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Abstract. We define a new type of Gröbner bases called Janet-like,
since their properties are similar to those for Janet bases. In particular,
Janet-like bases also admit an explicit formula for the Hilbert function
of polynomial ideals. Cardinality of a Janet-like basis never exceeds that
of a Janet basis, but in many cases it is substantially less. Especially,
Janet-like bases are much more compact than their Janet counterparts
when reduced Gröbner bases have “sparce” leading monomials sets, e.g.,
for toric ideals. We present an algorithm for constructing Janet-like bases
that is a slight modification of our Janet division algorithm. The former
algorithm, by the reason of checking not more but often less number of
nonmultiplicative prolongations, is more efficient than the latter one.

1 Introduction

In [1] we introduced the concept of noninvolutive monomial division called Janet-
like due to its similarity to Janet division studied in [2]. Having possessed all
merits of the latter division, the former division is algorithmically better for
constructing Gröbner bases. This is because every Janet divisor is also a Janet-
like divisor, and the converse may not hold.

We refer to paper [1] for the basic notations and definitions including those
related to Janet-like division and its properties. In the present paper we define
Janet-like bases and show that their Gröbner redundancy never exceeds that of
Janet bases, but in some cases is considerably less. This effect is illustrated by a
number of examples, including toric ideals, which are “unconvenient” for Janet
division. We present also the underlying algorithm in its simplest form that is a
straightforward modification of our involutive algorithm [3].

2 Janet-Like Bases

In this section we introduce Janet-like bases for polynomial ideals in accordance
with general Definition 3 of r−bases in paper [1] specified for Janet-like division.
However, unlike our more general definition of involutive bases [2], we restrict
ourselves to consideration of minimal bases only.

First, we define the corresponding Janet-like reduction and normal form.
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Definition 1. (J−reduction). Given a monomial order �, a finite set F ∈ R \
{0} of polynomials and a polynomial p ∈ R \ {0}, we shall say that:

(i). p ∈ R is J−reducible modulo f ∈ F if p has a term t = a u (a ∈ K, u ∈ M, a �=
0) whose monomial u is J -multiple1 of lm(f). It yields the J−reduction p →
g := p−(a/lc(f)) f ·v where v is J−multiplier for u (v ∈ M(lm(f), lm(F ))).

(ii). p is J−reducible modulo F if there is f ∈ F such that p is J−reducible
modulo f .

(iii). p is in J−normal form modulo F (denotation p = NFJ (p, F )) if p is not
J−reducible modulo F .

It follows that the normal form NFJ (g, F ) (g ∈ R) can be presented as the
finite sum

h := NFJ (g, F ) = g −
card(F )∑

i=1

fi

∑

j

αijmij , (1)

where ∀i, j : αij ∈ K, mij ∈ M(lm(fi), lm(F )), lm(fi)mij � lm(p), mij �=
mik, (j �= k), and polynomial h is J−irreducible modulo F .

Definition 2. (J−autoreduction). A polynomial set F will be called J−auto-
reduced if

1. The leading monomial set lm(F ) contains distinct elements.
2. Every f ∈ F has no (tail) terms t = a u (0 �= a ∈ K, u ∈ M, u �= lm(f))

J−reducible modulo F .

Now we can define Janet-like bases.

Definition 3. (Janet-like basis). Let I ⊂ R be a nonzero ideal and � be a
monomial order. Then a finite J -autoreduced subset G ⊂ R such that I = Id(G)
is called Janet-like basis or J−basis of I if

∀f ∈ I, ∃g ∈ G : lm(g) |J lm(f) , (2)

and set lm(G) is J−compact in accordance with Definition 11 in [1].

Theorem 1. (Existence). A Janet-like basis exists for any nonzero ideal I ⊆ R

and for any admissible monomial order.

Proof. Let G be a reduced Gröbner basis of I. Let U := lm(G) be the leading
monomial set of G. By Corollary 1 in [1], there exists a minimal J− completion
Ū ⊇ U of U .

