
A Credential-Based Approach for Facilitating Automatic
Resource Sharing Among Ad-Hoc Dynamic Coalitions�

Janice Warner1, Vijayalakshmi Atluri1, and Ravi Mukkamala2

1 Rutgers University, Newark NJ 07012, USA
{janice, atluri}@cimic.rutgers.edu

2 Old Dominion University, Norfolk, VA 23529, USA
mukka@cs.odu.edu

Abstract. Today, there is an increasing need for dynamic, efficient and secure
sharing of resources among organizations. In a dynamic coalition environment,
participants (including users and systems) of an organization may need to gain
access quickly to resources of other organizations in an unplanned manner to
accomplish the task at hand. Typically, when entities agree to share their infor-
mation resources, the access control policies are agreed upon at the coalition
level. These coalition level agreements are not at the level of fine-grained poli-
cies, in the sense that they do not specify which specific users can access which
data object. In this paper, we propose a dynamic coalition-based access control
(DCBAC) model that allows automatic access to resources of one coalition entity
by users from another coalition entity. To make the model applicable to true ad-
hoc dynamic coalitions, we employ a coalition service registry, where coalition
entities publicize their coalition level access policies. Any coalition entity wish-
ing to access a specific resource of another coalition entity can obtain a ticket by
submitting its entity credentials which are subsequently evaluated by the coalition
service registry. DCBAC employs a policy mapper layer that computes the exact
credentials required by remote users that are comparable to those required by lo-
cal users. We demonstrate how the coalition and resource level access policies
can be specified in XML-based languages and evaluated.

1 Introduction

Today, there is an increasing need for dynamic, efficient and secure sharing of resources
among organizations. This is driven by a number of applications including emergency
and disaster management, peace keeping, humanitarian operations, or simply virtual
enterprises. Typically, resource sharing is done by establishing alliances and collabora-
tions, also known as coalitions. Due to the nature of the applications, the coalitions are
often dynamic where entities may join or leave the coalition in an ad-hoc manner.

In a dynamic coalition environment, participants (e.g. users, systems) of an organi-
zation may need to gain access to resources (both data and services) of other organi-
zations to accomplish the task at hand. As an example, in a natural disaster scenario,
such as the earth quake in Turkey on May 1, 2003 and the Tsunami in Asia on Decem-
ber 26, 2004, government agencies (e.g., FEMA, local police and fire departments),

� The work of Warner and Atluri is supported in part by the NSF under grant IIS-0306838.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 252–266, 2005.
c© IFIP International Federation for Information Processing 2005

A Credential-Based Approach for Facilitating Automatic Resource Sharing 253

non-government organizations (e.g., Red Cross) and private organizations (e.g., Doc-
tors without Borders, suppliers of emergency provisions) needed to share information
about victims, supplies and logistics[10]. Similar examples include homeland security
applications where sharing of information across different organizations is needed for
identifying criminal and terrorist behavior, illegal shipments, and the like. In a com-
mercial setting, organizations may share resources and information in order to provide
comprehensive services drawing from unique skills of diverse participating entities.

Typically, when coalition entities agree to share their information resources, the
access control policies are agreed upon at the coalition level. For example, an agreement
between government entities A and B might be that they will share resources to aid in
a smuggling investigation. These coalition level agreements are not at the level of fine-
grained policies, in the sense that they do not specify which subjects are allowed to
access which specific resources.

The security policy needed for allowing access would be “user Alice of entity A can
access the immigration file of entity B.” Enforcing the coalition-level security policies
requires transforming the high-level policies to implementation level.

Current approaches to facilitate resource sharing resort to one of the following
methods: (i) Users from one coalition entity are explicitly given permission to access
resources from another coalition entity. This approach is administratively time consum-
ing and requires explicit revocation after the coalition is disbanded or when a user is
no longer affiliated with the coalition entity. (ii) A single access id is provided to all
of the users of the coalition entity. While this simplifies administrative effort, it makes
fine-grained access control impossible. (iii) The resources are copied to the coalition
entity that requires access to them. Updates are difficult and may result in uncontrolled
sharing. In addition, all the above approaches are not suitable for dynamic and ad-hoc
coalitions, and are only feasible among entities that have pre-established partnerships.

