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Abstract. Information flow and non-interference are well-established
techniques for expressing both integrity and privacy properties. Because
of the enormous potential to transmit information using probabilistic
methods of cryptography, interest has arisen in extending the tradi-
tional notions of information flow to fully reactive settings that allow
for reasoning about arbitrary interactive systems, and in particular ar-
bitrary cryptographic protocols. We propose definitions for quantifying
the amount of information that users are able to transmit to each other
in such reactive settings, and we in particular address computational re-
strictions and error probabilities so that our definitions are suited for
complexity-theoretic reasoning about cryptographic systems. We show
that our definitions are preserved under simulatability, which constitutes
the cryptographic notion of a secure implementation, and we link our de-
finitions to non-interference by showing that a zero or negligible quantity
of information flow is equivalent to perfect or computational probabilistic
non-interference, respectively.

1 Introduction

Information flow and non-interference have become powerful possibilities for
expressing both privacy and integrity requirements. The concept of informa-
tion flow was first investigated for secure operating systems by Lampson [I7]
and subsequently by Bell and LaPadula [4] and Denning [7]. Initiated by
the work on non-interference of Goguen and Meseguer [1112], various de-
finitions have subsequently been proposed that rigorously specify when in-
formation flow is considered to occur for possibilistic and non-deterministic
systems [33124)3726l30/T0I2223] and for probabilistic systems [I3IT42535]32].
Whereas these lines of work concentrated on the absence of information flow in
various settings, they were accompanied by work that gave quantitative mea-
surements of the information that might flow between certain users, motivated
by use cases where some flow of information might be inevitable or accept-
able [27T6I20/518].

Recently, interest has arisen in generalizing definitions of information flow so
that they allow for reasoning about real cryptographic protocols in order to cap-
ture the variety of cryptographic techniques that can be used to transmit infor-
mation in a secret or undetectable way, e.g., encryption or steganographic tech-
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niques. The incorporation of cryptographic reasoning into information flow defin-
itions posed major challenges because a faithful analysis of cryptography requires
not only probabilistic behaviors but also error probabilities and polynomial-time
restrictions in terms of computational complexity. Moreover, a suitable definition
has to capture a reactive environment, i.e., continuous interaction between users,
an adversary, and the system. These problems recently led to the notion of com-
putational probabilistic non-interference [1I2], which was the first definition that
allowed for reasoning about information flow in a reactive setting and the pres-
ence of cryptography. However, quantitative measurements of information flow
in reactive settings and particularly in the presence of arbitrary cryptographic
protocols have not been addressed yet.

We present the first definitions for quantifying the amount of information
that one user is able to transmit to another user within a reactive setting.
We present definitions for unconditional security that are suitable for reasoning
about informational-theoretically secure or non-cryptographic systems, as well
as computational definitions that comprise complexity-theoretic reasoning such
as polynomially bounded adversaries, allow error probabilities, and are tightly
related to well-established cryptographic notions such as computational indistin-
guishability. Roughly, our approach to quantify an information flow from a high
user to a low user is to consider different behaviors of the high user that result
in different views of the low users (different probability distributions), to then
measure the distance of these distributions, and to finally maximize the result-
ing measurement for different behaviors of the high user. Both the unconditional
and the computational definitions comprise malicious or predefined behaviors of
third parties as well as timing aspects.

We show that our definitions are preserved under simulatability, which con-
stitutes the cryptographic notion of a secure implementation, i.e., securely imple-
menting a specification in the sense of simulatability may not increase the trans-
mitted information in the unconditional case, and only by a negligible quantity
in the computational case. This significantly simplifies the determination of the
information flow quantity permitted within a cryptographic system, since simu-
latability helps to eliminate cryptography-related details such as error probabil-
ities and computational restrictions. Moreover, we show that a zero or negligible
quantity of information flow is equivalent to perfect and computational proba-
bilistic non-interference. With our simulatability preservation theorem, this in
particular allows for a short, alternative proof that non-interference properties
are preserved under simulatability [1].

Further Related Literature. The only definitions of information flow that reside
in a reactive scenario and that allow for complexity-theoretic reasoning have
been presented by Backes and Pfitzmann in [IJ2] based on the model of reactive
simulatability [2903]; quantitative aspects of information flow are, however, not
considered there.

The work that comes closest to ours in terms of quantifying information
flow is the one on approzimate non-interference of Di Pierro et al. [8]. They
defined the notion of e-confinement that captured that information flow is still
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acceptable if the distance of views of specific user deviate only up to probability e.
Although their definition does not address computational aspects as needed for
cryptographic purposes, our work is nevertheless inspired by some of their ideas.
Lowe [20] measured the amount of information in a non-probabilistic setting by
counting the number of different behaviors of the high user that yield different
views for the low user. Clark et al. [5] proposed syntax-directed inference rules
for computing estimates on information flow in an imperative language. Both
works do not aim to deal with computational aspects.

Early ideas of quantitative security based on Shannon’s information theory
go back to Denning’s work [6], which was subsequently used in [27/16] to measure
the quantity of covert channels. The investigated settings, however, were sim-
plistic in that the channels were memoryless, there was no input feedback in the
channel, and only uncorrelated inputs; moreover, no computational restrictions
were taken into account there. This stands in blatant contrast to reactive scenar-
ios that allow for expressing and analyzing arbitrary (cryptographic) primitives
and protocols, where inputs and user behaviors are typically highly correlated
and protocols are highly stateful. We consider it interesting future work to ex-
tend the information-theoretic line of work to our unconditional definitions, and
we have some basic ideas on this subject that we intend to pursue.

Recent research has also investigated non-interference properties involving
real cryptographic primitives, but without investigating quantitative aspects.
Laud [I8/19] presented a sequential language for which he expressed real compu-
tational secrecy. The definition is non-reactive and specific to encryption as the
only cryptographic primitive. Volpano [34] investigated conditions for safely us-
ing one-way functions in a programming language, but his underlying definition
does not express non-interference, but the secrecy of a specific secret.

Outline of the Paper. In Section [2] we briefly review the underlying model of
reactive simulatability, which is an asynchronous probabilistic execution model
with distributed scheduling, including computational aspects as needed for cryp-
tography. We give our definitions for capturing the quantity of information trans-
mitted between two users in a fully reactive scenario—including the presence of
cryptographic techniques—in Section Bl In Section Ml we show that our defini-
tions are preserved under simulatability, and we finally show in Section [d that a
zero or negligible quantity of information flow is equivalent to existing notions
of perfect and computational probabilistic non-interference. We conclude with a
summary of our results in Section [6

2 The Model of Reactive Simulatability

Our work is based on the model of reactive simulatability [29/3], which is an
asynchronous probabilistic execution model with distributed scheduling that
provides universal composability properties while including computational as-
pects as needed for cryptography. The model is automata based, i.e., protocols
are executed by interacting machines, and event-based, i.e., machines react on
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certain inputs. All details of the model that are not necessary for understanding
are omitted here; for completeness, we give rigorous definitions of the relevant
notions in Appendix [Al

2.1 General System Model

A machine is a probabilistic IO automaton (extended finite-state machine) in
a slightly refined model to allow complexity considerations. For these automata
Turing-machine realizations are defined, and the complexity thereof is measured
in terms of a common security parameter k, given as the initial work-tape content
of every machine. A structure consists of a set M of connected machines and a
subset S of free ports, called service ports. Each structure is complemented to
a configuration by a set of user machines U and an adversary machine A. The
machines in U connect only to ports in S, whereas A connects to the remaining
free ports S of the structure and may interact with the users. We denote the
set of configurations of a structure (M,S) by Conf(M,S) and the subset of
polynomial-time configurations by Confpel, (M, S NE

The general scheduling model in [29/3] gives each connection ¢ (from an out-
put port ¢! to an input port c?) a buffer, and the machine with the corresponding
clock port ¢! can schedule a message there when it makes a transition. In real
cryptographic systems, network connections are typically scheduled by A, which
usually serves as a master scheduler, but the model allows for specifying other
designated master schedulers as well as local schedulers for specific connections.
Scheduling of machines is done sequentially, so there is exactly one active ma-
chine M at any time. If this machine has clock-out ports, it can select the next
message to be scheduled. If that message exists, it is delivered by the buffer and
the unique receiving machine is the next active machine. If M tries to schedule
multiple messages, only one is taken, and if it schedules none or the message
does not exist, the special master scheduler is scheduled.

This means that a configuration has a well-defined notion of runs, also called
traces or executions. Formally a run is essentially a sequence of steps, and each
step is a tuple of the name of the active machine in this step and its input,
output, and old and new local state. As the underlying state-transition functions
of the individual machines are probabilistic, one can define a probability space
on the possible runs by a canonical construction as for Markov chains, cf. [3]
for the precise definition. We call the corresponding random variable runcons i
for a configuration conf and the security parameter k. One can restrict a run
r to a machine M or a set of machines M by retaining only the steps of these
machines; this is called the view of these machines. For a configuration conf, the
corresponding random variables over the probability space of all possible runs

are denoted by view cons k(M) and view cons (M), respectively.

! Here and elsewhere we change some notation of [2913] from so-called systems to struc-
tures. These systems contain several possible structures, derived from an intended
structure with a trust model. Here we can always work with individual structures.
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2.2 Partition Configurations for Defining Information Flow

Structures and configurations in their general form impose no restrictions re-
garding which user can connect to which service ports, e.g., users in different
configurations might connect to a different subset of the service ports. For quanti-
fying information flow in a reactive environment, as well as for the mere detection
of information flow as defined in [I2], we need security domains between which
we can analyze the flow of information. It is intuitive to regard the possible pro-
tocol participants as security domains. However, to be independent of the details
of the actual user and the adversary machines, we represent users by the ports
they connect to in the considered structure (M ,5), and the adversary by the
remaining free ports of the structure. This means that we consider a partition
I' = {S; | i € I} of the set S of service ports, where Z is an arbitrary finite
index set. We can now designate each user H; with ¢ € 7 by the subset of service
ports S; it connects to. For a given structure and a partition of its service ports,
those configurations where each user only connects to its ports of the partition,
and where the adversary connects to the remaining free ports of the structure
are called partition configurations. A characteristic of partition configurations is
that the different user machines and the adversary have no direct connections,
because otherwise they could trivially transmit information without relying on
the possibilities granted by the structure. Moreover, a specific fair master sched-
uler X is added to the configuration because if the adversary were allowed to
schedule the connections to and from the users, it could always achieve proba-
bilistic information flow, cf. [12] for more details. We denote the set of partition
configurations of a structure (M, S) and partition I" by Comc(]\Ai7 S,TI") and the
subset of polynomial-time ones by Confpo|y(M , 5, ). Finally, we consider the
subset of partition configurations where users are only allowed to perform a
certain number of steps. This will allow us to reason about timing aspects of
information flow. We call a partition configuration with index set Z a timed
partition configuration for a function ¢: T — (N — NU {oo}), if the user H;
in this configuration only makes (i) outputs (as a function of k, the security
parameter). We call the set of these configurations Conf? (M, S, I") and the set

of polynomial ones Conffoly(M, S, T).

3 Measuring Probabilistic Information Flow in Reactive
Settings

We now define the amount of information that one user is able to transmit to
another user via a particular structure. Using standard terminology, we call these
two users the high user and the low user. The remaining users are referred to as
third parties.

Roughly speaking, the idea of quantifying information flow is that we consider
different behaviors of the high user that result in different views of the low users,
and measure the distance between these different views. Finally, we maximize
this distance for all possible behaviors of the high user, which gives the desired
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measure of the information quantity. The notion hence provides information on
how much two behaviors of the high user might differ in the worst case, given
only the view of the low user, and it hence resembles the similarity relation of [§].

It remains to decide to what extent the third parties might contribute to
the information flow. The most stringent choice is to regard every third party
as malicious, i.e., it fully exploits its possibilities to help the high user to trans-
mit information to the low user. Formally, this means that we quantify over the
behavior of all third parties to maximize the distance, and we speak of the worst-
case information quantity in this scenario. This approach is the one commonly
taken in the literature, as it gives an upper bound on the amount of informa-
tion flow under worst-case assumptions. Moreover, it is naturally linked to the
notion of non-interference, i.e., absence of information flow, as we will see in
Section [l Based on this core definition, we introduce several variants and ex-
tensions, including more benign behaviors of the third parties as well as timing
aspects.

Definition 1. (Worst-Case Information Quantity) Let (M, S) be a structure,
let I' = {S; | i € I} be a partition on the set S of service ports for a finite
set Z, and let ||-, || be a distance of user views, i.e., of probability distributions.
Furthermore, let H, L € Z be given. Then the worst-case information quantity
Ql(lj'\;’l'lls F)(H, L) that the high user Hy is allowed to transmit to Hy, is defined as

Q”':'” H L) := max view w(HL), view «(Hg
(M,S’F)( ) confl,coanEConf(l\}[,S,F) H conf, ( )’ confa; ( )H’

such that conf, is of the form conf, := (M, S, U, A) with U; = {HET_ZI), Hr, X} U
{H; | i € T\ {H,L}} for an arbitrary adversary A and arbitrary users
Hg), Hg), Hr, and H; for i € Z\ {H, L}. The polynomial-time worst-case infor-
1511

K (M,S,I)
over Confpoy (M, S, I). &

mation quantity Qp (H, L) is defined similarly by taking the maximum

Several extensions of this definition are useful. First, it is often more natural
to consider fixed behaviors for some of the third parties because in real world
examples, e.g., when a spy attempts to transmit information out of a company,
it is unlikely that every employee will help the spy to do so. Formally, this means
that we consider fixed user behaviors for a subset J C 7, i.e., we parameterize
the information quantity by a set M := {H, | j € J}. The remaining users are
considered malicious as in the previous definition. We speak of the generalized
information quantity here because we obtain the worst-case definition as the
special case M = ().

Definition 2. (Generalized Information Quantity) Consider the preconditions
as in Definition[[land let M := {H; | j € J} be given for fixed machines H; and

il M (H, L) with respect

J C Z. Then the generalized information quantity Q(M s.I)

to M is defined as

gl Il M H,L):= max view Hr), view Ho)ll,
(M’S’F)( ) conf1760nf26Conf(1\}[,5,F)H confhk( L) Conf27k( L)H
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such that conf, is of the form conf, := (M, S, U, A) with U; = {HET_II)7 Hp, X} U
{H; | i € T\ {H,L}} for an arbitrary adversary A and arbitrary users
H(I}[), Hf{), Hr, and H; for i € 7\ (J U{H, L}), i.e., the maximum is only taken
over those configurations in which the users H; for j € J are fixed by the para-

meter M. The polynomial-time variant Qp l(lM lg’J\FA) (H, L) is defined as usual. <&
Timing capabilities of certain users are typically of interest, i.e., to model that
a spy should not be allowed to send data all the time, or only has limited access
to his machine. We use timed partition configurations for this and speak of the
timed generalized information quantity.

Definition 3. (Timed Generalized Information Quantity) Consider the precon-
ditions as in Definition Pl and let in addition a function ¢: Z — (N — N U {o0})

be given. Then the timed generalized information quantity Ql(lM”Sj\l:l)so(H, L) with
respect to M, ¢ is defined as in Definition [2] except that the maximum is only
taken over Conf?(M, S, I"). The polynomial-time variant Qpl(lj'iw"lgf\;l)’@(H,L) is
defined as usual. <&

4 Preservation of Information Quantities Under
Simulatability

We now investigate how the information quantity behaves under simulatability,
which is the cryptographic notion of secure implementation. For reactive systems,
it means that whatever might happen to users in a real structure (Ml, S) can also
happen to users in an ideal structure (Mg, S) (with the same set of service ports
to which the same users can connect). Formally, for every set U of polynomial-
time users, and every polynomial-time adversary A, there exists a polynomial-
time adversary Ag such that the views of the machines in U are computationally
indistinguishable when run either with (M, S) or with (Mz, S). This is illustrated
in Figure [l Indistinguishability is a well-known cryptographic notion from [3§].

Definition 4. (Computational Indistinguishability) Two families (varg)ren and
(var})rken of random variables on common domains Dy, are computationally in-
distinguishable (“~") iff for every algorithm Dis (the distinguisher) that is prob-
abilistic polynomial-time in its first input, we have

|P(Dis(1%, vary,) = 1) — P(Dis(1*,var}) = 1)| € NEGL,

where NEGL denotes the set of all negligible functions, i.e., g: N — R>¢ € NEGL
iff for all positive polynomials @, FkoVk > ko: g(k) < 1/Q(k). &

Intuitively, given the security parameter and an element chosen according to
either vary or varj,, Dis tries to guess which distribution the element came from.

Definition 5. (Reactive Simulatability) Let structures (M, S) andA(Mg, S) be
given. We say that (M, S) is at least as secure as (Mo, S), written (M, S) >P3Y

—sec
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Fig. 1. Reactive simulatability: The two views of U must be indistinguishable

(My, S) if for every configuration conf, = (M, 8, U,A;) € Confooy (M, S),
there exists a configuration confy, = (Ma, S, U, Az) € Confpoly(Ma, S) such that

m’ewconfl ( U) R view confo ( U)'

We speak of perfect reactive simulatability, written (M, S) >Pf (Ms, S), if the
above formula holds for all (also non-polynomially bounded) configurations of

the respective structures, and with indistinguishability replaced by equality. <

4.1 Preservation of Information Quantities

The following theorem establishes that the information quantity between two
users is essentially unchanged under reactive simulatability. More precisely, the
theorem states that only a negligible additional quantity of information can
be transmitted to the low user when simulatability is applied, provided that
the employed distance respects computational indistinguishability in a natural
manner, i.e., two ensembles are indistinguishable if and only if their distance
constitutes a negligible function. We call such distances computational distances.
In the case of perfect reactive simulatability, we even show that no additional
information can be sent to the low user for any distance. (Note that reactive
simulatability is not symmetric, hence we cannot rule out that the user can only
transmit less information when interacting with a real structure rather than
when interacting with the ideal structure.)

These are exactly the properties that already allow modular and cryptograph-
ically sound proofs on the abstract level: For instance, an ideal specification
that should prohibit the flow of information between two users has informa-
tion quantity zero because it allows no communication between these two users
by construction, e.g., the ideal firewall presented in [I] is of this kind. This is
typically much easier to prove than for a cryptographic realization where the
restriction on the information flow might be achieved by cryptographic tech-
niques, e.g., digital signatures in the real implementation of the firewall. The
theorem hence allows for conveniently analyzing the information flow proper-
ties of real cryptographic systems by means of their ideal counterparts, and we
can hope that well-established techniques for enforcing the absence respectively
measuring the quantity of information flow based on type checking techniques,
e.g., [36J9283531132139], can be applied to our setting. Moreover, a negligible
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amount of information is the best we can hope for in the presence of asymmetric
cryptography because a negligible probability of error there always remains.

Theorem 1. (Preservation of Information Quantity) Let two structures (M;, S)
for i = 1,2 be given, let I' := {S; | ¢ € I} be a partition of S for a finite
index set Z, and let H,L € Z. Let M := {H; | j € J} for some J C 7 and
¢: T — (N — NU{oo}) arbitrary. Then (M;, S) >Pf (Ms,, §) implies

sec

QHJIMLP(H L) QH’HMSO(H L)

(M1,8,T) (M,S,T)
for every distance ||, -||. Moreover, (M, S) >P2 (M, §) implies
[l lles Mo llillmM@O
Op P kn.o.0 (H,L) < Qp 8. (H,L) +¢(k)
for some € € NEGL and every Computational distance |-, -||c. O
Proof. Let conf% = (Ml, S,U1,A) and confy = (Ml, S, Uz, A) be two

(polynomial-time) partition configurations in Conf“O(Ml,S,F ) with U :=
{H%),HL,X} U{H; | ¢ € T\ {H,L}} (for arbitrary machines H; for i €
Z\ (J U{H,L})) such that [|(view ons1 r(HL), view ons x(HL))|| is equal

to QI(IN’IIIK;V;,;O(H L) or to Qpl(lﬂ/’[”;/\;)@(H L), respectively, in the polynomial

case. Owing to (Ml,S) >sec (MQ,S), (polynomial-time) configurations conf?,
confi € Conf?(My, S) exist such that ViEW cong1 1 (U1) A view cons2 1 (U1) and
VIEW cong k(Uz) & view cons2 1 (Uz). Moreover, we obviously have conf?, confs €

Confwl(]\;lg, S, T") because the users and the set of service ports are unchanged
under simulatability, and ¢ = ¢’ as the users’ view could otherwise be trivially
distinguished in both configurations (the distinguisher waits until one user stops
in one configuration but continues to send messages in the other configuration).

We now restrict the views of Uy and Us to the user Hy, in all configurations.
This is the function on the view of both U; and Us, i.e., a polynomial-time
computable function applied to indistinguishable views, hence we obtain
VieW cong1 1k (HL) & view conp2 1 (Hr) and view copp1 x(HL) & view oppz x(Hr). In

the following, we abbreviate view Confi (H L) by vfc’j for the sake of readability
3’

We obtain Hv; H < ||vk ,vk

2l ot v
inequality. In the case of perfect reactive 51mu1atab1hty, we have v,i = vz !
L2 _ L1yl 2.1

and v,” = vk % for all k, hence ||y Il < [lvg

Conf?(M,, 8,T'), Definition [3] 1mphes Hvk ,vzz Q&;j”;‘jﬂ;’(H L) for all
distances |, ||, which completes the proof of the perfect case. In the com-
putational case of reactive simulatability, we have ||”U1 ! vi’lﬂc € NEGL and
|lvp?,v2%||c € NEGL for every computational distance H ||c As the class of neg-
ligible functions is closed under addition, (k) := Hvl ! Hc + Hvk ,vk

. As conf%, conf%

negligible function again. Now conf?, confs € COHst(MQ, S, I") and Definition B
[l le: Moo
P (N1y,8,1)

tational distance ||, -||c, which completes the proof of the computational case. m

imply that Hv2 ! i’QHC is upper bounded by Op (H, L) for any compu-
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5 Relationship to Probabilistic Non-interference

In this section, we show that the worst-case information quantity is related in a
natural way to the notion of probabilistic non-interference, i.e., to the absence
of probabilistic information flow. More precisely, we consider the recently pro-
posed definitions of perfect and computational probabilistic non-interference [I]
in reactive systems, and we show that a structure fulfills a non-interference prop-
erty for particular high and low users if and only if the worst-case information
quantity between these users is zero in the case of perfect non-interference or
bounded by a negligible function in the case of computational non-interference.

5.1 Brief Review of Computational Probabilistic Non-interference

We first review briefly the notions of perfect and computation non-interference in
reactive systems. Information flow properties such as non-interference consist of
two components: a flow policy and a definition of information flow. Flow policies
specify restrictions on the information flow within a system.

Definition 6. (Flow Policy) Let a structure (M, S) be given, and let I' =
{S; | i € T} denote a partition of S for a finite index set Z. A flow policy F of
the structure (M, §) is a graph F = (I',~+) with ~ C I x I'. For (S}, S;) € ~,
we write S; ~ 5;, and S; 4 §; otherwise. Furthermore we demand §; ~ S; for
all 5; e I'. <&

Here S; ~ S; intuitively means that information may flow from S; to S;, whereas
S; +» S; means that it must not. The relation % is the non-interference relation
of F,i.e., Sy + Sr means that no information must flow from the user connected
to the ports Sy to the user connected to the ports Sr. To capture this in a way
that allows for computational restrictions, error probabilities etc., the notion
of probabilistic non-interference from [I] gives the user Hg (connected to Spr)
a randomly distributed bit b at the start of the run, and Hgy should try to
transmit this bit to Hy (connected to Sr). The user Hy then outputs a bit
b*, which is its guess of the bit b. To capture this formally in the model, the
specific users have special ports for receiving the initial bit and for outputting
their guess, respectively, and special machines BIT g and OUT are added that
produce the bit b and consume the bit b*. As for partition configurations, the
same specific fair master scheduler X is added to the configuration to prevent
from achieving information flow in a trivial manner. The resulting configurations
are called non-interference configurations for Sy and Sr. Then the underlying
structure (M ,S) is defined to fulfill the non-interference requirement defined by
flow policy F in the computational sense (written (M, S) =PV F) iff for all H, L
with Sy + Sp and all polynomial-time non-interference configurations for Sy
and Sy, the probability of a correct guess b = b* is only negligibly greater than
pure guessing. A structure fulfills the requirement in the perfect sense (written
(M,8) =P F) iff the same holds for all (also non-polynomially bounded)
configurations and the advantage over pure guessing should be zero. We review
the rigorous definitions in Appendix [Al
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5.2 Linking Information Quantity and Non-interference

We now show that a structure fulfills a non-interference requirement if and only if
the worst-case information quantity between the respective pairs of users defined
by the flow policy is zero or a negligible function in the security parameter k,
respectively.

The left-to-right direction of this statement is closely related to existing re-
sults for previous definitions of non-interference, where it has been proved that
non-interference implies that the information quantity exchanged between the
respective users is zero. In a cryptographic scenario, the notion of a negligibly
small information quantity has replaced the total absence of information flow.
When considering the converse direction however, an information quantity of
zero was not sufficient to establish the non-interference property for many exist-
ing definitions of non-interference, which often made these properties too strict
for dealing with information flow. For the definition of perfect and computational
probabilistic non-interference in the reactive setting, we can establish this con-
verse direction. This might serve as an indication that the reactive definition of
non-interference is not overly restrictive and might constitute an important tool
for reasoning about absence of information flow in the presence of cryptography.

Theorem 2. (Information Quantity and Non-Interference) Let a structure
(M,S), a partition I' = {S; | i € I} of § for a finite index set Z, and a flow
policy F = (I',~) of (M,S) be given. Then we have (M, S) Izpe'f (resp.

(M, 8) =Py F) iff for all H, L € T with Sy + 81, we have QI(IA;IIL F)(H, L)=0
for all distances ||+, || (resp. QPLI&IKI; r)(H’ L) € NEGL for all computational
distances ||, ‘||c)- |

Proof. We only prove the more complicated computational case here; the per-
fect case can be easily derived from that. We start with the left-to-right di-

rection. Assume for contradiction that Qp!lk (H,L) ¢ NEGL for some

(M,S,I")
H,L with Si + Sr, and some computational distance ||-,-||c. This means that
there exist two partition configurations conf,; = (M,S, U1,A) and conf, =

(M, S, Uy, A) from Confpory(M, S, ") with U := {H H,, X} U {H; | i

T\ {H, L}} such that |[view cons, k(HL), view cons, x(HL)|lc = QPI(IA%’IE’F)(H, L).

This implies view cong, k(Hr) % view cons, .k (HL), i.e., there exists a probabilistic
polynomial-time distinguisher Dis such that |P(Dis(1¥, view cons, 1(HL)) = 1) —
P(Dis(1%, view cons, k(Hr)) = 1)| = n(k) for a non-negligible function n. We now
define a non-interference configuration conf that contradicts (M, S) =P F.
If the high user of conf receives b = 0, it acts as Hg), and as Hg) otherwise.
The low user of conf act as Hp but when Hy would enter final state, the low
user uses Dis as a blackbox submachine, runs it on Hy’s view, and outputs the
bit that Dis outputs. The low user is polynomial-time because both H; and
Dis are polynomial-time. The remaining users of conf act as in configuration
conf, and conf,. By the construction of conf, the probability of a correct guess
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b = b* of the low user in conf is equal to n(k), which yields a contradiction to
(M,S) [=Poly .

We now prove the right-to-left direction. Assume for contradiction that
(M,8) P F. Then there exist H, L with Sy + S7 and a non-interference
configuration conf for S, Sp such that the probability of a correct guess of the
low user in conf is equal to % +n(k) for some non-negligible function n. We now

define two partition configurations conf,, conf, as follows. The user Hg) in

conf, acts as Hg would if it received b = 0, and Hg) in conf, acts as Hg would
if it received b = 1. The user Hz, in conf, and conf, acts as the low user in conf
but instead of outputting the bit b* to the now non-existing machine OUT, it
simply stores b* (to keep it part of its view). The remaining users act as in conf.
Now, as n is a non-negligible function, we immediately obtain view conf, x(Hr) %
view conf, k(Hr) by construction of conf; and conf,, and hence
||[view cong, k(HL), view cons, .k (HL)||c € NEGL for every computational distance

H7HC This yields QPI(III\}’[II‘ISS F)(H,L) > Hviewconfl,k(HL),viewcoan,k(HL)Hc ¢

NEGL and hence the desired contradiction. n

The key property proved about the notions of perfect and computation prob-
abilistic non-interference in [I] is that they are preserved under reactive simu-
latability, i.e., if (Mg, S) fulfills a non-interference requirement and (Ml, S) is at
least as secure as (Ms, S), then (M, S) also fulfills this non-interference require-
ment. Using the results of Theorem 2] and Theorem [II, we can give a very short
alternative proof.

Corollary 1. (Preservation of Perfect/AComputalfion Probabilistic  Non-
interference [1], Sketch) Let structures (Mi,S), (M2,S) be given such that
(M, S) 2% (Ma, S) for x € {poly, perf}. Then (M, S) E* F for a flow policy

F implies (M, S) =* F. O
Proof. Theorem 2] and (My, §) =P°Y F imply Qpll-lle (H,L) € NEGL for all

M»,S.I"
H,L with Sy 7 Sp, and all computational distances |[|-,||c. Theorem [I] im-

plies QPLE[;‘};F(H, L) < Qpljgj;’lgcf(H, L) + e(k) for some ¢ € NEGL. Hence

Op IAIJIE F(H, L) € NEGL because the class of negligible function is closed under
1,0,

addition. Theorem [2] then yields (Ml, S) EPOY F. The perfect case is proved by
replacing Qp with @ and by considering arbitrary distances. [

6 Conclusion

We have presented the first definitions for quantifying information flow within
a reactive setting. The definitions comprise unconditional as well as complexity-
theoretic aspects of security and are hence suited for reasoning about information
flow even in the presence of cryptography. We have shown that our definitions are
preserved under simulatability which constitutes the cryptographic notion of a
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secure implementation. This significantly simplifies to determine the information
flow quantity for cryptographic system since simulatability helps to eliminate
cryptography-related details such as error probabilities and computational re-
strictions; hence we can hope to exploit existing non-cryptographic techniques for
this task. We have linked our definitions to existing non-interference definitions
by showing that a zero or negligible quantity of information flow is equivalent to
perfect and computational probabilistic non-interference. With our simulatabil-
ity preservation theorem, this has in particular allowed for a short, alternative
proof that non-interference properties are preserved under simulatability.
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A The Model of Reactive Simulatability

In this section we give a more comprehensive review of the model of reactive
simulatability [29/3] for the sake of completeness.

A.1 General System Model

Communication between different machines is done via ports. Inspired by the
CSP-notation [I5], we write input and output ports as p? and p!, respectively.
The input and output ports in a port set P are written in(P) and out(P), respec-
tively. Connections are defined by naming convention: port p! sends messages to
p?. To achieve asynchronous timing, a message is not immediately delivered to
its recipient, but is first stored in a special machine p called a buffer, where it
waits to be scheduled. This can be done by the machine with the unique clock-
out port p9l. To schedule the i-th message of buffer p, it outputs i at p9!, see
Figure Bl The buffer then delivers the i-th message and removes it from its in-
ternal list. Most buffers are scheduled either by a specific master scheduler or
by the adversary, i.e., one of those has the clock-out port. Ports p! and p?, in
contrast to the other four port types occurring at the buffers, are called simple,
and a simple machine has only simple ports and clock-out ports.

Schedgler for
g~ buffer g

A A

Sending q ~
machine| 9 > [[[m:[m Buffer g

>(q?

Receiving
machine

Fig. 2. Naming of ports around a buffer. Later one can often abstract from the buffer
and simply regard q! and q? as asynchronously connected.

The precise definition of machines is a variant of probabilistic state-transition
machines, similar to probabilistic I/O automata as sketched by Lynch [21]. If a
machine is switched, it reads an input tuple at its input ports and performs its
transition function. This yields a new state and an output tuple. A probabilistic
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transition function actually describes a finite distribution over the pairs of a new
state and an output tuple. Furthermore, each machine has bounds on the length
of considered inputs. This allows time bounds independent of the environment.

Definition 7. (Machines) A machine (for an alphabet X') is a tuple
M = (namewm, Portsm, Statesm, Om, Im, Inim, Finm)

of a machine name namey € X7, a finite sequence Portsy of ports, a set
Statesyy € X* of states, a probabilistic state-transition function 6y, a length
function Iy : Statesmy — (NU {oo})“"(Po’“tsM”, and sets Iniy, Finy C Statesw
of initial and final states. Its input set is Zy := (Z*)n(Pertsmll; the i-th ele-
ment of an input tuple denotes the input at the i-th in-port. Its output set is
Om = (Z*)|°“t(P°”SM)|. The empty word, €, denotes no in- or output at a port. oy
maps each pair (s,I) € Statesm X I to a finite distribution over Statespm x Owm.

If s € Finm or I = (¢,...,€), then dm(s, I) = (s, (€, ..., €)) deterministically.
Inputs are ignored beyond the length bounds, i.e., dm(s, 1) = dm(s, [y, (s)) for
all I € Iy, where (I[;,(s))i = Li[1(s), for all i. &

In the text, we often write “M” for namepn as well. In the following, the initial
states of all machines are a security parameter k& € N in unary representation.
In order to define the notion of polynomial runtime for these machines, Turing
machine realizations of them are defined so that the runtime can be measured in
the size of the initial worktape content (typically a security parameter in unary
representation).

A collection C' of machines is a finite set of machines with pairwise different
machine names and disjoint sets of ports. All machines start with the same
security parameter k. Let furthermore ports(CAv ) denote the set of all ports of all
machines in €. The completion [C’] of a collection C' consists of all machines
of C and the buffers needed for all the ports in C. The free ports free(é’) in a
collection are those to which no other port in the collection connects. A collection
C'is closed if its completion [C] has no free ports except a special master clock-in
port clk®?. The machine with this port is the master scheduler, to which control
returns as a default.

For a closed collection, a probability space of runs (sometimes called traces
or executions) is defined. The machines switch sequentially, i.e., there is exactly
one active machine M at any time, called the current scheduler. If this machine
has clock-out ports, it can select the next message to be scheduled as explained
above. If that message exists, it is delivered by the buffer and the recipient is
the next active machine. If M attempts to schedule multiple messages, only one
is taken. If it schedules none or the message does not exist, the master scheduler
is activated. Formally, runs are sequences of steps defined as follows (where the
state-transition function of buffers is as explained above).

Definition 8. (Runs) Given a closed collection €' with master scheduler X and
a security parameter k, the probability space of runs is defined inductively by
the following algorithm. It has variables r for the run under construction and
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Mcs for the current scheduler, and treats each port as a variable over X*. Here,
r is an initially empty list, Mcs a machine name initialized with X, and all port
variables are initially € except for clk?? := 1. Probabilistic choices only occur in
Phase[Tl

1. Switch current scheduler: Switch machine Mcs, i.e., set (s, 0) «— Sm(s, )
for its current state s and in-port values I. Then assign € to all in-ports of
Mcs.

2. Termination: If X is in a final state, the run stops.

3. Buffer new messages: For each simple out-port q! of Mcs, switch buffer q
with input q°7 := q!, cf. Figure 2l Then assign € to all these ports q! and
q<.

4. Clean up scheduling: If at least one clock out-port of Mcs has a value # ¢,
let q! denote the first such port and assign € to the others. Otherwise let
clk? := 1 and Mcs := X and go back to Phase [l

5. Deliver scheduled message: Switch buffer g with input q97? := q9! (see Fig-
ure [2), set q7 := g’ and then assign ¢ to all ports of q and to q!. Let
Mcs := M’ for the unique machine M’ with q? € ports(M’). Go back to
Phase [T

Whenever a machine (this may be a buffer) with name namey is switched from
(s,I) to (s',0), we append a step (namewm,s,I’',s’,O) to the run r for I’ :=
I}, (s), except if s is final or I’ = (e,...,€). This gives a family of random
variables

rung = (rung p)ken-

For a number | € N, the [-step prefix of a run r is the list of the first [ steps. <

Next we define what a machine sees in a run and what events happen at a set
of ports, and the probabilities of such views and events.

Definition 9. (Views and Restrictions to Ports) The view of a set of machines
M in arun r is the subsequence of all steps (namewm, s, I, s, O) where namey is
the name of a machine M € M. The restriction r[g of a run to a set S of ports
is a sequence derived as follows: First only retain the inputs and outputs, (I, 0),
from each step, and further restrict I and O to the ports in S. Then delete pairs
where both I and O have become empty.

The corresponding families of random variables (in the probability space over
the runs) are denoted by

view & (M) = (view ¢ (M ))ren and

rungls= (rung ;[ s)ken.

With an additional index [, we denote the I(k)-step prefixes of the views and
restrictions. <&

For a one-element set M = {H} we write view &(H) for view 5 ({H}).
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A.2 Security-Specific System Model

For security purposes, we have to define how adversaries and honest users con-
nect to specified machines of a collection. First, an adversary may take over parts
of the initially intended machines. These machines are then absorbed into the
adversary, and the remaining machines form a structure. Formally, a structure is
a collection of machines in which one additionally distinguishes which free ports
honest users can connect to and expect some reasonable service (e.g., message
transport in a cryptographic firewall), and which ports are only used by adver-
saries. The former are the service ports in the following definition. Valid honest
users should neither try to connect to the remaining free ports of a structure,
nor, for unique naming, have ports that already occur inside the structure. This
is expressed by forbidden ports. The ports connecting to a given port set P are
expressed by the complement notation P¢, e.g., q!° = q~7, q9!° = q9?, q =q?
in Figure[2 and vice versa.

—|C

Definition 10. (Structures) A structure is a pair (M, S) where M is a collection
of simple machines called correct machines, and S C free([M]) is called service
ports. If M is clear from the context, let S := free([M])\ S. We call forb(M, S) :=

ports(M) U S¢ the forbidden ports. O

A structure is completed to a (multi-party) configuration by a set of machines
U modeling the honest users, and by a machine A modeling the adversary. As
explained above, the machines in U do not have certain ports. A connects to the
remaining free ports of the structure.

Definition 11. ((Multi-party) Configurations)

a) A (multi-party) configuration of a structure (M, S) is a tuple conf = (M, S,
U,A), where U is a set of simple machines without forbidden ports, i.e.,
ports(U) N forb(M,S) = 0, and €' := M U U U {A} is a closed collection.
For simplicity, we often write runcons and view Conf(M ) instead of run s and
view g (M)

b) The set of (multi-party) configurations is written Conf(M, S). The subset of
configurations with polynomial-time users and a polynomial-time adversary
is called Conf,,o.y(M, S). The index poly is omitted if it is clear from the
context. &

Partition and non-interference configurations can now be defined by considering
only those users that have a specific set of ports so that they connect exactly to
the ports of the structure prescribed by the considered partition. We omit the
formal yet lengthy definitions and refer to [I].

A.3 Definition of Non-interference in the Model

We finally give a precise definition of perfect and computational probabilis-
tic non-interference in the reactive model, i.e., the formal semantics of the
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Fig. 3. Sketch of the non-interference definition: Hz, attempts to guess a bit that Hg
is attempting to transfer

+» relation. Usually, expressing this semantics is the most difficult part of an
information-flow definition. Given our underlying model, it is somewhat eas-
ier because we already have definitions of runs, views, and indistinguishability.
Based on these definitions, we can define the probability that the low user cor-
rectly guesses the bit that the high user attempts to transmit.

Definition 12. (Guessing Probability) For a non-interference configuration
conf € Conf(M,S,I') for Sy, Sy, € I' of a structure (M, S), the guessing proba-
bility Pguess,cons is defined as

Puess,conf = P(b =0 ‘ T <= TUN conf ks b:= T|—pb;t!§ b = r|_p;it?)7

with the ports ppit! and pf;,? defined as in Figure Bl This is a function of the
security parameter k. &

Now we are ready to give the non-interference definition, i.e., the definition
of the semantics of a flow policy for a reactive setting.

Definition 13. (Non-Interference) Let a structure (M, S) € Sys, and a flow
policy F = (I',~), I' = {S; | i € I} be given. We say that (M, S) fulfills the
non-interference requirement defined by the flow policy F

a) perfectly, written (M,S) =perf 7 iff for every H, L with Sy 7% Sp and
every non-interference configuration conf € Conf(M,S,I") for Sy and S,
we have

1
Pguess,conf < 5

¢) computationally, written (M,S) EPY F, iff for every H,L with
S 7 Sp and every polynomial-time non-interference configuration conf
€ Confpoly (M, S, I') for Sy and Sr, there exists a function e € NEGL such
that

1
Pguess,conf < 5 + G(k)
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