If Ū = U , then G is also a Janet-like basis. First, it is J−autoreduced, since
it is conventionally autoreduced. Second, in accordance to conditions (2) and
(10) of paper [1], lm(f) ∈ CJ (U) for all f ∈ I.
1 As noted in Remark 2 of paper [1], J−division for F is defined in terms of the

monomial set lm(F ).
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Otherwise, consider V := Ū \ U . For every v ∈ V there is u ∈ U such that
v = u · w. Note, that w belongs to the monoid ideal NM(u, U) defined in (4)
of paper [1]. For every such v, u, w enlarge G with g · w (g ∈ G, lm(g) = u).
Denote the enlarged set by G1. Now, if a tail term in G1 is J -reducible modulo
G1, then perform its J -reduction as described in part (i) of Definition 1. This
reduction process obviously terminates in a finite number of step, and we obtain
J -reduced set Ḡ such that lm(Ḡ) = lm(G1) = Ū . Since, by the construction,
{lm(f) | f ∈ I} = C(U) = CJ (Ū), the obtained set Ḡ is a Janet-like basis. �

From the above proof we immediately have the next result just as in theories
of Gröbner bases [4] and involutive bases [2,3,5].

Corollary 1. Given an ideal I and a monomial order, the following is equiva-
lent:

(i). G is a Janet-like basis of I.
(ii). G is J−autoreduced, the set lm(G) is J−compact and

∀f ∈ I : NFJ (f, G) = 0 . (3)

Remark 1. The above proof contains, in fact, one of possible algorithms for con-
structing Janet-like bases via reduced Gröbner bases. This algorithm, however,
needs an algorithm for construction of the reduced Gröbner basis. Below we
present another algorithm based on the characterization 3 which computes also
reduced Gröbner bases as subsets of Janet-like bases.

As any r−basis, a Janet-like basis is a Gröbner basis since J -reducibility
implies the conventional reducibility (i.e. reducibility with respect to the con-
ventional division). But the converse is not true in general. By this reason,
Janet-like bases, similarly to involutive bases, are generally redundant as the
Gröbner one.

The following corollary establishes interrelation between (minimal) Janet,
Janet-like and reduced Gröbner bases.

Corollary 2. Given a minimal Janet basis (abreviation JB), a Janet-like (abre-
viation JLB) and a reduced Gröbner basis (abreviation GB) of the same ideal,
their cardinalities satisfy inequality

card(GB) ≤ card(JLB) ≤ card(JB) . (4)

Moreover, if all these bases are monic than

GB ⊆ JLB ⊆ JB . (5)

The strict inequalities in (4) and, repectively, strict inclusions in (5) also take
place for some ideals and orders.
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Proof. If one considers the leading monomial sets of the three bases, then inequal-
ity (4) follows from Proposition 1 in [1] and from already shown fact that both
Janet and Janet-like bases are Gröbner bases. The proof of inclusion GB ⊆ JLB
is contained in the proof of Theorem 1. As to inclusion JLB ⊆ JB, it is an easy
consequence the same Proposition 1 and of the fact that Janet division satisfies [2]
to property 3 in Definition 4 of paper [1]. The last implies that J−autoreduced
elements of a Janet-like basis cannot become Janet reducible after extension (com-
pletion) of the Janet-like basis to the Janet basis. At last, we illustrate below the
strict inequalities and inclusions by some explicit examples. �

Example 1. Consider ideal Id({x6y3−y, x3y4−y}) ∈ Q[x, y]. Its lexicographical
(x � y) bases are

JLB = GB = {x3y−y2, y5−y} , JB = {x3y−y2, xy5−xy, x2y5−x2y, y5−y} .

3 Algorithm

In this section we present the simplest version of an algorithm for constructing
Janet-like polynomial bases and illustrate its work by Example 1. The algorithm
is a straightforward modification of its involutive counterpart [3] and based on
the below theorem that gives an algorithmic characterization of Janet-like bases.

To prove the theorem we need the following lemma.