Access control research in the area of dynamic coalitions is relatively new. Philips et
al. [10] have described the dynamic coalition problem by providing several motivating
scenarios in a defense and disaster recovery settings. They have developed a prototype
that controls access to APIs and software artifacts [9]. Cohen et al. [3] have proposed
a model that captures the entities involved in coalition resource sharing and identifies
the interrelationships among them. In [2,5], the researchers have addressed the issue of
automating the negotiation of policy between coalition members in a dynamic coalition.
Finally, in [13], Yu et.al propose automated mechanisms for trust building between
entities using digital credentials Our research complements these works by addressing
the issue of automatic translation of coalition level policies to the implementation level
policies, and vice versa.

Our approach is a coalition-based access control (CBAC) model that allows au-
tomatic access to resources of one coalition entity by users from another coalition
entity[1] by employing three layers (coalition, role and user-object). A user’s request
for a specific remote object is first translated into a role level request, and then into a
coalition level request before being sent to the remote coalition entity. At the remote
coalition entity, the coalition level request is trickled down through the three layers and
translated into an user-object access request. The information appended at each layer at

254 J. Warner, V. Atluri, and R. Mukkamala

the requesting coalition entity is understood and dealt with by the corresponding layer
at the other coalition entity, much like the TCP/IP network protocol.

In this paper, we propose dynamic coalition-based access control (DCBAC) model
that is specified based on the credentials possessed by coalitions as well as subjects.
DCBAC extends CBAC in several directions in order to eliminate its inherent limi-
tations. First, CBAC assumes that every pair of coalition entities have to agree on the
coalition policies in advance in order to allow access to data from one entity to subjects1

of the other entity. As a result, this model cannot entertain a “truly dynamic coalition”,
where entities of the coalition join or leave in an ad-hoc manner. To cater to true ad-hoc
dynamic coalitions, we employ a coalition service registry (CSR) where coalition enti-
ties publicize their coalition level access policies. Any coalition entity wishing to access
a specific resource of another coalition entity can obtain a ticket by submitting its entity
credentials which are subsequently evaluated by the CSR. Second, CBAC computes the
credentials required by a user wishing to access a remote object as a union of all the
credentials possessed by all users playing a role, which has privileges to access that
object. This is a very conservative approach, and requires a large number of unneeded
credentials from a requesting user. Our DCBAC employs a mapper layer that accurately
computes the credentials required by a user to access a resource. Third, we demonstrate
how the access policies, at the coalition level and resource level, can be specified in
XML and be evaluated.

Our DCBAC system comprises of four layers – (i) coalition level, which interacts
with other coalition entities and is responsible for ensuring the authenticity of the coali-
tion entity requesting access to its resources, (ii) credential filter, which is responsible
for examining incoming credentials and attaching appropriate credentials to outgoing
requests, (iii) credential ⇐⇒ local access control mapper, which converts local access
control rules to policies concerning credentials for outgoing requests and vice versa for
incoming requests, and (iv) local access control layer, responsible for uniformly serving
the both local and external access requests.

While facilitating automatic access, we ensure that the following requirements are
met: (i) The existing access control mechanisms within each coalition entity remain
intact. Our approach does not require any changes to the existing local access control
mechanisms. (ii) Access is granted to subjects only if they belong to an organization
recognized by the coalition, adhering to the coalition level access policies. (iii) Subjects
of a coalition entity must have credentials with attribute values comparable to the values
of those of the local subjects.

