upon v for (t, p) for some set v such that the output at p for
every transition in v is verified. So in general, we search for an acyclic digraph
of transitions such that each transition in this digraph has an absolute verifying
path upon a set of transitions that appear as its successors in the digraph. Such
an acyclic graph can be represented as a partial order in the following way.

Resolving Observability Problems in Distributed Test Architectures 225

Definition 2. Suppose that U is a set of transitions of M , R is a relation from
U to U , and P is a function from U to synchronizable paths of M . Let p be
any port in M . The set U of transitions is verifiable at p under R and P if the
following hold.

(a) For all t ∈ U , P(t) is an absolute verifying path upon R(t) for (t, p);
(b) R∪ {(t, t)|t ∈ U} is a partial order.

Where such R and P exist we also say that U is verifiable at p.

Suppose that U is verifiable at p under R and P and we observe correct
output sequence corresponding to the first |pre(P(t))| output of P(t) for each
t ∈ U . Then according to Proposition 2, we know that the output of t at p is
correct for each t ∈ U . So our goal is to find a set U that is verifiable at p such
that Tp ⊆ U .

Example 3. In Example 1, for port U , we have TU = {t1, t3}. TU is verifiable at
U because

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

So let P(t1) = t1t2, P(t3) = t1t3t1, R(t1) = ∅, R(t3) = {t1} (i.e. R =
{(t3, t1)}), then Tp = {t1, t3} is verifiable at U under P and R.

Proposition 3. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set then v ⊆ Tp.

Proof. Let ρ = t1 . . . tk (for k ≥ 2) where t = ti for some i ∈ [1, k − 1]. Suppose
ti |p �= − (the case for ti |p= − is analogous). Consider an arbitrary transition
t′ ∈ v: it is sufficient to prove that t′ ∈ Tp.

By the minimality of v we have t′ is contained in pre(ρ) and so t′ = tj for
some j ∈ [1, k− 1]. Since ρ is an absolute verifying path upon v for (ti, p), ti �∈ v
and so j �= i. Suppose i < j (the case for i > j is analogous).

Since tj ∈ v, by the minimality of v we have that tj |p= −. Now as i < j,
ti |p �= −, tj |p= −, there exists some maximal l with i ≤ l < j such that
tl |p �= −. Let ρ′ = tl . . . tj . By Definition 1, no transition in ρ′ has input at p. By
considering ρ′ we see that tj ∈ Tp.

This result allows us to consider only transitions in Tp for U .

Proposition 4. Suppose M is an FSM that is not intrinsically non-
synchronizable, p is a port of M and U is a set of transitions verifiable at port
p. If T ′

p ⊆ U or Tp − T ′
p ⊆ U , then Tp is verifiable at p.

Proof. Suppose U is verifiable under R and P and that R is a minimal such
relation (i.e. U is not verifiable using a relation that contains fewer pairs).

First, consider the case that T ′
p ⊆ U . According to Theorem 2 in [3], there

exists an absolute verifying path upon T ′
p for (t, p) for every t �∈ T ′

p . Since T ′
p ⊆ U ,

there exists ρ′p,t, the absolute verifying path upon T ′
p for (t, p), for t ∈ Tp − U .

Now define relation R′ and function P ′ in the following way.

226 J. Chen, R.M. Hierons, and H. Ural

1. R′ = R∪ {(t, t′)|t ∈ Tp − U ∧ t′ ∈ T ′
p}

2. P ′ = P ∪ {(t, ρ′p,t)|t ∈ Tp − U}

It is easy to check that Tp is verifiable at p under R′ and P ′ as required.
Now consider the case that T − T ′

p ⊆ U . Similar to Theorem 2 in [3], we
can prove that there exists an absolute verifying path upon Tp −T ′

p for (t, p) for
every t �∈ T − T ′

p . The proof is then similar to that for the case where T ′
p ⊆ U .

4 Algorithm

To calculate T ′
p and Tp − T ′

p , we can first determine all transitions involved in
potentially undetectable 1-shift output fault. This can be done by comparing

every two transitions s1
x1/y1−−−−→ s2 and s2

x2/y2−−−−→ s3 where x2 is not at p. If y1

has nonempty output at p while y2 does not, or vice versa, then t1 and t2 are
involved in potentially undetectable 1-shift output fault and we can put them
into T ′

p and Tp − T ′
p respectively. In particular, for the purpose of the next step

of the calculation, we can mark those transitions put into Tp−T ′
p as backward or

forward to indicate whether it is involved in a potentially undetectable backward
or forward output shift. This step takes O(v2) time where v is the number of
transitions in the given specification. At the end of this step, the set T ′

p calculated
is what we want. Then we can calculate all of the other transitions in Tp − T ′

p

that have empty output at p and are involved in potentially undetectable output

fault. We can keep adding transitions s1
x1/y1−−−−→ s2 into Tp − T ′

p if the output of
y1 at p is empty and one of the following holds:

– There exists s2
x2/y2−−−−→ s3 in Tp −T ′

p marked as backward and x2 is not at p.
In this case, the added transition is also marked as backward.

– There exists s3
x2/y2−−−−→ s1 in Tp − T ′

p marked as forward and x1 is not at p.
In this case, the added transition is also marked as forward.

This step also takes O(v2) time.
Next, we consider an algorithm:

– to check if Tp is verifiable at p. According to Proposition 4, this amounts
to check if there exists U such that U is verifiable at p and T ′

p ⊆ U or
Tp − T ′

p ⊆ U ;
– when Tp is verifiable at p, construct absolute verifying paths for each tran-

sition in Tp.

Figure 2 gives such an algorithm. Here, U is a set of transitions that is
verifiable at p. It is initially set to empty. We search for transitions to be added
into U and try to make U ⊇ Tp. According to Proposition 3, we only need to
consider transitions in Tp to be added into U , so in fact, we seek a set U such
that U = Tp.

If we succeed, we have an absolute verifying path ρp,t kept in P(t) for each
t ∈ U . Of course, if we do not need the absolute verifying paths but just want to

Resolving Observability Problems in Distributed Test Architectures 227

1: input: M and a port p of M
2: output: answer if Tp is verifiable at p, and if so, provide ρp,t for each transition t

in Tp

3: U := ∅
4: for all t ∈ Tp do
5: P(t) := null
6: end for
7: if Tp = ∅ then
8: success := true
9: goto line 27

10: end if
11: success := false
12: checkset := Tp

13: checkset′ := ∅
14: while checkset �= ∅ ∧ checkset′ �= checkset do
15: checkset′ := checkset
16: if we can find an absolute verifying path ρp,t upon U for (t, p) for some t ∈

checkset then
17: for t′ contained in pre(ρp,t) such that (t′ �∈ U) and (t′|p = − ⇔ t|p = −) do
18: add t′ to U
19: P(t′) := ρp,t

20: end for
21: checkset := Tp − U
22: if checkset := ∅ then
23: success := true
24: end if
25: end if
26: end while
27: if success then
28: output(“success”, P)
29: else
30: output(“no such set of sequences exists.”)
31: end if

Fig. 2. Algorithm 1: generating a set of paths

check whether Tp is verifiable at p, the algorithm can be easily modified so that
it stops whenever Tp ⊆ U or T ′

p ⊆ U (Proposition 4).
If Tp is empty, then we do not need to do anything (lines 7-10). If Tp �= ∅,

then we start to check if there exists a transition t ∈ Tp that has an absolute
verifying path (upon ∅) for (t, p). We use checkset to denote the current set
of transitions that we need to search for absolute verifying paths and initially
checkset = Tp. Thus if checkset becomes ∅ then we terminate the loop and the
algorithm has found a sufficient set of paths. At the end of an iteration the set
checkset′ denotes the value of checkset before the iteration of the while loop and
thus if there is no progress (checkset′ = checkset at this point) the algorithm
terminates with failure.

Whenever we find an absolute verifying path ρp,t upon U , we can add t′

to U for all t′ contained in pre(ρ) and t′ |p= − ⇔ t|p = −. This is based on
Proposition 1. At the same time, we update checkset.

228 J. Chen, R.M. Hierons, and H. Ural

To find an absolute verifying path ρ upon U for (t, p), we can construct G[t,U]
which is obtained from G by removing all edges except those corresponding to
a transition t′ in one of the following cases:

– t′ has input at p;
– t′ |p= − iff t |p= −;
– t′ ∈ U .

We then search for a synchronizable path in G[t,U] that contains t, starts
with input at p, and ends with input at p. We can search for such a path similar
to standard algorithms (e.g. find all vertices reachable from all ending vertex of
edges representing t and all vertices that get us to the starting vertex of edges
representing t). Note that we do not need to consider cycles in G[t,U]: if there
exists an absolute verifying path with a cycle then there is such a path that has
no cycles.

The following two results show that Algorithm 1 is correct.

Theorem 1. Suppose that Algorithm 1 outputs “success” and P. Then there
exists a relation R such that Tp is verifiable at p under R and P.

Proof. Define a relation R in the following way. Given a transition t ∈ Tp consider
the iteration in which t is added to U and let Ut denote the value of U at the
beginning of this iteration. Then, since we could add t to U on this iteration,
there is an absolute verifying path upon Ut for (t, p). Thus, we let R be the
relation such that for all t ∈ Tp, R(t) = Ut. Clearly Tp is verifiable at p under R
and P as required.

Theorem 2. Suppose that Algorithm 1 does not output “success”. Then Tp is
not verifiable at p.

Proof. Proof by contradiction: suppose that there exists R and P such that Tp

is verifiable at p under R and P and that Algorithm 1 terminates with a set U
such that Tp �⊆ U .

Define a function depth from Tp to the integers in the following way. The
base case is depth(t) = 1 if R(t) = {t}. The recursive case is if R(t) �= {t} then
depth(t) = 1 + maxt′∈R(t)\{t}depth(t′). Let t denote an element of Tp \ U that
minimises depth(t). But, every element of R(t) is in U and thus there exists
an absolute verifying path upon R(t) for (p, t). This contradicts the algorithm
terminating with set U such that Tp �⊆ U as required.

Now we turn to the complexity of the algorithm.
Let m = |Tp| be the number of transitions involved in output shift faults at p.

For each while-loop (line 14-26), we construct an absolute verifying path upon U
for one of the transitions in checkset, and we can remove at least one transition
from checkset. As initially |checkset| = m, the while-loop will be executed at
most m times.

Within each while-loop in lines 14-26, we need to check if we can find an
absolute verifying path ρp,t upon U for (t, p) for some t ∈ checkset. This can

Resolving Observability Problems in Distributed Test Architectures 229

be realized by trying to construct ρp,t for each t ∈ checkset until such a ρp,t is
found. This takes at most |checkset| times of effort for each attempt.

For each attempt to construct an absolute verifying path upon U for a given
transition t, it takes O(wv) times to construct a path where w is the number of
the states in M and v is the number of transitions in M .

For the for-loop in lines 17-20, we can keep a set α of all transitions t′

contained in pre(ρp,t) such that t′ �∈ U and t′|p = − ⇔ t|p = − during the
construction of ρp,t. This does not affect our estimated time O(wv). After we
have found such an ρp,t successfully, we can move all transitions in α from
checkset to U . For each such move, there will be one less while-loop executed,
and thus the time for the operation of the for-loop in lines 17-20 can be ignored.

In summary, the time complexity of Algorithm 1 is O(m2wv).

5 Relationship with Previous Work

To make sure that each transition involved in a potentially undetectable output
shift fault can be independently verified at port p, we need to have ρ1@t@ρ2 as an
absolute verifying path upon ∅ for (t, p) for all transition t involved in a poten-
tially undetectable output shift fault. If ρ1@t@ρ2 is an absolute verifying path
upon ∅ for (t, p), then ρ1@t and t@ρ2 correspond to the absolute leading path
and absolute trailing path respectively defined in [4], where we have presented
a necessary and sufficient condition to guarantee the existence of absolute lead-
ing path and absolute trailing path for (t, p) for each t involved in a potentially
undetectable output shift fault:

Given an FSM with no same-port-output-cycles or isolated-port-cycles, for
any transition t involved in a potentially undetectable 1-shift output faults, there
is an absolute leading path and an absolute trailing path for (t, p) if and only if

for any pair of transitions s1
∗/∗−−−→ s and s

∗/∗−−−→ t1 in the FSM,

a if there exists a potential undetectable forward shift of an output at port p,
then there exists at least one transition to s with a null output at port p, and
at least one transition from s with either an input or a non-empty output at
port p.

b if there exists a potential undetectable backward shift of an output at port p,
then there exists at least one transition to s with a non-empty output at port
p, and at least one transition from s with either an input or a null output at
port p.

This result is presented in terms of 1-shift output faults while it holds also
for general output shift faults.

Apparently, when the above condition holds, there exists an absolute veri-
fying path upon ∅ for (t, p) for every t ∈ Tp, and thus Tp is verifiable. In other
words, we presented in [4] a condition to guarantee that for each t ∈ Tp, there
exists an absolute verifying path upon ∅ for (t, p), and this condition is sufficient
for Tp to be verifiable.

In [3], we have given a weaker condition than the one in [4]:

230 J. Chen, R.M. Hierons, and H. Ural

s1

s2 s3

i5/<o3,*>

i2/<-,*>i1/<o1,*>

i4/<o2,*>

i3/<-,*>

i2, i5 are input at L

t1: (s1, s2, i1/<o1,*>)

t2: (s2, s3, i2/<-,*>)
t3: (s1, s2, i3/<-,*>)
t4: (s1, s3, i4/<o2,*>)

t5: (s3, s1, i2/<o3,*>)

i1, i3, i4 are input at U

Fig. 3. Example to show the relationship with previous work

Theorem 3. Let M be a given FSM which is not intrinsically non-
synchronizable and has no same-port-output-cycles. Let p be any port of M .

(i) (t0, p) has an absolute leading path for every t0 ∈ T ′
p , if and only if

∀t = s1
x/y−−−→ s2 ∈ T ′

p , x �∈ Ip implies ∃s3
x′/y′

−−−−→ s1 ∈ T synchonizable with t
such that y′|p �= −;

(ii) (t0, p) has an absolute trailing path for every t0 ∈ T ′
p , if and only if

∀t = s1
x/y−−−→ s2 ∈ T ′

p , ∃s2
x′/y′

−−−−→ s4 ∈ T synchonizable with t such that
x′ ∈ Ip ∨ y′ |p �= −.

The above theorem gives a condition and declares that under this condition,
it is guaranteed the existence of absolute leading path and absolute trailing path
for (t, p) only for all those transitions involved in potentially undetectable output
shift and have non-empty output at p. So it guarantees that for each transition
t of this category, (t, p) has an absolute verifying path upon ∅.

Then it is proved there that for other transitions t′ involved in potentially
undetectable output shift but with empty output at p, there is an absolute
verifying path upon T ′

p for (t′, p):

Theorem 4. Given any FSM M that is not intrinsically non-synchronizable
and port p, every t �∈ T ′

p has an absolute verifying path upon T ′
p .

According to these two theorems, the condition in Theorem 3 is sufficient for
Tp to be verifiable.

On the other hand, the conditions in [4,3] are not necessary for Tp to be
verifiable.

Example 4. In Example 1 we have shown that Tp is verifiable at U . However,
the conditions in [4,3] do not hold. This is because for (t3, U), t3 does not have
input at U and there is no transition ending at s2 with non-empty output at U .

The following shows another example where Tp is verifiable at U while the
conditions in [4,3] do not hold.

Example 5. In Figure 3, there are undetectable output shift faults at port U in
t1t2 and in t2t5. TU = {t1, t2, t5}. T ′

U = {t1, t5}.

Resolving Observability Problems in Distributed Test Architectures 231

The conditions in [4,3] do not hold because for (t1, U), there is no transition
starting from s2 that has either input at U or non-empty output at U .

However, TU is verifiable at U :

– t4t5t1 is an absolute verifying path upon ∅ for (t5, U).
– t3t2t5t1 is an absolute verifying path upon {t5} for (t2, U).
– t1t2t5t1 is an absolute verifying path upon {t2, t5} for (t1, U).

6 Conclusion

This paper has presented a sound procedure to check for the possibility of con-
structing a test/checking sequence that will not cause controllability and observ-
ability problems and will not require external coordination message exchanges
among remote testers during its application in a distributed test architecture.
This is realized by constructing a path that can help checking the output of a
transition t at a certain port p, for each transition t involved in a potentially
undetectable output shift fault. The effectiveness of this path on checking the
output of transition t at port p must not be affected by controllability and ob-
servability problems. The correct output of transition t at port p is actually
derived from the correct output sequence when applying the input portion of
this path during the test. It remains as an interesting problem to produce an
efficient test or checking sequence from an FSM, that is guaranteed to determine
the correctness of the SUT for the considered fault model.

Acknowledgements

This work was supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant RGPIN 976 and 209774, Leverhulme
Trust grant number F/00275/D, Testing State Based Systems, and Engineer-
ing and Physical Sciences Research Council grant number GR/R43150, Formal
Methods and Testing (FORTEST).

References

1. S. Boyd and H. Ural. The synchronization problem in protocol testing and its
complexity. Information Processing Letters, 40:131136, 1991.

2. L. Cacciari and O. Rafiq. Controllability and observability in distributed testing.
Information and Software Technology, 41:767780, 1999.

3. J. Chen, R. M. Hierons, and H. Ural. Overcoming observability problems in dis-
tributed test architectures. Submitted for publication.

4. J. Chen, R. M. Hierons, and H. Ural. Conditions for resolving observability prob-
lems in distributed testing. In 24rd IFIP International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE 2004), volume 3235 of
LNCS, pages 229242. Springer-Verlag, 2004.

5. W. Chen and H. Ural. Synchronizable checking sequences based on multiple UIO
sequences. IEEE/ACM Transactions on Networking, 3:152157, 1995.

232 J. Chen, R.M. Hierons, and H. Ural

6. A. Gill. Introduction to the Theory of Finite-State Machines. New York: McGraw-
Hill, 1962.

7. S. Guyot and H. Ural. Synchronizable checking sequences based on UIO sequences.
In Proc. of IFIP IWPTS95, pages 395407, Evry, France, September 1995.

8. F.C. Hennie. Fault detecting experiments for sequential circuits. In Proc. of Fifth
Ann. Symp. Switching Circuit Theory and Logical Design, pages 95110, Princeton,
N.J., 1964.

9. R. M. Hierons. Testing a distributed system: generating minimal synchronised test
sequences that detect output-shifting faults. Information and Software Technology,
43(9):551560, 2001.

10. D. Lee and M. Yannakakis. Principles and methods of testing finitestate machines
a survey. Proceedings of the IEEE, 84(8):10891123, 1996.

11. G. Luo, R. Dssouli, and G. v. Bochmann. Generating synchronizable test sequences
based on finite state machine with distributed ports. In The 6th IFIP Workshop
on Protocol Test Systems, pages 139153. Elsevier (North-Holland), 1993.

12. G. Luo, R. Dssouli, G. v. Bochmann, P. Venkataram, and A. Ghedamsi. Test gen-
eration with respect to distributed interfaces. Computer Standards and Interfaces,
16:119132, 1994.

13. K.K. Sabnani and A.T. Dahbura. A protocol test generation procedure. Computer
Networks, 15:285297, 1988.

14. B. Sarikaya and G. v. Bochmann. Synchronization and specification issues in pro-
tocol testing. IEEE Transactions on Communications, 32:389395, April 1984.

15. K.C. Tai and Y.C. Young. Synchronizable test sequences of finite state machines.
Computer Networks, 13:11111134, 1998.

16. H. Ural and Z. Wang. Synchronizable test sequence generation using UIO se-
quences. Computer Communications, 16:653661, 1993.

17. Y.C. Young and K.C. Tai. Observation inaccuracy in conformance testing with
multiple testers. In Proc. of IEEE WASET, pages 8085, 1998.

	Introduction
	Preliminaries
	Verifiability of Outputs
	Algorithm
	Relationship with Previous Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