Lemma 1. For any J−autoreduced polynomial set F , the J−normal form sat-
isfies the linearity condition

∀p1, p2 ∈ R \ {0} : NFJ (p1 + p2, F ) = NFJ (p1, F ) + NFJ (p2, F ) , (6)

Proof. First, we claim that NFJ (p, F ) = 0 iff p admits representation as a finite
sum of the form

p =
card(F )∑

i=1

fi

∑

j

βijmijfj , (7)

where βij ∈ K, mij ∈ M(lm(f), lm(F )), mij �= mik, (j �= k). If NFJ (p, F ) = 0,
then applying a sequence of elementary J−reduction given in Definition 1, which
is obviously terminates by admissibility of order �, we obtain representation (7)
for p. Note, that Proposition 2 in [1] asserts uniqueness of every elementary
reduction. Apparently, this implies uniqueness of the representation2.

Let now p3 := p1 + p2 and h1 := NFJ (p1, F ), h2 := NFJ (p3, F ), h3 :=
NFJ (p3, F ). Then, by Definition 1, NFJ (h3 − h1 − h2, F ) = h3 − h1 − h2 since
h1, h2, h3 have no terms whose monomials belong to CJ (lm(F )). On the other
hand, from (1) it follows that p := h3−h1 −h2 admits representation (7). Thus,
NFJ (h3 − h1 − h2, F ) = 0. �

2 It implies also uniqueness of (1) exactly as in the case of involutive divisions [2].
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Algorithm: Janet-like Basis (F,≺)

Input: F ∈ R \ {0}, a finite set; ≺, an order
Output: G, a Janet-like basis of Id(F )
1: choose f ∈ F with the lowest lm(f) w.r.t. �
2: G := {f}
3: Q := F \ G
4: do
5: h := 0
6: while Q �= ∅ and h = 0 do
7: choose p ∈ Q with the lowest lm(p) w.r.t. �
8: Q := Q \ {p}
9: h := NormalForm(p, G,≺)

10: od
11: if h �= 0 then
12: for all {g ∈ G | lm(h) � lm(g)} do
13: Q := Q ∪ {g}; G := G \ {g}
14: od
15: G := G ∪ {h}
16: Q := Q ∪ { g · t | g ∈ G, t ∈ NMP (lm(g), lm(G)) }
17: fi
18: od while Q �= ∅
19: return G

Theorem 2. (Algorithmic characterization). An J−autoreduced set F ∈ R sat-
isfies (3) for I = Id(F ) iff

∀f ∈ F ∀p ∈ NMP (lm(f), lm(F )) : NFJ (f · p, F ) = 0 . (8)

Proof. Implication (3) =⇒ (8) is obvious.
(8) =⇒ (3) By Lemma 1, it suffices to show that

∀u ∈ M, ∀f ∈ F : NFJ (f · u, F ) = 0 . (9)

Assume, without the loss of generality, that all polynomials in F are monic.
Then conditions (9) together with Theorem 1 in [1] imply J−completeness of
lm(F ). Thus, f · u can be rewritten as

f · u = g · v +
card(F )∑

i=1

fi

∑

j

vij , (10)

where g ∈ F is uniquely defined by f and u, v ∈ M(lm(g), lm(F )), vij ∈ M, and
∀i, j : lm(f)u = lm(g)v � lm(fi)vij . Similarly, we can further rewrite every
fi · vij in (10) until we obtain for the right-hand side of (10) representation (7).
Admissibility of � provides termination of this rewriting procedure. �
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The above algorithm is an adaptation of our general involutive division algo-
rithm [3] to Janet-like division. Its input consists of a polynomial set F and a
monomial order �. To output a minimal and J−autoreduced set, in accordance
to Definition 2, the intermediate polynomial data are separated into subsets G
and Q.

Set G contains a part of the intermediate basis. It is initialized at step 2 as a
set with the single element f ∈ F selected at step 1. The rest of the input basis
is contained in the set Q initialized at step 3 as F \ {f}.

When the outer do-while loop 4-18 is executed, set Q can be enlarged with
some elements of G at step 13 and with nonmultiplicative prolongations of poly-
nomials in G. The algorithm terminates when Q becomes empty during execution
of the inner while loop that signals that all conditions (8) satisfied, and the last
J−normal form h computed at step 9, if nonzero, does not have proper divisors
of lm(h) in lm(G). This condition is verified at step 12.

The choice made at steps 1 and 7 and execution of the for loop 12-13 pro-
vide correctness of the algorithm. To show this and to show also the algorithm
termination, first, consider subalgorithm Normal Form. It is invoked in line 9
of the main algorithm and computes J−normal form in the full correspondence
with Definition 1 and formula (1). Its termination is an obvious consequence of
that for the conventional reductions [4].

Algorithm: Normal Form(p, G,≺)

Input: p ∈ R \ {0}, a polynomial; G ⊂ R \ {0}, a finite set; ≺, an order
Output: h = NFJ (p, G), the J−normal form of p modulo G
1: h := p
2: while h �= 0 and h has a term t J−reducible modulo G do
3: take g ∈ G such that lm(g) |J t
4: h := h − g · t/ lt(g)
5: od
6: return h

Show now termination of algorithm Janet-like Basis. By the choice done
at steps 1 and 7 and by displacement of elements from G to Q at step 13, the
elements in lm(G) occurring right before execution of step 15 have no proper
divisors in lm(Q). Thereby, when the leading monomial lm(p) of the nonmul-
tiplicative prolongation g · t ∈ Q with (g ∈ G, t ∈ NMP (lm(g), lm(G)) chosen
at step 7 has no J−divisor in lm(G), the constructivity property (11) in [1]
implies that lm(p) = lm(h) belongs to any completion of lm(G). Noetherianity
ascertained by Theorem 3 of paper [1] guarantees termination of this completion
process.

There are finitely many cases when an element of the input polynomial set
F is selected from Q at step 7. Besides, there can only be a finitely many cases
when a J−head reducible polynomial p taken from Q has 0 �= h = NFJ (p, G)
computed at step 9. This is because in every such case lm(h) �∈ C(lm(G)).



190 V.P. Gerdt and Y.A. Blinkov

Indeed, assume that there are g ∈ G and v ∈ NM(lm(g), lm(G)) satisfying
lm(g) · v = lm(h). In that case all nonmultiplicative prolongations of the form
g · t with t ∈ NMP (lm(g), lm(G)), t | v, lm(g) · t �∈ CJ (lm(G)) must be added to
Q at step 16 of a previous run of the main loop. But then, since lm(h) ≺ lm(p),
all these prolongations must be selected at step 7 and further processed earlier
than p. As a result, the leading monomials of these prolongations must belong to
CJ (lm(G)) when p is under processing. However, the same arguments as we used
in the proof of Theorem 1 in [1], bring us to a contradiction with the assumption
made.

To prove correctness of algorithm Janet-like Basis it suffices to show that
the following is a do-while loop invariant:

1. lm(G) is J−compact,
2. The tail monomials in G are not in CJ (lm(G)).

G trivially satisfies both conditions at the initialization step 2. Suppose that
this is true after execution of the while loop 6-10, and let G1 := G ∪ {h} be a
set obtained at step 15.

If lm(p) = lm(h), as we already seen, lm(G1) is compact. Furthermore, by
property (9) in [1], the elements in G remain J−reduced after enlargement of
G with h. As to the last polynomial, it is in the normal form modulo G, by its
construction at step 9.

Consider now the case when h �= 0 and lm(p) � lm(h). Let G0 be the value
of the intermediate set G right after execution of the while loop 6-10, and G1

be the set obtained at step 15.
Assume that lm(G1) is not compact. Then G1 has a proper subset G2 ⊂ G1

with compact lm(G2). Then, for any f ∈ G1 there exists g ∈ G2 such that
lm(g) |J lm(f) with respect to the set G2. At all that g �= h in accordance to the
displacement condition in line 12. Since Id(lm(G2) = Id(lm(G1)), polynomial f
might only had been added to G as a result of processing a head irreducible
nonmultiplicative prolongation of a polynomial s ∈ G0 which has been displaced
at step 13. In this case, however, polynomial f must be also displaced to Q since
lm(h) | lm(s) | lm(f). The obtained contradiction shows compactness of lm(G1).

Similarly, if a tail monomial u ∈ M of a polynomial g ∈ G1 became J−
reducible modulo lm(G1), then it could happen only if u were a nonmultiplicative
prolongation u = lm(f)·t ≺ lm(g) where polynomial f has been moved from G to
Q. But in such a case, by the selection strategy of steps 1 and 7, the prolongation
f · t must be processed earlier than the nonmultiplicative prolongation of the
element in Q whose processing created g. Then, processing of g would lead
to J−reduction of u. Thus, J−reducible tail monomials cannot occur in G1.
As to the polynomial h itself, the impossibility of its tail J−reduction after
the displacement follows also from the fact that lm(h) cannot divide its tail
monomials.

As an illustration to the internal processing in algorithm Janet-like Basis,
Table 1 shows intermediate polynomial data for Example 1. The second column
of the table contains elements of set G. Their J−nonmultiplicative powers NMP
are shown in the third column. The set Q is given in the fourth column. Rows
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of the table contain these values obtained at the initialization and after every
interation of the do-while loop. In this case at steps 1 and 7 we selected the
lexicographically smallest elements.

Table 1. Intermediate basis elements for Example 1

Steps of Sets G and Q
algorithm elements in G NMP Q

initialization x3y4 − y − {x6y3 − y}
iteration x6y3 − y −

x3y4 − y x3 {x6y4 − x3y}
x3y − y2 − {x3y4 − y, x6y3 − y}
x3y − y2 −
y5 − y x3 {x3y5 − x3y, x6y3 − y}

x3y − y2 −
y5 − y x3 { }

In spite of often redundancy of Janet-like bases as Gröbner ones, as well as
in the case of involutive bases [5,6], just this redundancy provides more accessi-
bility to information on polynomial ideals and modules. In particular, Janet-like
bases also give explicit formulae for the Hilbert function (cf. [5]) and Hilbert
polynomial (cf. [3]) of a polynomial ideal I in terms of binomial coefficients. If
G is a J− basis of I, then the (affine) Hilbert function HFI(s) and the Hilbert
polynomial HPI(s) are

HFI(s) =
(

n + s
s

)
−

s∑

i=0

∑

u∈lm(G)

d1−1∑

i1=0

· · ·
dk−1∑

ik=0

(
i − ∑

j ij − deg(u) + µ(u) − 1
µ(u) − 1

)
,

HPI(s) =
(

n + s
s

)
−

∑

u∈lm(G)

d1−1∑

i1=0

· · ·
dk−1∑

ik=0

(
s − ∑

j ij − deg(u) + µ(u)
µ(u)

)
.

Here, if NMP (u, lm(G)) �= ∅, then NMP (u, lm(G)) := {xd1
1 , . . . , xdk

k } with
dj �= 0 (1 ≤ j ≤ k) and µ(u) := n − k. Otherwise, k := 1, d1 := 0, µ(u) := n.
The first term in the right hand sides of these formulae is the total number of
monomials in M of degree ≤ s. The sum in the expression for HFI(s) counts
the number of monomials of degree ≤ s in the set CJ (lm(G)) defined in (6) of
paper [1]. In accordance to the completeness condition (5) in [1], this number
coincides with the number of such monomials in the monoid ideal C(lm(G)) as
defined in (7) of paper [1].

4 Illustrative Examples

In this section we consider four more nontrivial examples than small Example 1.
Our goal is to compare their Janet-like bases with minimal involutive Janet bases
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and reduced Gröbner bases. We present these examples in the increasing orderwith
respect to the cardinalities of Janet bases. Two of examples generating toric ideals
we took from [7] and [8] and already used in [9] to show limitations in applicability
of Janet bases. In the last paper we also shortly noted the approach described in
the present paper. One more toric ideal was taken from [10] where it was presented
already in the Gröbner basis form. One of the examples [11] is not toric ideal, but
also demonstrates deficiency in application of Janet bases to certain problems.