For example, in an emergency management scenario, the International Red Cross
decides to make available its Emergency Response Information System to other relief
organizations. However, it has three access requirements: (i) individuals who wish to
access these resources must belong to an organization recognized by the International
Red Cross as a reliable relief organization; (ii) they are allowed to only access informa-
tion related to the emergency site in which they are currently operating; and (iii) they
must possess credentials with attribute values comparable to the values of internal users
of the resources. As an example, Dr. Roberts, a member of Doctors Without Borders,
wishes to access data on infectious diseases in the area of an earthquake in Turkey,

1 In this paper, we use subjects and users alternatively.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 255

an emergency scenario that he is currently working on. Clearly, he meets the first two
requirements as long as he can present the appropriate organizational credentials and
proof that he is operating in Turkey. Whether or not he meets the third requirement,
depends upon the credentials determined to be needed and the credentials he presents.

This paper is organized as follows. Section 2 presents required preliminaries to in-
troduce our DCBAC system. Section 3 presents our DCBAC system. Section 4 demon-
strates how the coalition and resource level policies can be specified in XACML speci-
fication language. Section 5 shows how access requests can be specified and evaluated.
Finally, Section 6 summarizes our conclusions and outlines future research in this area.

2 The Preliminaries

We briefly present the necessary formalism required to describe our DCBAC model.
Specifically, we review the formalism for resources and credentials.

Each organizational entity maintains a set of resources, RES, that can be shared with
other organizational entities within a coalition. Resources may include data objects as
well as services offered by the coalition entity. Each resource belongs to a resource-
type, organized as a resource-type hierarchy.

Definition 1. [Resource-type] An resource-type rt is a pair (rt id, RA), where rt id ∈
RT is a unique resource-type identifier; and RA is the set of attributes associated with
rt id. Each rai ∈ RA is denoted by an attribute name.

Definition 2. [Resource] A resource res is a triple (rt id, res id, res attr values),
where rt id ∈ RT , res id ∈ RES, res attr values = (ra : v1, . . . , ra : vn), where
{ra1, . . . , ran} ⊆ RA(rt). RA(rt) denotes the set of attributes associated with rt.

We use res(res id), res(res id) and res(res attr values) to denote the resource
id, the resource-type id, and the set of attribute values of the resource res, respectively.
The set of resource attributes describe the resource such as keywords or concepts.

We assume that each subject is associated with one or more credentials. Credentials
are assigned when a subject is created and are updated according to the profile of the
subject. To make the task of credential specifications easier, credentials with similar
structures are grouped into credential-types. Credential-types are typically organized
as credential-type hierarchy. We denote the set of credential-type identifiers with CT ,
the set of credential identifiers with CI , and the set of subject identifiers with U . A
credential-type can be formally defined as follows.

Definition 3. [Credential-type] A credential-type ct is a pair (ct id, A), where ct id ∈
CT is a unique identifier and A is the set of attributes belonging to ct id. Each ai ∈ A
has an attribute name and A(ct) is the set of attributes belonging to ct.

Definition 4. [Credential] A credential c, an instance of a credential-type ct, is a 4-tuple
(ct id, c id, subject id, subject profile), where ct id ∈ CT, c id ∈ CI, subject id
∈ U and subject profile = (a1 : v1, . . . , an : vn), where {a1, . . . an} ⊆ A(ct).

256 J. Warner, V. Atluri, and R. Mukkamala

Network (e.g., Internet)

Coalition
Service

Registry (CSR)
Coalition level

Credential filter

Credential - LAC
mapper

Local Access
Control (LAC)

Local User
Interface

Local Services
(Shared+Private)

Coalition level

Credential filter

Credential - LAC
mapper

Local Access
Control (LAC)

Local User
Interface

Local Services
(Shared+Private)

Local user Local user Local user Local user

Fig. 1. Proposed Coalition Architecture

The set of credentials associated with subjects in the system is denoted by the cre-
dential base (CB). We use c(c id), c(subject id), c(ct id) and c(subject profile) to
denote the credential id of c, the subject to which c is assigned, the credential type id of c
and the set of attribute values of the subject u (the subject profile) for c, respectively.

Example 1. An example of a credential for credential type “doctor” is as follows:
(doctor,045-999, (affiliation: Doctors-without-Borders, Specialty: immunology)). An
example of a credential for an organizational level credential type “organization”
is as follows: (organization, 943-777, CareNow, (headquarters: New York, NY, tax-
status:non-profit)). It has two attributes - headquarters and tax-status.

3 The DCBAC System

Our DCBAC system is comprised of a four layered architecture as depicted in Figure 1.
In this section, we briefly describe the functionalities of each of the components.

3.1 Coalition Service Registry

In order to facilitate dynamic and ad-hoc collaboration, we employ a registry service
similar to the model adopted for web services through which resources are offered to
potential collaborators. Such a model mitigates the need to negotiate and establish col-
laboration policies among coalition entities. Any entity can set its own sharing policies,

A Credential-Based Approach for Facilitating Automatic Resource Sharing 257

describe the types of resources that it is willing to share, and specify the required or-
ganizational credentials needed to access these resources. Adopting a model similar to
that of Web services is attractive in that it offers a readily available access interface.

We propose the use of a collaborative registry, called the coalition service registry
(CSR), similar to the UDDI Web Service registry[7]. It is used to define the set of re-
sources that coalition entities will make available and to describe the interfaces and
credentials used to access those resources. Our CSR will also verify organization-level
credentials and issue a “ticket” which can be submitted by individuals in the organi-
zation when submitting an access request for the advertised resources. This “ticket” is
nothing but a SAML assertion.

UDDI offers a standard way for potential collaborators to search registries for re-
sources based on a classification scheme or keyword. Queries for these resources can
be modulated with acceptable security and transport protocols. These searches are per-
formed against the information provided by the entity detailing to the desired extent
who the entity is (using the “BusinessEntity” structure), what resources are being pro-
vided (using the “businessService” structure), and the details on how to request access
to the resources (using the “binding template”). The binding template would indicate
the network address of the Coalition Access Point (CAP) for the resource publishing
entity. The CAP is able to interpret the requests and make access decisions. Specifics
about the access requests would be posted in the binding template as well, including
the format of credentials accepted, the format of the request and security requirements
(i.e., digital signatures, encryption).

While publishing resources in a public registry would allow the potential collabo-
rators to learn about offered resources, public announcement of shared resources is not
desirable. The CSR is expected to be hosted at one or more secure sites for a commu-
nity of interest. For our example, the Red Cross may state a coalition level policy by
registering their service at a registry and make their service only accessible to reliable
relief organizations through membership.

To gain access to a desired resource, a user (or an organization on behalf of its user)
submits the requested organizational level credentials to the CSR. The registry validates
the credentials and issues a SAML assertion. This is the “ticket” that a user from the
authenticated coalition entity must present to attempt to access the specific resources
being made available. Note that receipt of the ticket is not sufficient for access to the
resources. Instead, the assertion merely confirms that the user is from an organization
that matches the organizational level policy of the organization offering the resources.

Coalition entities may be permitted to join a coalition for a specific period of time.
Of course, revocation may be desirable at any time. Revocation procedures may be
performed at each individual CAP by implementing a function that follows decision
rules on whether a given assertion is accepted at a given time.

3.2 The DCBAC Layers

Additional specification of the layers are given in the following.
Coalition level. The top layer is the coalition level. It interacts with the coalition level
at other coalition entities. For simplicity, in this paper, we are considering only a single
coalition (in which an entity participates). When a entity participates in multiple coali-
tions, there would be multiple interfaces at this level (similar to a virtual machine model

258 J. Warner, V. Atluri, and R. Mukkamala

that supports multiple virtual machine interfaces to its processes [11]). In that case, we
can perceive this layer as having multiple coalition level software all existing simul-
taneously at an entity’s CAP. This layer receives service requests from other coalition
entity CAPs. The exact components of this request are presented later in Section 3.3.

On receiving an external service request, the top layer authenticates the requesting
coalition entity by validating the “ticket” received with the request. It checks if the
coalition policy has changed since the ticket was issued. If so, the request is rejected by
this level. The authentication is for the coalition entity that is sending the request rather
than for the individual user who may have initiated the request. The ticket is stripped
off and the request is then forwarded to the credential filter.

Credential Filter. The credential filter layer is responsible for filtering incoming and
outgoing requests and their associated user credentials. When this layer receives a ser-
vice request from the coalition level layer, it checks whether or not the service is made
available to the coalition (i.e., registered in CSR). It then checks whether or not the pro-
vided credentials are adequate to execute the request. If they are not adequate, it rejects
the request and sends an exception to its coalition level. In addition, depending on its
own organizational policies, it may downgrade or upgrade the credentials of a specific
entity in the coalition. For example, if a coalition consists of 10 entities, and entity A
has less trust on specific credentials offered by entity B, then it could downgrade them.

If one entity, for example, is suspected of revealing private information, another en-
tity could downgrade the credentials from this entity. After such filtering/transformation
of credentials, it forwards the request with credentials to its lower layer. It should be
noted that the credential layer has access to both the CSR and the local policies (if any)
regarding exception polices with regard to coalition entities. Below this layer, there is
no distinction between local and non-local user requests.

Let us now consider its handling of requests made by a local user to access non-local
services of the coalition. When its lower layer hands it a request and the associated user
credentials, it accesses the CSR to check: (i) If the service is registered at the reg-
istry; (ii) If the provided credentials are adequate to provide the service. If both checks
are positive, it filters out the credentials to be sent so that only the needed credentials
(required subject credentials) are provided to the service provider. For example, if
the requester is a PhD, an MD, and the director of a research institute, and if the service
only requires MD as a credential, the credential filter would filter out the PhD and di-
rector credentials. This is in line with the need-to-know principle adopted in operating
systems to provide resource protection and privacy [11]. It then sends up the request
and filtered credentials to the coalition level.

Credential⇐⇒LAC Mapper. The credential⇐⇒LAC mapper is responsible for
mapping the requestor’s credentials to the local access control terminology and vice
versa. It takes the local access control rules and converts them into a policy based on
credential attributes and resource attributes.

When the mapper receives a request with credentials from the credential layer, it
looks at its map and determines the possible local access controls that may be attributed
to that request. For example, when it receives the credentials of 〈Location: Turkey,
Specialty: infectious disease, Education: MD〉, and if the local access control policy

A Credential-Based Approach for Facilitating Automatic Resource Sharing 259

is RBAC, then the mapper would search its local map to determine possible roles that
may be assigned to the request. The map would specify required credentials derived
from those credentials that internal users in a role have minus the set that are either in-
dividual attributes (e.g., name, e-mail address) or internal organizational attributes (e.g.,
department, project). The local map, for example, may associate the received creden-
tials with the local roles of 〈Doctor〉 and 〈Intern〉. If two roles are in a single hierarchy,
then the map identifies only the highest role among them. Otherwise, it will form a
union of the roles and forwards this to the LAC layer along with the request. In other
words, if the hierarchy consists of doctor and intern, only doctor will be forwarded.

For outgoing requests, the mapper receives determines the role of the requestor
and computes the union of all credentials (subject credentials) associated with the
associated roles. It forwards the request and credentials to its credential filter layer.

Local Access Control (LAC) Layer. The local access control layer enforces control
on local services for both local and non-local requests. As shown in Figure 1, the local
requests are received through the Local-user-Interface (LUI). The non-local requests
are received through its upper layer. To understand its functionality, let us assume a
specific LAC such as RBAC. Since both local and non-local requests are accompanied
by the appropriate set of applicable roles, RBAC checks whether or not the service is
permitted for any of those roles. Of course, problems may arise when the requested
service is permitted for one of the roles and explicitly denied for some other role. Since
this is not specific to coalitions, we do not handle this problem here.

If a service request passes the access control, it is forwarded to the local services
module which executes the request and returns the result to the LAC. If the request
came from the local user, the results are returned through LUI. For non-local requests,
the results are forwarded to its upper layer.

3.3 The Request-Response Protocol

In the following, we present the detailed steps of how an access request is processed and
give an example using an access request by Dr. Roberts of Doctors Without Borders for
an object (RID 730) at the International Red Cross:
1. At the LAC Layer of the Requesting Entity: At the requesting coalition entity, a

user requests an resource by specifying the user request for a specific resource
type, which is as follows: 〈request id, subject id, rt id〉.
For example, 〈 744, roberts, Red Cross RID 730 〉.

2. At the credential⇐⇒LAC Mapper Layer of the Requesting Entity:
〈request id, subject credentials, rt id〉. For example, 〈 744, (degree:MD,
gender:M, location:Turkey, specialty: infectious disease), Red Cross RID 730 〉.

3. At the credential filter layer of the Requesting Entity:
〈request id, required subject credentials, rt id〉. For example, 〈 744,
(location:Turkey, specialty: infectious disease), Red Cross RID 730 〉.

4. At the coalition layer of the requesting entity: 〈request id, (requesting)entity id,
(resourceprovider)entity id, organizational credential assertion, rt id,
required subject credentials〉. For example, 〈 744,Doctors Without Borders,
Red Cross, SAML Assertion, Red Cross RID 730, (location:Turkey, specialty: in-
fectious disease) 〉.

260 J. Warner, V. Atluri, and R. Mukkamala

The message is sent to the service provider coalition entity.
1. At the Coalition Level Layer of the source entity, it validates the

organizational credential assertion and sends the following to the credential
filter layer. 〈request id, required subject credentials, rt id〉. For example,
〈 744, (location:Turkey, specialty: infectious disease), RID 730 〉.

2. At the credential filter layer of the requesting entity, it verifies that the
required subject credentials are included in the request. It then passes
〈request id, required subject credentials, rt id〉 to the mapper layer. For ex-
ample, 〈 744, (location:Turkey, specialty: infectious disease), RID 730 〉.

3. At the credential⇐⇒LAC mapper layer of the source entity, it compares the cre-
dentials of remote subjects to the determined equivalent of the local access control.
If they are acceptable, the mapper layer requests access from the LAC layer 〈rt id〉.
For example, 〈 744, RID 730 〉.

4. At the LAC layer of the source entity: This layer serves the access request. It iden-
tifies the requested resource or set of resources and makes them available to the
requesting coalition entity.

4 Policy Specification

In this section, we present our approach to specifying coalition based access control
policies. These policies are specified at two levels – coalition level and resource level.
The coalition level policies state the high level access control rules of coalition entities
on sharing resources among themselves that are publicized in the CSR.

The resource level policies state the access control rules on accessing a specific
resource by a user belonging to a coalition entity. These policies are stored and main-
tained at the resource owners. We use XACML [6] policy language to specify both the
coalition level and resource level policies. Finally, as noted in Section 3 we use SAML
for specifying organizational tickets.

We have chosen to use XML-based specifications for realizing our model. This
is because, using XML-standards, specifically UDDI, SAML and XACML provides
many benefits. Standards exist through the OASIS organization, the protocols are being
implemented, and parsers exist that can be readily used. The standards are extensible,
allowing the addition of functions and labels as needed. In addition, since collaboration
clearly involves multiple distributed parties, use of namespaces and semantics that have
already been defined for credentials and resources can speed implementation due to
re-use and can facilitate dynamic interoperability though common definitions.

4.1 Coalition Level Policies

The coalition level access policy specification can be compactly represented as follows:
〈entity id, credential set, rt id〉. The e policy states that only organizations that pos-
sess the credentials specified in the credenial set are allowed to access the resources
belonging to the rt id owned by the coalition entity with the specified entity id. These
organizational level policies are specified at the CSR. This coalition level policy repre-
sents only the organizational level credentials that must be provided by an individual
who requires access.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 261

01 XACML HEADER
02 <Policy>
03 <PolicyId=1>
04 <RuleCombiningAlgId= "deny-overrides">
05 <Description>
06 read access to emergency archives with non-profit

relief organizations who are listed as ReliefWeb members
07 </Description>
09 <Subjects>
10 <Subject>
11 <SubjectMatch MatchId="name-match">
12 <Attribute Value DataType=string "www.reliefweb.org/˜orglist">
13 <SubjectAttributeDesignator
14 AttributeId=organization_id
15 DataType=string/>
16 </SubjectMatch>
17 <Subject Match matchId="string-match">
18 <Attribute Value DataType=string "non-profit">
19 <SubjectAttributeDesignator
20 AttributeId=tax-status
21 DataType=string/>
22 </SubjectMatch>
23 </Subject>
24 </Subjects>
25 <Resources>
26 <Resource>
27 <Attribute AttributeId=resource_type>
28 <AttributeValue>
29 emergency-archive
30 </AttributeValue>
31 </Resource>
32 </Resources/>
33 </Policy>

Fig. 2. An Example of the Coalition Level Policy

XACML [6] provides a way to describe the above policy. We have adopted XACML
to specify this policy because of the following capabilities critical to our approach: (i)
It provides a method for basing an authorization decision on attributes of the subject
(e.g., subject credentials) and resource (e.g., resource type).(ii) It provides a method for
combining individual rules and policies into a single policy set. This helps in combining
rules applicable to one coalition into a policy set. (iii) XACML was written explicitly
to provide a common way to express policies and ensure enforcement in a distributed
environment, making it appropriate for a coalition based environment. (iv) Although
not explicitly used in our example, the logical and mathematical operators on attributes
of the subject, resource and environment will aid in flexible policy descriptions.

Example 2. Returning to our example, assume that the Coalition Level Policy for the
Red Cross is as follows: “Allow read access on emergency archives to non-profit re-
lief organizations who are listed as ReliefWeb members”. This policy can be stated as
〈RedCross, {ReliefWeb-member, non-profit}, emergency-archives〉.

The example coalition level policy can be expressed in XACML-like specification,
as shown in Figure 2, in which lines 1-7 introduce the policy and 8-23 indicate the
subject attributes that must be matched. There are two attributes to be matched. The
first, as specified in lines 11 - 16 is a name-match of the organization to names listed

262 J. Warner, V. Atluri, and R. Mukkamala

at “www.reliefweb.org/∼orglist”. The second, as specified in lines 17 - 22, is a string-
match for tax-status which must equal non-profit. Lines 25-32 provide the resource
attributes for the resources that are made available.

4.2 Resource Level Policies

The resource level access policy specification can be specified as: 〈credential set,
rt id〉. This policy states that only the subjects who possess the credentials specified by
the credential set are authorized to access the resources of type specified in the rt id.
These policies are specified within the coalition entity organization, and are maintained
in the local policy base. These are nothing but the local policies translated into this form
by the credential⇐⇒LAC Mapper.

Example 3. Let us consider the following two resource level policies: (1) External in-
dividuals may only access information related to the emergency site in which they are
currently operating. (2) Individuals must have credentials with attribute values compa-
rable to the values of internal users of the resources.

The first policy serves as a filter, specifying that there must be a match between the
subject’s location and the location for which the resource is concerned. Specification
of this policy using XACML requires that a variable be defined based on the creden-
tial attribute “location”. This variable is then used to match resource attribute values.
To specify the second policy in XACML is more straightforward. The required creden-
tials generated by the mapper are specified in XACML as attributes of the subject to
match.

Assume that Dr. Roberts, a member of Doctors Without Borders, wishes to access
data on infectious diseases in the area of an earthquake in Turkey, an emergency on
which he is currently working. The requested resources are distributed in two parts of
our resource hierarchy, RID 517 and 730. To access these resources, the resource policy
specifies that the subject must be a doctor with the specialty of infectious diseases to
access RID 517, but there are no specialty restrictions for RID 730. Internally, the access
control policy is that the subject must also be assigned to at least one of a set of specific
projects. However, since this is an internal attribute, it would not be included in the
attribute requirements for external users. This policy can be specified in XACML as
shown in Figure 3, where it consists of a target (lines 2 - 9) and a rule for each resource
type. The target is used to (1) check that the user has a location credential and (2) to store
the value of the location attribute in a variable “LOC”. The rules for each resource type
match (1) the variable “location” to the resource attribute “theater-of-operation” (lines
21 to 24 for the first policy, and 41 to 44 for the second policy, (2) match the subject
attributes presented by Dr. Roberts to the requirements for the requested resource. In the
first policy, the credentials needed are specified in lines 13 to 15. In the second policy,
there are no subject credentials matches to be found.

Note that there would be policies associated with all other shared resources, which
are not illustrated here. Note also that the policy is specified on the highest resource of
the hierarchy. For example, a policy is specified over resource 510 rather than resource
517 because the same policy applies to all of the children of 510.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 263

01 XACML HEADER
02 <Target>
03 <VariableDefinition VariableId="LOC">
04 <Apply Function-Id="string-equal">
05 <SubjectAttributeDesignator AttributeId="location"
06 DataType=string/>
07 </Apply>
08 </VariableDefinition>
09 </Target>
10 <Rule RuleId=1 Effect=permit>
11 <Description>
12 Read access is provided to users who present credentials showing a

specialty of "infectious disease" and location credentials that
match the "theater-of-operations" attribute of the requested
resource.

13 </Description>
14 <Subjects>
15 <Subject>
16 <SubjectMatch>
17 <AttributeValue ="infectious disease"
18 Datatype = specialty>
19 </Subject>
20 </Subjects>
21 <Resources>
22 <Resource>
23 RID 510
24 <ResourceMatch>
25 <AttributeValue = LOC
26 Datatype = theater-of-operation>
27 </ResourceMatch>
28 </Resource>
29 </Resources/>
30 <Actions>
31 <ActionMatch matchId=string-equal>
32 <AttributeValue DataType=string> read
33 </ActionMatch>
34 </Rule>
35 <Rule RuleId=2 Effect=permit>
36 <Description>
37 Read access is provided to users who present location credentials that

match the "theater-of-operations" attribute of the requested resource.
38 </Description>
39 <Subjects>
40 <Subject>
41 <AnySubject>
42 </Subject>
43 </Subjects>
44 <Resources>
45 <Resource>
46 RID 730
47 <ResourceMatch>
48 <AttributeValue = LOC
49 Datatype = theater-of-operation>
50 </ResourceMatch>
51 </Resource>
52 </Resources/>
53 <Actions>
54 <ActionMatch matchId=string-equal>
55 <AttributeValue DataType=string> read
56 </ActionMatch>
57 </Actions>
58 </Rule>

Fig. 3. An Example of the Resource Level Policy

264 J. Warner, V. Atluri, and R. Mukkamala

<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"//

MajorVersion="1" MinorVersion="1"
AssertionID="buGxcG4gILg5NlocyLccDz6iXrUa"
Issuer="Coalition-service-registry095
IssueInstant="2005-02-28T12:24:37">
Recipient="Red Cross"

<saml:Conditions NotBefore="2005-03-01T01:00:00"
NotOnOrAfter="2006-06-15T01:00:00"/>

<saml:AuthenticationStatement
<saml:Subject>

Doctors-without-Borders
</saml:Subject>

</saml:AuthenticationStatement
</saml:Assertion>

Fig. 4. SAML Assertion

5 Access Request Evaluation

In this section, we describe how an access request is evaluated. In order to send an
access request for a resource, the coalition entity of the requesting subject should first
have the required credentials to access the resource. This verification is done at the CSR
and a ticket to access the resource is issued to the requesting entity. In Section 5.1, we
describe how such assertions are generated and their format. A user of a requesting en-
tity then sends an access request to a coalition entity by appending this ticket. In Section
5.2, we discuss how this access request is specified in XML specification language and
how it is evaluated.

5.1 SAML Assertion

In order to gain access to a CAP, a user must submit the SAML assertion generated by
the CSR. The SAML assertion consists of a header, an assertion id, the Issuer element
containing the identifier for the specific CSR, the issue instant element providing the
date and time when issued, the recipient for the assertion, conditions for when the as-
sertion can be applied and the assertion itself which consists of the subject, indicating
the organization identity for which the assertion applies and any optional attributes.

In our example, