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Notations

The lectures are devoted to a complete exposition of the theory of singular-
ities of the Navier Stokes equations solution studied by Leray, in a simple
geometrical setting in which the fluid is enclosed in a container Ω with peri-
odic boundary conditions and side size L. The theory is due to the work of
Scheffer, Caffarelli, Kohn, Nirenberg and is called here CKN-theory as it is
inspired by the work of the last three authors which considerably improved
the earlier estimates of Scheffer.

Although the theory of Leray is well known I recall it here getting at the
same time a chance at establishing a few notations, [Ga02].
(1) An underlined letter, e.g. A,A˜

, . . ., denotes a 3–dimensional vector (i.e.

three real or complex numbers) and underlined partial derivative symbol
∂, ∂

˜
, . . . denotes the gradient operator (∂1, ∂2, ∂3). A vector field u is a function

on Ω.
(2) Repeated labels convention is used (labels are letters or other) when not
ambiguous: hence A · B or A

˜
· B

˜
means sum over i of AiBi. Therefore ∂ · u,

if u is a vector field, is the divergence of u, namely
∑

i ∂iui. ∂ · ∂ = ∆ is the
Laplace operator.
(3) Multiple derivatives are tensors, so that ∂∂˜

f is the tensor ∂ijf . The L2(Ω)

is the space of the square integrable functions on Ω: the squared norm of
f ∈ L2 will be ||f ||22

def
=

∫
Ω
|f(x)|2sx.

(4) The Navier-Stokes equation with regularization parameter λ is

u̇ = ν∆u− 〈u
˜
〉λ · ∂

˜
u− ∂p, ∂ · u = 0,

∫

Ω

u dx = 0 (0.1)

where the unkowns are u(x, t), p(x, t) with zero average and, [Ga02],
(i) u is a divergenceless field, p is a scalar field
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(ii) 〈u〉λ =
∫

Ω
χλ(x − y)u(y)dy and χλ is defined in terms of a C∞(Ω) func-

tion x → χ(x) ≥ 0 not vanishing in a small neighborhood of the origin and
with integral

∫
χ(x) dx ≡ 1: the function χ(x) can be regarded as a periodic

function on Ω or as a function on R3 with value 0 outside Ω, as we shall
imagine that Ω is centered at the origin, to fix the ideas. For λ ≥ 1 also the
function χλ(x)

def
= λ3χ(λx) can be regarded as a periodic function on Ω or as

a function on R3: it is an “approximate Dirac’s δ–function”. Usually the NS
equation contains a volume force too: here we set it equal to 0.1

(iii) The initial datum is a divergenceless velocity field u0 ∈ L2(Ω) with 0
average; no initial datum for p as p is determined from u0.
(5) A weak solution of the NS equations with initial datum u0 ∈ L2(Ω)
is a limit on subsequences of λ → ∞ of solutions uλ, pλ of (0.1). This
means that the Fourier transforms of uλ, and pλ exist and have components
uλ

k(t) ≡
∫

Ω
e−ikẋuλ(x)dx (k = 2π

L n, n ∈ Z3), and pλ
k(t) which have a limit

as λ → ∞ (on subsequences) for each k �= 0 and the limit of the uk(t) is ab-
solutely continuous. This is equivalent to the existence of the limits of the L2

products (u(t), ϕ)L2 and (p(t), ψ)L2 for all t ∈ (0,∞] and for all test functions
f(x), ψ(x). There might be several such limits (i.e. the limit may depend on
the subsequence) and what follows applies to any one among them.

The core of the analysis will deal with the regularized equation and the
properties of its solutions, which are easily shown to be C∞ in x ∈ Ω and in
t ∈ (0,∞) if the intial datum is u ∈ L2(Ω). The limit λ→ ∞ will be taken at
the end and it is where the theory becomes non conctructive because there is
need to consider the limit on subsequences.

Of course the point is to obtain bounds which are uniform in λ→ ∞ and
the limit λ→ ∞ only intervenes at the end to formulate the results in a nice
form.

The theory of Leray is based on the following a priori bounds, see section
3.2 in [Ga02], on solutions of (0.1) with initial datum u0 with L2 square norm
E0

||uλ(t)||22 ≤ E0,

∫ t

0

dτ ||∂u
˜

λ(τ)||22 ≤ 1
2
E0 ν

−1 (0.2)

satisfied by the solution uλ.
The notes are extracted from reference [Ga02] to which the reader is re-

ferred for details on the above results and have been made independent from
[Ga02] modulo the above results (in fact, essentially, only modulo the state-
ments on the regularized equation (0.1)).

The proof is conceptually quite simple and is based on a few (clever)
a priori Sobolev inequalities: the estimates are discussed in Sect. 1-3, which
form an introduction.
1 This is a simplicity assumption as the extension of the theory to cases with time

independent smooth (e.g. C∞) volume forces would be immediate and just a
notational nuisance.
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Their application to the analysis of (0.1) is in Sect. 4 where the main
theorems are discussed and the CKN main result is reduced via the inequalities
to Scheffer’s theorem. The method is a kind of multiscale analysis which allows
us to obtain regularity provided a control quantity, identified here as the “local
Reynolds number” on various scales, is small enough. Unfortunately it is not
(yet) possible to prove that the local Reynolds number is small on all small
regions (physically this would mean that in such regions the flow would be
laminar, hence smooth on small scale).

However the a priori bounds give the information that the local Reynolds
number must be small near many points in Ω and, via standard techniques, an
estimate of the dimension of the possibly bad points follows. The application to
the fractal dimension bound is essentially an “abstract reasoning” consequence
of the results of Sect. 4 and is in Sect. 5.

The proofs of the various Sobolev inequalities necessary to obtain the key
Scheffer’s theorem and of the new ones studied by CKN is decribed concisely
but in full detail in the series of problems at the end of the text: the hints
describe quickly the various steps of the proofs (however without skipping any
detail, to my knowledge).

1 Leray’s Solutions and Energy

The theory of space–time singularities will be partly based upon simple general
kinematic inequalities, which therefore have little to do with the Navier–Stokes
equation, and partly they will be based on the local energy conservation which
follows as a consequence of the Navier–Stokes equations but it is not equivalent
to them.

Energy conservation for the regularized equations (0.1) says that the ki-
netic energy variation in a given volume element ∆ of the fluid, in a time
interval [t0, t1], plus the energy dissipated therein by friction, equals the sum
of the kinetic energy that in the time interval t ∈ [t0, t1] enters in the volume
element plus the work performed by the pressure forces (on the boundary
element) plus the work of the volume forces (none in our case). The analytic
form of this relation is simply obtained by multiplying both sides of the first
of the (0.1) by u and integrating on the volume element ∆ and over the time
interval [t0, t1].

The relation that one gets can be generalized to the case in which the vol-
ume element has a time dependent shape. And an even more general relation
can be obtained by multiplying both sides of (0.1) by ϕ(x, t)u(x, t) where ϕ
is a C∞(Ω× (0, s]) function with ϕ(x, t) zero for t near 0 (here s is a positive
parameter).

Energy conservation in a sharply defined volume ∆ and time interval t ∈
[t0, t1] can be obtained as limiting case of choices of ϕ in the limit in which
it becomes the characteristic function of the space–time volume element ∆×
[t0, t1].
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Making use of a regular function ϕ(x, t) is useful, particularly in the rather
“desperate” situation in which we are when using the theory of Leray. The
“solutions” u (obtained by removing, in (0.1), the regularization, i.e. letting
λ→ ∞) are only “weak solutions”. Therefore, the relations that are obtained
in the limit λω∞ can be interpreted as valid only after suitable integrations
by parts that allow us to avoid introducing derivatives of u (whose existence
is not guaranteed by the theory) at the “expense” of differentiating the “test
function” ϕ.

Performing analytically the computation of the energy balance, described
above in words, in the case of the regularized equation (0.1) and via a few
integrations by parts2 we get the following relation

1
2

∫
Ω
dξ|u(ξ, s)|2ϕ(ξ, s) + ν

∫ s

0
dt

∫
Ω
ϕ(ξ, t)|∂u

˜
(ξ, t)|2dx =

=
∫ s

0

∫
Ω

[
1
2 (ϕt + ν ∆ϕ)|u|2 + 1

2 |u|2〈u˜
〉λ · ∂

˜
ϕ+ p u · ∂ϕ

]
dt dξ

(1.1)

where ϕt ≡ ∂tϕ and u = uλ is in fact depending also on the regularization
parameter λ; here p is the pressure p = −

∑
ij ∆

−1∂i∂j(uiuj).
Suppose that the solution of (0.1) with fixed initial datum u0 converges

(weakly in L2), for λ → ∞, to a “Leray solution” u possibly only over a
subsequence λn → ∞.

The (1.1) implies that any (in case of non uniqueness) Leray solution u
verifies the energy inequality:

1
2

∫
Ω
|u(ξ, s)|2ϕ(ξ, s) dξ + ν

∫
t≤s

∫
Ω
ϕ(ξ, t)|∂u

˜
(ξ, t)|2dξdt ≤

≤
∫

t≤s

∫
Ω

[
1
2 (ϕt + ν ∆ϕ)|u|2 + 1

2 |u|2u˜
· ∂
˜
ϕ+ p u

˜
· ∂
˜
ϕ
]
dξ dt

(1.2)

where the pressure p is given by p = −
∑

ij ∆
−1∂i∂j(uiuj) ≡ −∆−1∂

˜
∂(uu

˜
)

≡ −∆−1(∂
˜
u)2.

Remark 1.1.
(1) It is important to remark that in this relation one might expect the

equality sign: as we shall see the fact that we cannot do better than just
obtaining an inequality means that the limit necessary to reach a Leray so-
lution can introduce a “spurious dissipation” that we are simply unable to
understand on the basis of what we know (today) about the Leray solutions.

(2) The above “strange” phenomenon reflects our inability to develop a
complete theory of the Navier–Stokes equation, but one can conjecture that
no other dissipation can take place and that a (yet to come) complete theory
of the equations could show this. Hence we should take the inequality sign in
(1.2) as one more manifestation of the inadequacy of the Leray’s solution.

2 The solutions of (0.1) are C∞(Ω × [0,∞)) so that there is no need to justify
integrating by parts.
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The proof of (1.2) and of the other inequalities that we shall quote and
use in this section is elementary and based, c.f.r. problem [15] below, on a few
general “kinematic inequalities” that we now list (all of them will be used in
the following but only (S) and (CZ) are needed to check (1.2)).

2 Kinematic Inequalities

A first “kinematic” inequality, i.e. the first inequality that we shall need and
that holds for any function f , is 3

(P) Poincaré inequality:
∫

Br

dx |f − F |α ≤ CP
α r

3−2α

(∫

Br

dx |∂f |
)α

, 1 ≤ α ≤ 3
2

(2.1)

where F is the average of f on the ball Br with radius r and CP
α is a suitable

constant. We shall denote (2.1) by (P).

A second kinematic inequality that we shall use is

(S) Sobolev inequality:

∫
Br

|u|q dx ≤ CS
q

[ (∫
Br

(∂u
˜

)2 dx
)a

·
(∫

Br
|u|2 dx

)q/2−a

+

+r−2a
(∫

Br
|u|2 dx

)q/2 ]
if 2 ≤ q ≤ 6, a = 3

4 (q − 2)
(2.2)

where Br is a ball of radius r and the integrals are performed with respect to
dx. The CS

q is a suitable constant; the second term of the right hand side can
be omitted if u has zero average over Br. We shall denote (2.2) by (S), [So63].

A third necessary kinematic inequality will be

(CZ) Calderon–Zygmund inequality:
∫

Ω

|
∑
i,j

(∆−1∂i∂j)(uiuj)|qdξ ≤ CL
q

∫

Ω

|u|2qdξ , 1 < q <∞ (2.3)

which we shall denote (CZ): here Ω is the torus of side L and CL
q is a suitable

constant, [St93].

And finally

(H) Hölder inequality:

3 The inequalities should be regarded as inequalities for C∞ functions; they can be
extended to the appropriate Sobolev spaces by continuity.
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∣∣∣∣
∫
f1f2 . . . fn

∣∣∣∣ ≤
n∏

i=1

(∫
|fi|pi

) 1
pi

,

n∑
i=1

1
pi

= 1 (2.4)

which we shall denote (H): the integrals are performed over an arbitrary do-
main with respect to an arbitrary measure (of course the same for all inte-
grals).

Remark 2.1. (H) are a trivial extension of the Schwartz-Hölder inequalities;
while (S) and (P) (mainly in the cases, important in what follows, q = 6 and
α = 3

2 ) and (CZ) are less elementary and we refer to the literature, [So63],
[St93], [LL01], for their proofs.

An important consequence of the inequalities is

Proposition 2.1. Let u be a Leray solution verifying (therefore) the a priori
bounds in (0.2):

∫
Ω
|u(x, t)|2dx ≤ E0 and

∫ T

0
dt

∫
Ω
|∂
˜
u(x, t)|2 dx ≤ E0ν

−1

then ∫ T

0

dt

∫

Ω

dx |u|10/3 +
∫ T

0

dt

∫

Ω

dx |p|5/3 ≤ Cν−1E
5/3
0 (2.5)

where C can be chosen CS
10
3

(1 + CL
5
3
).

proof: Apply (S) with q = 10
3 and a = 1:

∫

Ω

|u| 103 dx ≤ CS
10
3

(∫

Ω

(∂u
˜

)2 dx
)1

·
(∫

Ω

u2 dx

) 5
3−1

≤ CS
10
3
E

2
3
0

∫

Ω

|∂
˜
u|2 (2.6)

hence integrating over t between 0 and T using also the second a priori esti-
mate, we find

∫ T

0

dt

∫

Ω

|u| 103 dx ≤ CS
10
3
E

2
3
0

∫ T

0

dt

∫

Ω

dx (∂
˜
u)2 ≤ CS

10
3
ν−1E

1+ 2
3

0 (2.7)

while the (CZ) yields:
∫

Ω
dx |p| 53 ≤ CL

5
3

∫
Ω
dx |u| 103 which, integrated over t

and combined with (2.7), gives the announced result.

3 Pseudo Navier Stokes Velocity – Pressure Pairs.
Scaling Operators

As already mentioned the CKN theory will not fully use that u verifies the
Navier–Stokes equation: in order to better realize this (unpleasant) property
it is convenient to define separately the only properties of the Leray solutions
that are really needed to develop the theory, i.e. to obtain an estimate of
the fractal dimension of the space–time singularities set S0. This leads to the
following notion
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Definition 3.1. (pseudo NS velocity field): Let t→ (u(·, t), p(·, t)) be a func-
tion with values in the space of zero average square integrable “velocity” and
“pressure” fields on Ω. Suppose that for each ϕ ∈ C∞(Ω× (0, T ]) with ϕ(x, t)
vanishing for t near zero the following properties hold. For each T < ∞ and
s ≤ T :

(a)
∫

Ω
u dx = 0, ∂ · u = 0, p = −

∑
i,j ∂i∂j∆

−1(uiuj)
(b)

∫ T

0
dt

∫
Ω
dx |u|10/3 +

∫ T

0
dt

∫
Ω
dx |p|5/3 <∞

(c) 1
2

∫
Ω
dx |u(x, s)|2ϕ(x, s) + ν

∫
t≤s

∫
Ω
ϕ(x, t)|∂u

˜
|2dxdt ≤

≤
∫

t≤s

∫
Ω

[
1
2 (ϕt + ν ∆ϕ)|u|2 + 1

2 |u|2u˜
· ∂
˜
ϕ+ p u

˜
· ∂
˜
ϕ
]
dx dt

(3.1)

Then we shall say that the pair (u, p) is a pseudo NS velocity and pressure
pair. The singularity set in the time interval [0, T ] of (u, p) will be defined as
the set S0 of the points (x, t) ∈ Ω× [0, T ] that do not admit a vicinity U where
|u| is bounded.4

The name given to the set S0 is justified by a general result on the theory
of NS equations which shows that is a Leray’s solution of the NS equations
is essentially bounded in a neighborhood of a space time point then it is C∞

near such point.

Proposition 3.1. (velocity is unbounded near singularities): Let u(x, t) be a
Leray’s solution of the NS equation in L2. Given t0 > 0 suppose that |u(x, t)| ≤
M , (x, t) ∈ Uρ(x0, t0) ≡ sphere of radius ρ (ρ < t0) around (x0, t0), for some
M <∞: then u ∈ C∞(Uρ/2(x0, t0)).

Remark 3.1.
(1) This means that the only way a singularity can manifest itself, in a Leray
solution of the NS equations, is through a divergence of the velocity field itself.
For instance it is impossible to have a singular derivative having the velocity
itself unbounded. Hence, if d ≥ 3 velocity discontinuities are impossible (and
even less so shock waves), for instance. Naturally if u(x, t) is modified on a
set of points (x, t) with zero measure it remains a weak solution (because the
Fourier transform, in terms of which the notion of weak solution is defined,
does not change), hence the condition |u(x, t)| ≤M for each (x, t) ∈ Uλ(x0, t0)
can be replaced by the condition: for almost all (x, t) ∈ Uλ(x0, t0).
(2) The above result is not strong enough to overcome the difficulties of a local
theory of regularity of the Leray weak solutions. Therefore one looks for other
results of the same type and it would be desirable to have results concerning
4 Here we mean bounded outside a set of zero measure in U or, as one says, essen-

tially bounded because it is clear that, being u, p in L2(Ω), they are defined up to
a set of zero measure and it would not make sense to ask that they are bounded
everywhere without specifying which realization of the functions we take.
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regularity implied by a priori informations on the vorticity. We have already
seen that bounded total vorticity implies regularity: however it is very difficult
to go really beyond; hence it is interesting to note that also other properties of
the vorticity may imply regularity. A striking result in this direction, although
insufficient for concluding regularity (if true at all) of Leray weak solutions,
is in [CF93].
(3) For a proof of the above (Serrin’s) theorem see [Ga02], proposition IV in
section 3.3.

The remaining part of this section will concern the general properties of
the pseudo NS pairs and their regularity at a given point (x, t): it will not have
more to do with the velocity and pressure fields that solve the Navier–Stokes
equations. It is indeed easy to convince oneself that the (3.1), in spite of the
arbitrariness of ϕ, are not equivalent, not even formally, to the Navier–Stokes
equations, and they pose far less severe on u, p restrictions. We should not be
surprised, therefore, if it turned out possible to exhibit pseudo NS pairs that
really have singularities on “large sets” of space–time. In a way it is already
surprising that the pseudo NS fields verify the regularity properties discussed
below.

The analysis of the latter properties (of pseudo NS fields) is based on the
mutual relations between certain quantities that we shall call “dimensionless
operators” relative to the space–time point (x0, t0)

Definition 3.2. (dimensionless “operators” for NS) Let (x0, t0) ∈ Ω× (0,∞)
and consider the sets 5

∆r(t0) = {t| |t− t0| < r2ν−1}
Br(x0) = {ξ | |ξ − x0| < r} ≡ Br

Qr(x0, t0) = {(ξ, ϑ) | |ξ − x0| < r, |ϑ− t0| < r2ν−1}
Qr(x0, t0) = ∆r(t0) ×Br(x0) ≡ Qr

(3.2)

define:

(i) “dimensionless kinetic energy operator” on scale r:

A(r) =
1
ν2r

sup
|t−t0|≤ν−1r2

∫

Br

|u(ξ, t)|2 dξ (3.3)

and we say that the dimension of A is 1 : this refers to the factor r−1 that is
used to make the integral dimensionless.

(ii) “local Reynolds number” averaged on scale r:

δ(r) =
1
νr

∫

Qr

dϑdξ |∂
˜
u|2 (3.4)

5 If r ≥ L/2 this is interpreted as Br ≡ Ω. If r2ν−1 > t0 then ∆r(t0) is interpreted
as 0 < t < t0 + r2ν−1
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and we say that the dimension of δ is 1 : this refers in general to the power
−α to which r has to be raised so that an expression becomes dimensionless:
in this case α = 1.

(iii) “dimensionless energy flux” on scale r:

G(r) =
1
ν2r2

∫

Qr

dϑdξ |u|3 (3.5)

The dimension of G is 2.
(iv) “dimensionless pressure power” forces on scale r:

J(r) =
1
ν2r2

∫

Qr

dξdϑ |u| |p| (3.6)

The dimension of J is 2.
(v) “dimensionless non locality” on scale r:

K(r) =
r−13/4

ν3/2

∫

∆r

dϑ
( ∫

Br

|p| dξ
)5/4

(3.7)

The dimension of K is 13/4.
(vi) “dimensionless intensity” on scale r:

S(r) = ν−7/3r−5/3

∫

Qr

(|u|10/3 + |p|5/3)dϑdξ (3.8)

where the pressure is always defined by the expression

p = −
3∑

i,j=1

∂i∂j∆
−1(uiuj).

The dimension of S is 5/3.

Remark 3.2.
(1) The A(r), . . . are not operators in the common sense of functional analy-
sis. Their name is due to their analogy with the quantities that appear in
problems that are studied with the methods of the “renormalization group”
(which, also, are not operators in the common sense of the words). Perhaps
a more appropriate name could be “dimensionless observables”: but we shall
call them operators to stress the analogy of what follows with the methods of
the renormalization group.
(2) The A(r), G(r), J(r),K(r), S(r) are in fact estimates of the quantities that
their name evokes. We omit the qualifier “estimate” when referring to them
for brevity.
(3) The interest of (i)÷(iv) becomes manifest if we note that the energy in-
equality (3.1) can be expressed in terms of such quantities if ϕ is suitably
chosen. Indeed let
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ϕ = χ(x, t)
exp−

( (x−x0)
2

4(ν(t0−t)+2r2)

)

(4πν(t− t0) + 8πr2)3/2
(3.9)

where χ(x, t) is C∞ and has value 1 if (x, t) ∈ Qr/2 and 0 if (x, t) �∈ Qr. Then
there exists a constant C > 0 such that

|ϕ| < C
r3 , |∂ϕ| < C

r4 , |∂tϕ+ ν∆ϕ| < C
ν−1r5 , everywhere

|ϕ| > 1
Cr3 , if (x, t) ∈ Qr/2

(3.10)

Hence (3.1) implies

ν2

Cr2
(
A( r

2 ) + δ( r
2 )

)
≤ C

( 1
ν−1r5

∫

Qr

|u|2 +
1
r4

∫

Qr

|u|3 +
1
r4

∫

Qr

|u||p|
)

(3.11)

and, since
∫

Qr
|u|2 ≤ C (

∫
Qr

|u|3)2/3(ν−1r5)1/3 with a suitable C, it follows
that for some C̃

A( r
2 ) + δ( r

2 ) ≤ C̃
(
G(r)2/3 +G(r) + J(r)

)
(3.12)

(4) Note that the operator δ(r) is an average of the “local Reynolds’ number”
r
∫

∆r
|∂u|2dξ

(5) The operator (v) appears if one tries to bound J( r
2 ) in terms of A(r)+δ(r):

such an estimate is indeed possible and it will lead to the local Scheffer theorem
discussed in the next section.

4 The Theorems of Scheffer
and of Caffarelli–Kohn–Nirenberg

We can state the strongest results known (in general and to date) about the
regularity of the weak solutions of Navier Stokes equations (which however
hold also for the pseudo Navier Stokes velocity–pressure pairs).

Theorem 4.1 (upper bound on the dimension of the sporadic set of singular
times for NS, (“Scheffer’s theorem”)): There are two constants εs, C > 0 such
that if G(r) + J(r) +K(r) < εs for a certain value of r, then u is bounded in
Q r

2
(x0, t0):

|u(x, t)| ≤ C ε
1/3
s

r
, (x, t) ∈ Q r

2
(x0, t0), almost everywhere (4.1)

having set ν = 1.

Remark 4.1.
(1) c.f.r. problems (5)÷(11) for a guide to the proof.
(2) This theorem can be conveniently combined, for the purpose of checking its
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hypotheses, with the inequality: J(r)+G(r)+K(r) ≤ C
(
S(r)9/10 +S(r)3/4

)
,

which follows immediately from inequality (H) and from the definitions of the
operators, with a suitable C.
(3) In other words if the operator S(r) is small enough then (x0, t0) is a regular
point.
(4) This will imply that the fractal dimension of the space–time singularities
set is ≤ 5/3. In fact, see section 5 below, an a priori estimate on the global
value of an operator with dimension α implies that the Hausdorff’ measure
of the set of points around which the operator is large does not exceed α;
here the operator S(r) has dimension 5/3 and therefore together with the
a priori bound (2.5) it yields and estimate ≤ 5/3 for the Hausdorff dimension
of the singularity set. This also justifies the introduction of the operator S(r).

It is easy, in terms of the just defined operators, to illustrate the strategy
of the proof of the following theorem which will immediately imply, via a
classical argument reproduced in section 5 below, that the fractal dimension
of the space time singularities set S0 for a pseudo NS field is ≤ 1 and that its
1–measure of Hausdorff µ1(S0) vanishes.

Theorem 4.2 (sufficient condition for local regularity space-time (“CKN the-
orem”)): There is a constant εckn such that if (u, p) is a pseudo NS pair of
velocity and pressure fields and

lim sup
r→0

1
νr

∫

Qr(x0,t0)

|∂
˜
u(x′, t′)|2 dx′dt′ ≡ lim sup

r→0
δ(r) < εckn (4.2)

then u(x′, t′), p(x′, t′) are C∞ in the vicinity of (x0, t0).
6

For fixed (x0, t0), consider the “sequence of length scales”: rn ≡ L2n, with
n = 0,−1,−2, . . .. We shall set αn ≡ A(rn), κn = K

8/5
n , jn = Jn, gn = G

2/3
n ,

δn = δ(rn) which is a natural definition as it will shortly appear. And define
Xn ≡ (αn, κn, jn, gn) ∈ R4

+. Then the proof of this theorem is based on a
bound that allows us to estimate the size of Xn, defined as the sum of its
components, in terms of the size of Xn+p provided the Reynolds number δn+p

on scale n+ p is ≤ δ.
The inequality will have the form (if p > 0 and 0 < δ < 1)

Xn ≤ Bp(Xn+p; δ) (4.3)

where Bp(·; δ) is a map of the whole R4
+ into itself and the inequality has to

be understood “component wise”, i.e. in the sense that each component of
the l.h.s. is bounded by the corresponding component of the r.h.s. We call |X|
the sum of the components of X ∈ R4

+.

6 This means that near (x, t) the functions u(x′, t′), p(x′, t′) coincide with C∞ func-
tions apart form a set of zero measure (recall that the pseudo NS fields are defined
as fields in L2(Ω))
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The map Bp(·; δ), which to some readers will appear as strongly related to
the “beta function” for the “running couplings” of the “renormalization group
approaches”,7 will enjoy the following property

Proposition 4.1. Suppose that p is large enough; given ρ > 0 there exists
δp(ρ) > 0 such that if δ < δp(ρ) then the iterates of the map Bp(·; δ) contract
any given ball in R4

+, within a finite number of iterations, into the ball of
radius ρ: i.e. |Bk

p(X; δ)| < ρ for all large k’s.

Assuming the above proposition the main theorem II follows:

proof: Let ρ = εs, c.f.r. theorem I, and let p be so large that the above
proposition holds. We set εckn = δp(εs) and it will be, by the assumption
(4.2), that δn < εckn for all n ≤ n0 for a suitable n0 (recall that the scale
labels n are negative).

Therefore it follows that |Bk
p(Xn0

; εckn)| < εs for some k. Therefore by the
theorem I we conclude that (x0, t0) is a regularity point.

Proposition 5.1 follows immediately from the following general “Sobolev
inequalities”

(1) “Kinematic inequalities”: i.e. inequalities depending only on the fact
that u is a divergence zero, average zero and is in L2(Ω) and p = −∆−1(∂

˜
u)2

Jn ≤ C (2−p/5A
1/5
n+pG

1/5
n K

4/5
n+p + 22pA

1/2
n+pδn+p)

Kn ≤ C (2−p/2Kn+p + 25p/4A
5/8
n+pδ

5/8
n+p)

G
2/3
n ≤ C (2−2pAn+p + 22pA

1/2
n+pδ

1/2
n+p)

(4.4)

where C denotes a suitable constant (independent on the particular pseudo
NS field). The proof of the inequalities (4.4) is not difficult, assuming the
(S,H,CZ,P) inequalities above, and it is illustrated in the problems (1), (2),
(3).

(2) “Dynamical inequality”: i.e. an inequality based on the energy inequal-
ity (c) in (3.1) which implies, quite easily, the following “dynamic inequality”8

An ≤ C (2pG
2/3
n+p + 2pAn+pδn+p + 2pJn+p) (4.5)

whose proof is illustrated in problem (4).

7 Indeed it relates properties of operators on a scale to those on a different scale.
Note, however, that the couplings on scale n, i.e. the components of Xn, provide
information on those of Xn+p rather than on those of Xn−p as usual in the
renormalization group methods, see [BG95].

8 We call it “dynamic” because it follows from the energy inequality, i.e. from the
equations of motion.
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Proof of proposition: Assume the above inequalities (4.4), (4.5) and setting
αn = An, κn = K

8/5
n , jn = Jn, gn = G

2/3
n , δn+p = δ and, as above, Xn =

(αn, κn, jn, gn). The r.h.s. of the inequalities defines the map Bp(X; δ).
If one stares long enough at them one realizes that the contraction property

of the proposition is an immediate consequence of
(1) The exponents to which ε = 2−p is raised in the various terms are either
positive or not; in the latter cases the inverse power of ε is always appearing
multiplied by a power of δn+p which we can take so small to compensate for
the size of ε to any negative power, except in the one case corresponding to
the last term in (4.5) where we see ε−1 without any compensating δn+p.
(2) Furthermore the sum of the powers of the components of Xn in each term
of the inequalities is always ≤ 1: this means that the inequalities are “almost
linear” and a linear map that “bounds” Bp exists and it is described by a
matrix with small entries except one off–diagonal element. The iterates of the
matrix therefore contract unless the large matrix element “ill placed” in the
matrix: and one easily sees that it is not.

A formal argument can be devised in many ways: we present one in which
several choices appear that are quite arbitrary and that the reader can replace
with alternatives. In a way one should really try to see why a formal argument
is not necessary.

The relation (4.5) can be “iterated” by using the expressions (4.4) for
Gn+p, Jn+p and then the first of (4.4) to express G1/5

n+p in terms of An+2p with
n replaced by n+ p:

αn ≤ C (2−pαn+2p + 23pδ
1/2
n+2pα

1/2
n+2p+

+2p/5(αn+2pκn+2p)1/2 + 27p/5δn+2pα
7/20
n+2pκ

1/2
n+2p+

+23pδn+2pαn+2p)
(4.6)

It is convenient to take advantage of the simple inequalities (ab)
1
2 ≤ za+

z−1b and ax ≤ 1 + a for a, b, z, x > 0, x ≤ 1.
The (4.6) can be turned into a relation between αn and αn+p, κn+p by

replacing p by 1
2p. Furthermore, in the relation between αn and αn+p, κn+p

obtained after the latter replacement, we choose z = 2−p/5 to disentangle
2p/10(αn+pκn+p)1/2 we obtain recurrent (generous) estimates for αn, κn

αn ≤ C (2−p/10αn+p + 23p/10κn+p + ξαn+p)
κn ≤ C (2−4p/5κn+p + ξκn+p)

ξαn+p
def
= 23pδn+p(αn+p + κn+p + 1)

ξκn+p
def
= 23pδn+pαn+p

(4.7)

We fix p once and for all such that 2−p/10C < 1
3 .
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Then if C23pδn is small enough, i.e. if δn is small enough, say for δn < δ

for all |n| ≥ n, the matrix M = C
(

2−p/10 + 23pδn+p 23p/10 + 23pδn+p

0 2−4p/5 + 23pδn+p

)
will

have the two eigenvalues < 1
2 and iteration of (4.6) will contract any ball in

the plane α, κ to the ball of radius 2 δ.
If αn, κn are bounded by a constant δ for all |n| large enough the (4.4)

show that also gn, jn are going to be eventually bounded proportionally to δ.
Hence by imposing that δ is so small that |Xn| = αn +κn + jn +gn < ρ we

see that proposition 3 holds (hence theorem 2 as a consequence of theorem 1).

5 Fractal Dimension of Singularities
of the Navier–Stokes Equation, d = 3

Here we ask which could be the structure of the possible set of the singularity
points of the solutions of the Navier–Stokes equation in d = 3. The answer is
an immediate consequence of theorem II and we describe it here for complete-
ness: the technique is a classic method (Almgren) to link a priori estimates
to fractal dimension estimates.

It has been shown already by Leray that the set of times at which a
singularity is possible has zero measure (on the time axis), see §3.4 in [Ga02].

Obviously sets of zero measure can be quite structured and even large in
other senses. One can think to the example of the Cantor set which is non
denumerable and obtained from an interval I by deleting an open concentric
subinterval of length 1/3 that of I and then repeating recursively this opera-
tion on each of the remaining intervals (called n–th generation intervals after
n steps); or one can think to the set of rational points which is dense.

5.1 Dimension and Measure of Hausdorff

An interesting geometric characteristic of the size of a set is given by the
Hausdorff dimension and by the Hausdorff measure, c.f.r. [DS60], p.174.

Definition 5.1. (Hausdorff α–measure): The Hausdorff α-measure of a set
A contained in a metric space M is defined by considering for each δ > 0 all
coverings Cδ of A by closed sets F with diameter 0 < d(F ) ≤ δ and setting

µα(A) = lim
δ→0

inf
Cδ

∑
F∈Cδ

d(F )α (5.1)

Remark 5.1.
(1) The limit over δ exists because the quantity infCδ

. . . is monotonic nonde-
creasing.
(2) It is possible to show that the function defined on the sets A of M by
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A → µα(A) is completely additive on the smallest family of sets containing
all closed sets and invariant with respect to the operations of complementa-
tion and countable union (which is called the σ-algebra Σ of the Borel sets of
M), c.f.r. [DS60].

One checks immediately that given A ∈ Σ there is αc such that

µα(A) = ∞ if α < αc, µα(A) = 0 if α > αc (5.2)

and it is therefore natural to set up the following definition

Definition 5.2. (Hausdorff measure and Hausdorff dimension): Given a set
A ⊂ Rd the quantity αc, (5.2), is called Hausdorff dimension of A, while
µαc

(A) is called Hausdorff measure of A.

It is not difficult to check that

(1) Denumerable sets in [0, 1] have zero Hausdorff dimension and measure.
(2) Hausdorff dimension of n-dimensional regular surfaces in Rd is n and,

furthermore, the Hausdorff measure of their Borel subsets defines on the sur-
face a measure µαc

that is equivalent to the area measure µ: namely there is
a ρ(x) such that µαc

(dx) = ρ(x)µ(dx).
(3) The Cantor set, defined also as the set of all numbers in [0, 1] which

in the representation in base 3 do not contain the digit 1, has

αc = log3 2 (5.3)

as Hausdorff dimension.9

5.2 Hausdorff Dimension of Singular Times in the Navier–Stokes
Solutions (d = 3)

We now attempt to estimate the Hausdorff dimension of the sets of times
t ≤ T < ∞ at which appear singularities of a given weak solution of Leray,
9 Indeed with 2n disjoint segments with size 3−n, uniquely determined (the n–th

generation segments), one covers the whole set C; hence

µα,δ
def
= inf

Cδ

∑
F∈Cδ

d(F )α ≤ 1 if α = α0 = log3 2

and µα0(C) ≤ 1: i.e. µα(C) = 0 if α > α0. Furthermore, c.f.r. problem (16)
below, if α < α0 one checks that the covering C0 realizing the smallest value of∑

F∈Cδ
d(F )α with δ = 3−n is precisely the just considered one consisting in the

2n intervals of length 3−n of the n–th generation and the value of the sum on
such covering diverges for n → ∞. Hence µα(C) = ∞ if α < α0 so that α0 ≡ αc

and µαc(C) = 1.
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i.e. a solution of the type discussed in (0.1). Here T is an a priori arbitrarily
prefixed time.

We need a key property of Leray’s solutions, namely that if at time t0
it is J1(t0) = L−1

∫
(∂u˜)2dx < ∞, i.e. if the Reynolds number R(t0) =

J1(t0)1/2/Vc ≡ V1/Vc with Vc
def
= νL−1 is < +∞, then the solution stays

regular in a time interval (t0, t0 + τ ] with (see proposition II in §3.3 of [Ga02],
eq. (3.3.34)):

τ = min F
Tc

R(t0)4
, Tc Tc =

L2

ν
(5.4)

From this it will follow, see below, that there are A > 0, γ > 0 such that if

lim inf
σ→0

( σ
Tc

)γ
∫ t

t−σ

dϑ

σ
R2(ϑ) < A (5.5)

then τ > σ and the solution is regular in an interval that contains t so that
the instant t is an instant at which the solution is regular. Here, as in the
following, we could fix γ = 1/2: but γ is left arbitrary in order to make clearer
why the choice γ = 1/2 is the “best”.

We first show that, indeed, from (5.5) we deduce the existence of a sequence
σi → 0 such that ∫ t

t−σi

dϑ

σi
R2(ϑ) < A

(σi

Tc

)−γ

(5.6)

therefore, the l.h.s. being a time average, there must exist ϑ0i ∈ (t − σi, t)
such that

R2(ϑ0i) < A
(σi

Tc

)−γ

(5.7)

and then the solution is regular in the interval (ϑ0i, ϑ0i + τi) with length τi at
least

τi = FTc
(σi/Tc)2γ

A2
> σi (5.8)

provided γ ≤ 1/2, and σi is small enough and if A is small enough (if γ = 1
2

then this means 2A2 < F ). Under these conditions the size of the regularity
interval is longer than σi and therefore it contains t itself.

It follows that, if t is in the set S of the times at which a singularity is
present, it must be

lim inf
σ→0

( σ
Tc

)γ
∫ t

t−σ

dϑ

σ
R2(ϑ) ≥ A if t ∈ S (5.9)

i.e. every singularity point is covered by a family of infinitely many intervals
F with diameters σ arbitrarily small and satisfying

∫ t

t−σ

dϑR2(ϑ) ≥ A

2
σ
( σ
Tc

)−γ

(5.10)
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From Vitali’s covering theorem (c.f.r. problem (19)) it follows that, given
δ > 0, one can find a denumerable family of intervals F1, F2, . . ., with Fi =
(ti − σi, ti), pairwise disjoint and verifying the (5.10) and σi < δ/4, such that

the intervals 5Fi
def
= (ti − 7σi/2, ti + 5σi/2) (obtained by dilating the intervals

Fi by a factor 5 about their center) cover S

S ⊂ ∪i 5Fi (5.11)

Consider therefore the covering C generated by the sets 5Fi and compute the
sum in (5.1) with α = 1 − γ:

∑
i(5σi)

(
5σi

Tc

)−γ

= 51−γ
∑

i σi

(
σi

Tc

)−γ

<

< 2 51−γ

A
√

Tc

∑
i

∫
Fi
dϑR2(ϑ) ≤ 2 51−γ

A
√

Tc

∫ T

0
dϑR2(ϑ) <∞

(5.12)

where we have made use of the a priori estimates on vorticity (0.2) and we
must recall that γ ≤ 1/2 is a necessary condition in order that what has been
derived be valid (c.f.r. comment to (5.8)).

Hence it is clear that for each α ≥ 1/2 it is µα(S) <∞ (pick, in fact, α =
1−γ, with γ ≤ 1/2) hence the Hausdorff dimension of S is αc ≤ 1/2. Obviously
the choice that gives the best regularity result (with the informations that we
gathered) is precisely γ = 1/2.

Moreover one can check that µ1/2(S) = 0: indeed we know that S has
zero measure, hence there is an open set G ⊃ S with measure smaller than a
prefixed ε. And we can choose the intervals Fi considered above so that they
also verify Fi ⊂ G: hence we can replace the integral in the right hand side
of (5.12) with the integral over G hence, since the integrand is summable, we
shall find that the value of the integral can be supposed as small as wished,
so that µ1/2(S) = 0.

5.3 Hausdorff Dimension in Space–Time of the Solutions of NS,
(d = 3)

The problem of which is the Hausdorff dimension of the points (x, t) ∈ Ω ×
[0, T ] which are singularity points for the Leray’s solutions is quite different.

Indeed, a priori , it could even happen that, at one of the times t ∈ S
where the solution has a singularity as a function of time, all points (x, t),
with x ∈ Ω, are singularity points and therefore the set S0 of the singularity
points thought of as a set in space–time could have dimension 3 (and perhaps
even 3.5 if we take into account the dimension of the singular times discussed
in (B) above).

From theorem II we know that if
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lim sup
r→0

r−1

∫ t+r2/2ν

t−r2/2ν

∫

S(x,r)

dϑ

ν
dξ (∂u˜)2 < ε (5.13)

then regularity at the point (x, t) follows.
It follows that the set S0 of the singularity points in space–time can be

covered by sets Cr = S(x, r)× (t− r2ν−1, t+ 1
2r

2ν−1] with r arbitrarily small
and such that

1
rν

∫ t+ r2
2ν

t− r2
2ν

dϑ

∫

S(x,r)

dx (∂u˜)2 > ε (5.14)

which is the negation of the property in (5.13).
Again by a covering theorem of Vitali (c.f.r. problems (16), (17)), we can

find a family Fi of sets of the form Fi = S(xi, ri) × (ti − r2
i

2ν , ti + r2
i

2ν ] pairwise
disjoint and such that the sets 6Fi= set of points (x′, t′) at distance ≤ 6ri
from the points of Fi covers the singularity set S0.10 One can then estimate
the sum in (5.1) for such a covering, by using that the sets Fi are pairwise
disjoint and that 5Fi has diameter, if max ri is small enough, not larger than
18ri:

∑
i

(18ri) ≤
36
νε

∑
i

∫

Fi

(∂u˜)2dξdt ≤ 36
νε

∫ T

0

∫

Ω

(∂u˜)2dξdt <∞ (5.15)

i.e. the 1-measure of Hausdorff µ1(S0) would be < ∞ hence the Hausdorff
dimension of S0 would be ≤ 1.

Since S0 has zero measure, being contained in Ω×S where S is the set of
times at which a singularity occurs somewhere, see (5.9), it follows (still from
the covering theorems) that in fact it is possible to choose the sets Fi so that
their union U is contained into an open set G which differs from S0 by a set
of measure that exceeds by as little as desired that of S0 (which is zero); one
follows the same method used above in the analysis of the time–singularity.
Hence we can replace the last integral in (5.15) with an integral extended to
the union U of the F ′

is: the latter integral can be made as small as wished by
letting the measure of G to 0. It follows that not only the Hausdorff dimension
of S0 is ≤ 1, but also the µ1(S0) = 0.

Remark 5.2.
(1) In this way we exclude that the set S0 of the space–time singularities con-
tains a regular curve: singularities, if existent, cannot move along trajectories
(like flow lines) otherwise the dimension of S would be 1 > 1/2) nor they can
distribute, at fixed time, along lines and, hence, in a sense they must appear
isolates and immediately disappear (always assuming their real existence).
(2) A conjecture (much debated and that I favor) that is behind all our discus-
sions is that if the initial datum u0 is in C∞(Ω) then there exists a solution
10 Here the constant 5, as well as the other numerical constants that we meet below

like 5, 6, 18 have no importance for our purposes and are just simple constants for
which the estimates work.



CKN Theory of Singularities 63

to the Navier Stokes equation that is of class C∞ in (x, t)”, i.e. S0 = ∅!
The problem is, still, open: counterexamples to the conjecture are not known
(i.e. singular Leray’s solutions with initial data and external force of class
C∞) but the matter is much debated and different alternative conjectures are
possible (c.f.r. [PS87]).
(3) In this respect one should keep in mind that if d ≥ 4 it is possible to show
that not all smooth initial data evolve into regular solutions: counterexamples
to smoothness can indeed be constructed, c.f.r. [Sc77]).

Acknowledgements: The notes are extracted from reference [Ga02].

6 Problems. The Dimensional Bounds
of the CKN Theory

In the following problems we shall set ν = 1, with no loss of generality, thus
fixing the units so that time is a square length. The symbols (u, p) will denote
a pseudo NS field, according to definition 1. Moreover, for notational simplic-
ity, we shall set Aρ ≡ A(ρ), Gρ ≡ G(ρ), . . ., and sometimes we shall write
Arn

, Grn
. . . as An, . . . with an abuse that should not generate ambiguities.

The validity of the (3.1) for Leray’s solution is checked in problem (15), at
the end of the problems section, to stress that the theorems of Scheffer and
CKN concern pseudo NS velocity–pressure fields: however it is independent of
the first 14 problems. There will many constants that we generically denote
C: they are not the same but one should think that they increase monotni-
cally by a finite amount at each inequality. The integration elements like dx
and dt are often omitted to simplify the notations and they should be easily
understood from the integration domains.

(1) Let ρ = rn+p and r = rn, with rn = L2n, c.f.r. lines following (4.2),
and apply (S),(2.2), with q = 3 and a = 3

4 , to the field u, at t fixed in ∆r and
using definition 2 deduce

∫
Br

|u|3dx ≤ CS
3 [

( ∫
Br

|∂u
˜
|2 dx

) 3
4
( ∫

Br
|u|2 dx

) 3
4

+ r−3/2
( ∫

Br
|u|2

)3/2

] ≤

≤ CS
3 [ρ3/4A

3/4
ρ

( ∫
Br

|∂
˜
u|2dx

)3/4

+ r−3/2
( ∫

Br
|u|2

)3/2

]

Infer from the above the third of (4.4). (Idea Let |u|2ρ be the average of u2 on
the ball Bρ; apply the inequality (P), with α = 1, to show that there is C > 0
such that

∫
Br
dx |u|2 ≤

( ∫
Bρ
dx

∣∣∣|u|2 − |u|2ρ
∣∣∣
)

+ |u|2ρ
∫

Br
dx ≤

≤ Cρ
∫

Bρ
dx |u||∂

˜
u| + C

(
r
ρ

)3 ∫
Bρ
dx |u|2 ≤ Cρ3/2A

1/2
ρ

( ∫
Bρ
dx |∂

˜
u|2

)1/2

+

+C
(

r
ρ

)3

ρAρ
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where the dependence from t ∈ ∆r is not explicitly indicated; hence
∫

Br

dx |u|3 ≤ C (rρ−1)3A3/2
ρ + C (ρ3/4 + ρ9/4r−3/2)A3/4

ρ

( ∫

Bρ

dx |∂
˜
u|2

)3/4

then integrate both sides with respect to t ∈ ∆r and apply (H) and definition
2.)

(2) Let ϕ ≤ 1 be a non negative C∞ function with value 1 if |x| ≤ 3ρ/4
and 0 if |x| > 4ρ/5; we suppose that it has the “scaling” form ϕ = ϕ1(x/ρ
with ϕ1 ≥ 0 a C∞ function fixed once and for all. Let Bρ be the ball centered
at x with radius ρ; and note that, if ρ = rn+p and r = rn, pressure can be
written, at each time (without explicitly exhibiting the time dependence), as
p(x) = p′(x) + p′′(x) with

p′(x) = 1
4π

∫
Bρ

1
|x−y|p(y)∆ϕ(y) dy + 1

2π

∫
Bρ

x−y

|x−y|3 · ∂ϕ(y) p(y) dy
p′′(x) = 1

4π

∫
Bρ

1
|x−y|ϕ(y) (∂

˜
u(y)) · (∂u

˜
(y)) dy

if |x| < 3ρ/4; and also |p′(x)| ≤ Cρ−3
∫

Bρ
dy |p(y)| and all functions are

evaluated at a fixed t ∈ ∆r. Deduce from this remark the first of the
(4.4). (Idea First note the identity p = −(4π)−1

∫
Bρ

|x − y|−1∆ (ϕp) for
x ∈ Br because if x ∈ B3ρ/4 it is ϕp ≡ p. Then note the identity
∆ (ϕp) = p∆ϕ+2∂ p·∂ϕ+ϕ∆p and since∆p = −∂ ·(u

˜
·∂
˜
u) = −(∂ u

˜
)·(∂

˜
u):

the second of the latter relations generates p′′ while p∆ϕ combines with the
contribution from 2∂ p ·∂ϕ, after integrating the latter by parts, and generates
the two contributions to p′.
From the expression for p′′ we see that

∫
Br
dx |p′′(x)|2 ≤

∫
Bρ×Bρ

dy dy′ |∂
˜
u(y)|2|∂

˜
u(y′)|2

∫
Br
dx 1

|x−y||x−y′| ≤
≤ Cρ(

∫
Bρ
dy |∂

˜
u(y)|2)2 (!)

The part with p′ is more interesting: since its expression above contains in-
side the integral kernels apparently singular at x = y like |x − y|−1∆ϕ and
|x − y|−1 ∂ ϕ one remarks that, in fact, there is no singularity because the
derivatives of ϕ vanish if y ∈ B3ρ/4 (where ϕ ≡ 1). Hence |x − y|−k can be
bounded “dimensionally” by ρ−k in the whole region Bρ/B3ρ/4 for all k ≥ 0
(this remark also motivates why one should think p as sum of p′ and p′′).