The below examples have compact input and comparatively compact (re-
duced) Gröbner bases whereas their Janet bases are much larger. For all the
examples we used the degree-reverse-lexicographical monomial order induced by
the explicitly indicated order on the variables.

Computations were performed with our C++ code implementing Janet di-
vision algorithm [3]. We extended the package with our first implementation of
Janet-like division. The actual algorithm that has been implemented is an im-
proved version of the above algorithm Janet-like Basis. The improvement is
similar to that described in [3] for involutive division.

The reduced Gröbner bases given explicitly whereas Janet and Janet-like
bases given only for the first rather small example. In addition, for the listed ex-
amples we computed their Hilbert polynomials via Janet-like bases (see Sect.5).

Example 2. ( Toric ideal I ) [7] { x7−y2z, x4w−y3, x3y−zw } (x � y � z � w).
Gröbner basis: { x7 − y2z, x4w − y3, x3y − zw, y4 − xzw2 } .
Janet-like basis: { x7 − y2z, x4y − xzw, x4w − y3, x3y − zw, y4 − xzw2 } .
Janet basis: { x7 − y2z, x6y− x3zw, x6w− x2y3, x5y− x2zw, x2y4 − x3zw2,

x5w − xy3, x4y − xzw, x2zw2 − xy4, x4w − y3, x3y − zw, y4 − xzw2 } .

Hilbert Polynomial :
39
6

s2−21
2

s+5 .

Example 3. ( Polynomial ideal ) [11] (w � x � y � z)

{ z20 + z10 − x2, z30 + z10 − x y3, w40x4 − y6 } .

Gröbner basis:

{ 16w40z10 − 16w40x2 + y18 − x12 + 9x9y3 − 24y12 − 33x10 + 150x7y3 + 8z10

−219x8 + 627x5y3 − 470 ∗ x6 + 690x3y3 + 16y6 − 502x4 + 188xy3 − 196x2,

16w40y9 − 16w40x3 − y27 + 32y21 + x16y3 − 12x17 + 98x14y3 − 374x15 +
1875x12y3 − 160y15 − 3778x13 + 13743x10y3 − 17179x11 + 45923x8y3

−41148x9 + 74362x6y3 + 120y9 − 57702x7 + 60452x4y3 − 1760xy6 − 45324x5

+18416x2y3 − 16728x3, w40x4 − y6, 8w40xy3 − 8w40x2 + y18 − x12 + 9x9y3

−22y12 − 33x10 + 150x7y3 + 8xy9 − 221x8 + 631x5y3 − 472x6 + 688x3y3 +
8y6 − 506x4 + 192xy3 − 192x2, z20 + z10 − x2, xy12 − x9 + 6x6y3 + 2y9

−13x7 + 41x4y3 − 8xy6 − 24x5 + 28x2y3 − 22x3, 2y3z10 + 2xz10 − xy6 + x5

−3x2y3, x2z10 + 2z10 − xy3 − x2, x2y6 − x6 + 3x3y3 − 2x4 + 2xy3 − 2x2 } .

Hilbert Polynomial: 2980 s− 76460 .
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Example 4. ( Toric ideal II ) [8,9] (x0 � x1 � x2 � x3 � x4)

{ x0x1x2x3x4 − 1, x29
2 x5

3 − x14
1 x20

4 , x39
1 − x25

2 x14
3 } .

Gröbner basis:

{ x0x1
2x3x4

281 − x2
280, x2

281 − x1x4
280, x0x3

2x4
221 − x1x2

218,

x1
2x2

219 − x3x4
220, x0x3

3x4
161 − x1

4x2
156, x1

5x2
157 − x3

2x4
160,

x0x3
4x4

101 − x1
7x2

94, x1
8x2

95 − x3
3x4

100, x0x1
4x4

61 − x2
61,

x2
62x3 − x1

3x4
60, x0x3

5x4
41 − x1

10x2
32, x1

11x2
33 − x3

4x4
40,

x0x2
26x3

15x4 − x1
38, x1

39 − x2
25x3

14, x0x1
15x4

21 − x2
28x3

4,

x2
29x3

5 − x1
14x4

20, x0x3
10x4

21 − x1
24x2

3, x1
25x2

4 − x3
9x4

20,

x0x1x2x3x4 − 1 } .

Hilbert Polynomial :
3905

2
s2−177005

2
s+178805 .

Example 5. ( Toric ideal III ) [10] (x � y � z � w)
Gröbner basis:

{ y250 − x239z11, x150z12 − y161w, y89z − x89w x61z13 − y72w2,

x33z27 − y55w5, z55 − x23y21w11, x5z41 − y38w8, y17z14 − x28w3 } .

Hilbert Polynomial :
1229

2
s2−73855

2
s+546272 .

Table 2. Cardinalities of bases in Examples 2-5

Example Cardinality
Gröbner basis Janet-like basis Janet basis

2 4 5 11
3 9 14 983
4 19 190 7769
5 8 18 37901

In Table 2 we show cardinalities of Gröbner, Janet-like and Janet bases for
the above examples. As one sees, Janet-like bases are much more compact than
Janet bases. In other words, they have much less Gröbner redundancy. This
higher redundancy of Janet bases has an effect on the running times.

The timings for construction of Janet bases for Examples 3, 4 and 5 3, as
measured on a AthlonXP 1600 computer with 256 Mb RAM running under
Gentoo Linux 2004.3, are 0.04, 3.73 and 427.52 seconds, respectively. As to the
3 Example 2 is too small for our code.
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timings for Janet-like bases, because of their very small value (certainly less that
0.01 second) we were not able to measure them.

It is clear that for the case of Janet bases those computing times are wasted
for constructing, analyzing and adding to the output basis a large number of
J−head irreducible nonmultiplicative prolongations. Janet-like division is much
more optimized in this respect.

5 Conclusion

It should be noted that, given a Janet-like basis G of a polynomial ideal I :=
Id(G), the set

{ tg | g ∈ G, t ∈ M(lm(g), lm(G)) } (11)

can be considered as a staggered linear basis of I as K−vector space. Simi-
larly, any involutive basis G generates a staggered linear basis if one replaces
M(lm(g), lm(G)) in (11) by L(lm(g), lm(G)) in accordance with Definition 4
in [1].

The notion of staggered linear basis was introduced in [13] (see also [14]) to-
gether with the appropriate modification of the Buchberger algorithm for com-
puting Gröbner bases. Based upon relation (11), one can consider algorithm
Janet-like Basis, as well as involutive algorithms [2,5,3], as improvements of
the Gebauer-Möller staggered linear basis algorithm [13]. Another and very ef-
ficient imrovement of the last algorithm is the Faugère algorithm F5 described
in [15] for the case of homogeneous input polynomials. The most impressive fea-
ture of F5 is detecting practically all useless, i.e., zero-redundant critical pairs.

The radical distinction of algorithm Janet-like Basis and involutive algo-
rithms from the Gebauer-Möller staggered linear basis algorithm and the Faugère
algorithm F5 is partition of monomials for every of intermediate polynomials into
two disjoint sets: multiplicative and nonmultiplicative. These two sets play fun-
damentally different algorithmic role. Whereas nonmultiplicative monomials are
used for construction of prolongations including critical pairs, the multiplica-
tive ones are used for reduction only. As a result, both intermediate and output
bases generally have some extra Gröbner redundant elements that are nonmul-
tiplicative prolongations of other elements in the basis. In doing so, the reduced
Gröbner basis is the internally fixed subset of the output basis, and can be output
without any extra computational costs.

On the other hand, experimental study of Janet division presented in [3]
shows that the presence of extra polynomials provided by the partition of mono-
mials smoothes growth of intermediate coefficients, and thereby increases prac-
tical efficiency of computation. Other efficiency aspects of the partition observed
in [3] are: weakened role of the Buchberger criteria, fast search of a reductor,
natural and effective parallelism. By its similarity to Janet division, Janet-like
division preserves all these efficiency issues. The experimental evidence of this
fact will be described elsewhere.

There are grounds to believe that the new criterion of paper [15] can be
adopted to our algorithms too.
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