Thus replacing the (apparently) singular kernels with their dimensional
bounds we get

∫

Br

dx |u||p′| ≤ C

ρ3

(∫

Br

dx |u|
)
·
(∫

Bρ

dx |p|
)

which can be bounded by using inequality (H) as
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≤ C
ρ3

( ∫
Br
dx |u|2/5 · |u|3/5 · 1

)
·
( ∫

Bρ
dx |p|

)
≤

≤ C
ρ3

( ∫
Br
dx |u|2

)1/5

·
( ∫

Br
dx |u|3

)1/5

(r3)3/5 ·
∫

Bρ
dx |p| ≤

≤ C
ρ3 (ρAρ)1/5

( ∫
Br
dx |u|3

)1/5

·
( ∫

Bρ
dx |p|

)

where all functions depend on x (and of course on t) and then, integrating
over t ∈ ∆r and dividing by r2 one finds, for a suitable C > 0:

1
r2

∫

Qr

dtdx |u||p′| ≤ C (
r

ρ
)1/5G1/5

r K4/5
ρ A1/5

ρ

that is combined with
∫

Br
dx|u||p′′| ≤ (

∫
Br
dx |u|2)1/2(

∫
Br
dx |p′′|2)1/2 which,

integrating over time, dividing by ρ2 and using inequality (!) for
∫

Br
dx |p′′|2

yields: r−2
∫

Qr
dtdx |u||p′′| ≤ C(ρr−1)2A1/2

ρ δρ).

(3) In the context of the hint and notations for p of the preceding problem
check that

∫
Br
dx |p′| ≤ C(rρ−1)3

∫
Bρ
dx|p|. Integrate over t the power 5/4

of this inequality, rendered adimensional by dividing it by r13/4; one gets:
r−13/4

∫
∆r

(
∫
|p′|)5/4 ≤ C(rρ−1)1/2Kρ, which yields the first term of the second

inequality in (4.4). Complete the derivation of the second of (4.4). (Idea Note
that p′′(x, t) can be written, in the interior of Br, as p′′ = p̃+ p̂ with:

p̃(x)=− 1
4π

∫

Bρ

x− y
|x− y|3ϕ(y)u

˜
· ∂
˜
u dy, p̂(x)=− 1

4π

∫

Bρ

∂ϕ(y) · (u
˜
· ∂
˜

)u

|x− y| dy

(always at fixed t and not declaring explicitly the t–dependence). Hence by
using |x− y| > ρ/4, for x ∈ Br and y ∈ Bρ/B3ρ/4, i.e. for y in the part of Bρ

where ∂ ϕ �= 0) we find

∫
Br

|p̃| dx ≤ C
∫

Bρ
dy

( ∫
Br

dx
|x−y|2 |u(y)| |∂ u˜

(y)|
)
≤

≤ Cr
( ∫

Bρ
|u|2

)1/2( ∫
Bρ

|∂
˜
u|2

)1/2

≤ Crρ1/2A
1/2
ρ

( ∫
Bρ

|∂
˜
u|2

)1/2

∫
Br

|p̂| dx ≤ C r3

ρ2

∫
Bρ

|u||∂
˜
u| ≤ C rρ1/2A

1/2
ρ

( ∫
Bρ

|∂
˜
u|2

)1/2

and
( ∫

Br
|p′′|

)5/4

is bounded by raising the right hand sides of the last in-
equalities to the power 5/4 and integrating over t, and finally applying in-

equality (H) to generate the integral
( ∫

Qρ
|∂
˜
u|2

)5/8

).

(4) Deduce that (4.5) holds for a pseudo–NS field (u, p), c.f.r. definition
2.1. (Idea Let ϕ(x, t) be a C∞ function which is 1 on Qρ/2 and 0 outside Qρ;
it is: 0 ≤ ϕ(x, t) ≤ 1, |∂ϕ| ≤ C

ρ , |∆ϕ+∂tϕ| ≤ C
ρ2 , if we suppose that ϕ has the
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form ϕ(x, t) = ϕ2(
x
ρ ,

t
ρ2 ) ≥ 0 for some ϕ2 suitably fixed and smooth. Then, by

applying the third of (3.1) and using the notations of the preceding problems,
if t̄ ∈ ∆ρ/2(t0), it is
∫

Br×{t̄} |u(x, t)|2dx ≤ C
ρ2

∫
Qρ
dtdx |u|2 +

∫
Qρ
dtdx (|u|2 + 2p)u · ∂ϕ ≤

≤ C
ρ2

∫
Qρ
dtdx |u|2+

∣∣∣ ∫
Qρ
dtdx (|u|2− |u|2ρ)u · ∂ϕ

∣∣∣ + 2
∫

Qρ
dtdx p u · ∂ϕ ≤

≤ C
ρ1/3

(∫
Qρ
dtdx |u|3

)2/3

+
∣∣∣ ∫

Qρ
dtdx

(
|u|2− |u|2ρ

)
u · ∂ϕ

∣∣∣+ 2C
ρ

∫
Bρ
dtdx |p||u|≤

≤ CρG2/3
ρ + CρJρ + ρ

∣∣∣ 1
ρ

∫
Qρ
dtdx (|u|2 − |u|2ρ)u · ∂ϕ

∣∣∣ (∗)

We now use the following inequality, at t fixed and with the integrals over dx

1
ρ

∣∣∣ ∫
Bρ
dx (|u|2 − |u|2ρ)u · ∂ϕ

∣∣∣ ≤ C
ρ2

∫
Bρ
dx |u|

∣∣∣|u|2 − |u|2ρ
∣∣∣ ≤

≤ C
ρ2

( ∫
Bρ
dx |u|3

)1/3( ∫
Bρ

|u2 − |u|2ρ|3/2
)2/3

and we also take into account inequality (P) with f = u2 and α = 3/2 which
yields (always at t fixed and with integrals over dx):

(∫

Bρ

∣∣∣u2 − |u|2ρ
∣∣∣
3/2)2/3

≤ C
(∫

Bρ

|u||∂
˜
u|

)

then we see that

∫
Bρ

∣∣∣|u|2 − |u|2ρ
∣∣∣ |u| |∂˜

ϕ| ≤ C
ρ

( ∫
Bρ

|u|3
)1/3( ∫

Bρ
|u||∂

˜
u|

)
≤

≤ C
ρ

( ∫
Bρ

|u|3
)1/3( ∫

Bρ
|u|2

)1/2( ∫
Bρ

|∂
˜
u|2

)1/2

≤

≤ C
ρ ρ

1/2A
1/2
ρ

( ∫
Bρ

!u|3
)1/3

·
( ∫

Bρ
|∂
˜
u|2

)1/2

· 1

Integrating over t and applying (H) with exponents 3, 2, 6, respectively, on the
last three factors of the right hand side we get

1
ρ2

∫

Qρ

|u|
∣∣∣ |u|2 − |u|2ρ

∣∣∣ ≤ CA1/2
ρ G1/3

ρ δ1/2
ρ ≤ C (G2/3

ρ +Aρδρ)

and placing this in the first of the preceding inequalities (*) we obtain the
desired result).

The following problems provide a guide to the proof of theorem II. Below
we replace, unless explicitly stated the sets Br, Qr,∆r introduced in definition
2, in (C) above, and employed in the previous problems with B0

r ,∆
0
r, Q

0
r with

B0
r = {x| |x − x0| < r}, ∆0

r = {t | t0 > t > t0 − r2}, Q0
r = {(x, t)| |x − x0| <

r, t0 > t > t0 − r2} = B0
r × ∆0

r. Likewise we shall set B0
rn

= B0
n,∆

0
rn

=
∆0

n.Q
0
rn

= Q0
n and we shall define new operators A, δ,G, J,K, S by the same
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expressions in (3.2)%(3.8) in (C) above but with the just defined new meaning
of the integration domains. However, to avoid confusion, we shall call them
A0, δ0, . . . with a superscript 0 added.

(5) With the above conventions check the following inequalities

A0
n ≤ CA0

n+1, G0
n ≤ CG0

n+1, G0
n ≤ C (A0

n
3/2

+A0
n

3/4
δ0n

3/4
)

(Idea The first two are trivial consequences of the fact that the integration
domains of the right hand sides are larger than those of the left hand sides,
and the radii of the balls differ only by a factor 2 so that C can be chosen 2
in the first inequality and 4 in the second. The third inequality follows from
(S) with a = 3

4 , q = 3:

∫
B0

r
|u|3 ≤ C

[( ∫
B0

r
|∂
˜
u|2

)3/4( ∫
B0

r
|u|2

)3/4

+ r−3/2
( ∫

B0
r
|u|2

)3/2]
≤

≤ C
[
r3/4A0

r
3/4

( ∫
B0

r
|∂
˜
u|2

)3/4

+A0
r
3/2

]

where the integrals are over dx at t fixed; and integrating over t we estimate
G0

r by applying (H) to the last integral over t.)

(6) Let n0 = n+p and Q0
n = {(x, t)| |x−x0| < rn, t0 > t > t−r2n}

def
= B0

n×
∆0

n consider the function:

ϕn(x, t) =
exp(−(x− x0)

2/4(r2n + t0 − t))
(4π(r2n + t0 − t))3/2

, (x, t) ∈ Q0
n0

and a function χn0(x, t) = 1 on Q0
n0−1 and 0 outside Q0

n0
, for instance choos-

ing, a function which has the form χn0(x, t) = ϕ̃(r−1
n0
x, r

−1/2
n0 t) ≥ 0, with ϕ̃ a

C∞ function fixed once and for all. Then write (3.1) using ϕ = ϕnχn0 and
deduce the inequality

A0
n + δ0n
r2n

≤ C
[
r−2
n+pG

02/3
n+p +

n+p∑
k=n+1

r−2
k G0

k + r−2
n+pJ

0
n+p +

n+p−1∑
k=n+1

r−2
k Lk

]
(@)

where Lk = r−2
k

∫
Q0

k
dx dt |u||p− pk| with pk equals the average of p on the ball

B0
k; for each p > 0. (Idea Consider the function ϕ and note that ϕ ≥ (Cr3n)−1

in Q0
n, which allows us to estimate from below the left hand side term in (3.1),

with (Cr2n)−1(A0
n + δ0n). Moreover one checks that

|ϕ| ≤ C
r3

m
, |∂ϕ| ≤ C

r4
m
, n ≤ m ≤ n+ p ≡ n0, in Q0

m+1/Q
0
m

|∂tϕ+∆ϕ| ≤ C
r5

n0
in Q0

n0

and the second relation follows from ∂tϕ+∆ϕ ≡ 0 in the “dangerous places”,
i.e. χ = 1, because ϕ is a solution of the heat equation (backward in time).
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Hence the first term in the right hand side of (3.1) can be bounded from above
by
∫

Q0
n0

|u|2|∂tϕn +∆ϕn| ≤
C

r5n0

∫

Q0
n0

|u|2 ≤ C

r5n0

( ∫

Q0
n0

|u|3
)2/3

r5/3
n0

≤ C

r2n0

G02/3
n0

getting the first term in the r.h.s. of (@).
Using here the scaling properties of the function ϕ the second term is

bounded by
∫

Q0
n0

|u|3|∂ϕn| ≤ C
r4

n

∫
Q0

n+1
|u|3 +

∑n0
k=n+2

C
r4

k

∫
Q0

k/Q0
k−1

|u|3 ≤

≤
∑n0

k=n+1
C
r4

k

∫
Q0

k
|u|3 ≤ C

∑n0
k=n+1

G0
k

r2
k

Calling the third term (c.f.r. (1.1)) Z we see that it is bounded by

Z ≤
∣∣∣ ∫

Q0
n0
p u · ∂ χn0ϕn

∣∣∣ ≤
∣∣∣ ∫

Q0
n+1

p u · ∂ χn+1ϕn

∣∣∣+
+

∑n0
k=n+2

∣∣∣ ∫
Q0

k
p u · ∂ (χk − χk−1)ϕn

∣∣∣ ≤
∣∣∣ ∫

Q0
n+1

(p− pn+1)u · ∂ χn+1ϕn

∣∣∣+
+

∑n0−1
k=n+2

∣∣∣∫Q0
k
(p− pk)u · ∂ (χk − χk−1)ϕn

∣∣∣+∫
Q0

n0
|u| |p| |∂(χn0−χn0−1)ϕn

where pm denotes the average of p over B0
m (which only depends on t): the

possibility of replacing p by p − p in the integrals is simply due to the fact
that the 0 divergence of u allows us to add to p any constant because, by
integration by parts, it will contribute 0 to the value of the integral.

From the last inequality it follows

Z ≤
n0−1∑

k=n+1

C

r4k

∫

Q0
k

|p− pk| |u| + J0
n0
r−2
n0

=
n0−1∑

k=n+1

C

r2k
Lk + J0

n0
r−2
n0

then sum the above estimates.)

(7) If x0 is the center of Ω the function χn0p can be regarded, if n0 < −1,
as defined on the whole R3 and zero outside the torus Ω. Then if ∆ is the
Laplace operator on the whole R3 note that the expression of p in terms of u
(c.f.r. (a) of (3.1)) implies that in Q0

n0
:

χn0p = ∆−1∆χn0p ≡ ∆−1
(
p∆χn0 + 2(∂χn0) · (∂p) − χn0∂˜

∂ · (u
˜
u)

)

Show that this expression can be rewritten, for n < n0, as

χn0p = −∆−1(χn0∂∂˜
(uu

˜
)) + [∆−1(p∆χn0) + 2(∂∆−1)((∂χn0)p)] =

= [−(∂∂
˜
∆−1)(χn0uu˜

)] + [2(∂∆−1)(∂
˜
χn0uu˜

) −∆−1((∂∂
˜
χn0)uu˜

)]+

+[∆−1(p∆χn0) + 2(∂∆−1)((∂χn0)p)]
def
= p1 + p2 + p3 + p4
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with p1 = −(∂
˜
∂∆−1)(χn0ϑn+1uu˜

) and p2 = −(∂
˜
∂∆−1)(χn0(1 − ϑn+1)uu˜

)

where ϑk is the characteristic function of B0
k and p3, p4 are the last two

terms in square brackets. (Idea Use, for x, t ∈ Q0
n0

, Poisson formula

χn0(x, t)p(x, t) = −1
4π

∫
B0

n0

∆ ((χn0p)(y,t))

|x−y| dy =

= −1
4π

∫
B0

n0

p∆χn0+2∂χn0 ·∂p−χn0∂˜∂·(u˜u)

|x−y| dy

and suitably integrate by parts).

(8) In the context of the previous problem check that the formulae derived
there can be written more explicitly as

p1 = −(∂
˜
∂∆−1) ·

(
χn0ϑn+1uu˜

)
, p2 =− 1

4π

∫
B0

n0
/B0

n+1

(
∂∂
˜

1
|x−y|

)
· χn0uu˜

p3 = 1
2π

∫
B0

n0

x−y

|x−y|3 (∂
˜
χn0)uu˜

+ 1
4π

∫
B0

n0

1
|x−y| (∂˜

∂χn0)u˜
u

p4 = − 1
4π

∫
1

|x−y|p(y)∆χn0 + 2
4π

∫
p(y)

x−y

|x−y|3 · ∂χn0

where n < n0 and the integrals are over y at t fixed, and the functions in the
left hand side are evaluated in x, t.

(9) Consider the quantity Ln, introduced in (6),

Ln
def
= r−2

n

∫

Qn

|u| |p− pn(ϑ)| dξdϑ

and show that, setting n0 = n+ p, p > 0, it is

Ln ≤ C
[(

rn+1
rn0

)7/5

A01/5

n+1G
01/5

n+1K
04/5

n0
+

(
rn+1
rn0

)5/3

G01/3

n+1G
02/3

n0
+

+G0
n+1 + r3n+1G

01/3

n+1

∑n0
k=n+1 r

−3
k A0

k

]

(Idea Refer to (8) to bound Ln by:
∑4

i=1 r
−2
n

∫
Q0

n
|u||pi − pn

i | where pn
i is the

average of pi over B0
n; and estimate separately the four terms. For the first it

is not necessary to subtract the average and the difference |p1 − pn
1 | can be

divided into the sum of the absolute values each of which contributes equally
to the final estimate which is obtained via the (CZ), and the (H)

∫

B0
n+1

|p1 − p1||u| ≤ 2
( ∫

B0
n+1

|p1|3/2
)2/3(∫

B0
n+1

|u|3
)1/3

≤ C
∫

B0
n+1

|u|3

and the contribution of p1 at Ln is bounded, therefore, by CG0
n+1: note that

this would not be true with p instead of p1 because in the right hand side there
would be

∫
Ω
|p|3/2 rather than

∫
B0

n+1
|p|3/2, because the (CZ) is a “nonlocal”

inequality. The term with p2 is bounded as
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∫
∆0

n

∫
B0

n
|p2 − pn

2 ||u| ≤
∫

∆0
n

0

∫
B0

n
|u| rn max |∂p2| ≤

≤ rn
( ∫

Q0
n

|u|3
r2

n

)1/3

r
2/3
n r

10/3
n maxQ0

n
|∂p2| ≤

≤ r5nG0
n

1/3 ∑n0−1
m=n+1 maxt∈∆0

m

∫
B0

m+1/B0
m

|u|2
r4

m
= r5nG

0
n

1/3 ∑n0−1
m=n+1

A0
m

r3
m

Analogously the term with p3 is bounded by using |∂p3| ≤ Cr−4
n0

∫
B0

n0
|u|2

which is majorized by Cr−3
n0

(
∫

B0
n0

|u|3)2/3 obtaining

1
r2

n

∫
Q0

n
|u||p3 − pn

3 | ≤ C
r2

n
r−3
n0

∫
∆0

n
[(

∫
B0

n
|u|3)2/3rn

∫
B0

n
|u|] ≤

≤ C
r2

n
r3nr

−3
n0

∫
∆0

n
(
∫

B0
n
|u|3)2/3(

∫
B0

n
|u|3)1/3 ≤

≤ C
r2

n
( rn

rn0
)3r4/3

n0 r
2/3
n G02/3

n0
G0

n
1/3 = C( rn

rn0
)5/3G02/3

n0
G0

n
1/3

Finally the term with p4 is bounded (taking into account that the derivatives
∆χn, ∂χn vanish where the kernels become bigger than what suggested by
their dimension) by noting that

∫

B0
n

|p4 − pn
4 ||u| ≤ Crn

∫

B0
n

|u|max
B0

n

|∂p4| ≤ Crn
( ∫

B0
n

|u|
)( ∫

B0
n0

|p|
r4n0

)

Denoting with K̃0
n0

the operator K0
n0

without the factor r−13/4
n0 which makes

it dimensionless, and introducing, similarly, Ã0
n, G̃

0
n we obtain the following

chain of inequalities, using repeatedly (H)

1
r2

n

∫
Q0

n
|p4 − pn

4 ||u| ≤ C
r2

n
rn

( ∫
∆0

n

( ∫
B0

n0

|p|
r4

n0

)5/4)4/5( ∫
∆0

n

( ∫
B0

n
|u|

)5)1/5

≤

≤ C
r2

n

rn

r4
n0
K̃

0

n0

4/5( ∫
∆0

n

( ∫
B0

n
|u|2/5|u|3/5 · 1

)
5
)1/5

≤

≤ C
r2

n

rn

r4
n0
K̃

0

n0

4/5( ∫
B0

n
|u|2

)1/5( ∫
Q0

n
|u|3

)1/5

r
9/5
n ≤

≤ C
r2

n

rn

r4
n0
r
12/5
n K̃

0

n0

4/5

Ã
0

n

1/5

G̃
0

n

1/5

≤ C
(

rn

rn0

)7/5

A0
n

1/5
G0

n
1/5
K0

n0

4/5

Finally use the inequalities of (5) and combine the estimates above on the
terms pj , j = 1, .., 4.)

(10) Let Tn = (A0
n + δ0n); combine inequalities of (6) and (9), and (5) to

deduce

Tn ≤ 22n
(
2−2n0ε+

∑n0−1
k=n+1 2−2kT

3/2
k + 2−2n0ε+

+2−7n0/5ε
∑n0−1

k=n+1 2−3k/5T
1/2
k +ε2−5n0/3

∑n0−1
k=n0+2 2−k/3T

1/2
k +∑n0−1

k=n+1 2−2kT
3/2
k +

∑n0−1
k=n+1 2kT

1/2
k

∑n0
p=k 2−3pTp

)

ε ≡ Cmax(G0
n0

2/3
,K0

n0

4/5
, J0

n0)

and show that, by induction, if ε is small enough then r−2
n Tn ≤ ε2/3r−2

n0
.
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(11) If G(r0) + J(r0) + K(r0) < εs with εs small enough, then given
(x′, t′) ∈ Qr0/4(x0, t0), show that if one calls G0

r, J
0
r ,K

0
r , A

0
r, δ

0
r the operators

associated with Q0
r(x

′, t′) then

lim sup
n→∞

1
r2n
A0

n ≤ C ε
2/3
s

r20

for a suitable constant C. (Idea Note that Q0
r0/4(x

′, t′) ⊂ Qr0(x0, t0) hence
G0

r0/4, J
0
r0/4, . . . are bounded by a constant, (≤ 42), times G(r0), J(r0). . . re-

spectively. Then apply the result of (10)).

(12) Check that the result of (11) implies theorem II. (Idea Indeed

1
r2n
A0

n ≥ 1
r3n

∫

B0
n

|u(x, t′)|2dx−−−−−→n→−∞
4π
3

|u(x′, t′)|2

where B0
n is the ball centered at x′, for almost all the points (x,′ , t′) ∈ Q0

r0/4;
hence |u(x′, t′)| is bounded in Q0

r0/4 and one can apply proposition 2).

(13) Let f be a function with zero average over B0
r . Since f(x) = f(y) +∫ 1

0
ds ∂f(y+ (x− y)s) · (x− y) for each y ∈ B0

r , averaging this identity over y
one gets

f(x) =
∫

B0
r

dy

|B0
r |

∫ 1

0

ds ∂f(y + (x− y)s) · (x− y)

Assuming α = 1 prove (P). (Idea Change variables as y → z = y + (x − y)s
so that for α integer

∫

B0
r

|f(x)|α dx

|B0
r |

≡
∫

B0
r

dx

|B0
r |

∣∣∣
∫ 1

0

∫

B0
r

dz

|B0
r |

ds

(1 − s)3 ∂f(z) · (z − x)
∣∣∣
α

where the integration domain of z depends from x and s, and it is contained
in the ball with radius 2(1− s)r around x. The integral can then be bounded
by ∫

dz1
|B0

r |
ds1

1 − s1
. . .

dzα

|B0
r |

dsα
1 − sα

(2r)α|∂f(z1)| . . . |∂f(zα)|
∫

dx

|B0
r |

where x varies in a domain with |x − zi| ≤ 2(1 − si)r for each i. Hence the
integral over dx

|B0
r |

is bounded by 8(1− si)3 for each i. Performing a geometric
average of such bounds (over α terms)

∫
B0

r
|f(x)|α dx

|B0
r |

≤ 2α+3rα
∏α

i=1

∫ dzi dsi

|B0
r |(1−si)

||∂f(zi)| (1 − si)3/α ≤
≤ 2α+3rα

( ∫
B0

r
|∂f(z)| dz

|B0
r |

)α

·
( ∫ 1

0
ds

(1−s)3−3/α

)α

getting (P) and an explicit estimate of the constant CP
α only for α = 1 and a

hint that (P) should hold for α < 3
2 at least.)
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(14) Differentiate twice with respect to α−1 and check the convexity of
α−1 → ||f ||α ≡ (

∫
|f(x)|α dx/|B0

r |)1/α. Use this to get (P) for each 1 ≤ α < α0

if it holds for α = α0 . (Idea Since (P) can be written ||f ||α ≤ Cα (
∫
|∂f | dx/r2)

then if α−1 = ϑα−1
0 + (1 − ϑ) it follows that Cα can be taken Cα = ϑCα0 +

(1 − ϑ)C1).

(15) Consider a sequence uλ of solutions of the Leray regularized equa-
tions which converges weakly (i.e. for each Fourier component) to a Leray
solution. By construction the uλ, u verify the a priori bounds in (0.2) and
(hence) (2.5). Deduce that u verifies the (3.1). (Idea Only (c) has to be proved.
Note that if uλ → u0 weakly, then the left hand side of (1.1) is semi continu-
ous hence the value computed with u0 is not larger than the limit of the right
hand side in (1.1). On the other hand the right hand side of (1.1) is continuous
in the limit λ→ ∞. Indeed given N > 0 weak convergence implies

limλ→∞
∫ T0

0
dt

∫
Ω
|uλ − u0|2 dx ≡ limλ→∞

∫ T0

0
dt

∑
0<|k| |γλ

k
(t) − γ0

k
(t)|2 ≤

≤ limλ→∞
(∑

0<|k|<N

∫ T0

0
dt|γλ

k
(t)−γ0

k
(t)|2+

∑
|k|≥N

∫ T0

0
dt |k|

2

N2 |γλ
k
(t)−γ0

k
(t)|2

)
≤

≤ limλ→∞
( ∑

0<|k|<N

∫ T0

0
dt|γλ

k
(t) − γ0

k
(t)|2 + 1

N2

∫ T0

0
dt

∫
Ω
|∂
˜

(uλ − u0)|2
)

=

= limλ→∞
1

N2

∫ T0

0
dt

∫
Ω
|∂
˜

(uλ − u0)|2 ≤ 2E0ν−1

N2

using the a priori bound in (0.2) (with zero force) and componentwise con-
vergence of the Fourier transform γ

k
(t) of u(t) to the Fourier transform γ0

k(t)

of u0. Hence
∫ T0

0

∫
Ω
|uλ − u0|2 → 0 showing the convergence of the first two

terms of the right hand side of (1.1) to the corresponding terms of (c) in (3.1).
Apply, next, the inequality (S), (2.2), with q = 3, a = 3

4 ,
q
2 − a = 3

4 , and
again by the a priori bounds in (0.2) we get

∫ T0

0
dt

∫
Ω
|uλ − u0|3 dx ≤ C

∫ T0

0
dt ||∂

˜
(uλ − u0)||3/2

2 ||uλ − u0||3/2
2 ≤

≤ C
( ∫ T0

0
dt ||∂

˜
(uλ − u0)||22

)3/4 ( ∫ T0

0
dt ||uλ − u0||62

)1/4

≤

≤ C(2E0ν
−1)3/4(2

√
E0)

∫ T0

0
dt ||uλ − u0||22 −−−−→λ→∞ 0

showing continuity of the third term in the second member of (3.1). Finally,
and analogously, if we recall that pλ = −∆−1

∑
ij ∂i∂j(uλ

i u
λ
j ) and if we apply

the inequalities (CZ) and (H), we get
∫ T0

0
dt

∫
Ω
dx|pλuλ − p0u0| ≤

∫ ∫
|pλ − p0| |uλ| +

∫ ∫
|p0| |uλ − u0| ≤( ∫ ∫

|pλ − p0|3/2
)2/3 ( ∫ ∫

|uλ|3
)1/3

+
( ∫ ∫

|p0|3/2
)2/3 ( ∫ ∫

|uλ − u0|3
)1/3

where the last integral tends to zero by the previous relation while the first,

via (CZ), will be such that
∫ T0

0

∫
Ω
|pλ − p0|3/2 ≤

( ∫ ∫
|uλ − u0|3

)2/3

−−−−→
λ→∞ 0

proving the continuity of the fourth term in the right hand side of (c) in (3.1).
Hence the right hand side is continuous in the considered limit).
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(16) (covering theorem, (Vitali)) Let S be an arbitrary set inside a sphere
of Rn. Consider a covering of S with little open balls with the Vitali property:
i.e. such that every point of S is contained in a family of open balls of the
covering whose radii have a zero greatest lower bound. Given η > 0 show that
if λ > 1 is large enough it is possible to find a denumerable family F1, F2, . . . of
pairwise disjoint balls of the covering with diameter < η such that ∪iλFi ⊃ S
where λFi denotes the ball with the same center of Fi and radius λ times
longer. Furthermore λ can be chosen independent of S, see also problem (17).
(Idea Let F be the covering and let a = maxF diam(F ). Define ak = a2−k

and let F1 be a maximal family of pairwise disjoint ball of F with radii ≥ a2−1

and < a. Likewise let F2 be a maximal set of balls of F with radii between
a2−2 and a2−1 pairwise disjoint between themselves and with the ones of
the family F1. Inductively we define F1, . . . ,Fk, . . .. It is now important to
note that if x �∈ ∪kFk it must be: distance(x,Fk) < λa2−k for some k, if
λ is large enough. If indeed δ is the radius of a ball Sδ containing x and if
a2−k0 ≤ δ < a2−k0+1 then the point of Sδ farthest away from x is at most
at distance ≤ 2δ < 4a2−k0 ; and if, therefore, it was d(x,Fk0) ≥ 4a2−k0 we
would find that the set Fk0 could be made larger by adding to it Sδ, against
the maximality supposed for Fk0 . Note that λ = 5 is a possible choice.)

(17) Show that if the balls in problem (16) are replaced by the parabolic
cylinders which are Cartesian products of a radius r ball in the first k coordi-
nates and one of radius rα, with α ≥ 1 in the n− k remaining ones, then the
result still holds if one replaces 5Fi with λFi where λ is a suitable homothety
factor (with respect to the center of Fi). Show that if α = 1, 2 then λ = 5 is
enough (and, in general, λ = (42 + 22(1+α)/α)1/2 is enough).

(18) Check that the Hausdorff dimension of the Cantor set C is log3 2,
c.f.r. (5.3). (Idea It remains to see, given the equation in footnote9, that if
α < α0 then µα(C) = ∞. If δ = 3−n the covering Cn of C with the n–th gener-
ation intervals is “the best” among those with sets of diameter ≤ 3−n because
another covering could be refined by deleting from each if its intervals the
points that are out of the n–th generation intervals. Furthermore the inequal-
ity 1 < 23−α for α < log3 2 shows that it will not be convenient to further
subdivide the intervals of Cn for the purpose of diminishing the sum

∑
|Fi|α.

Hence for δ = 3−n the minimum value of the sum is 2n3−nα −−−−→n→∞ ∞.)
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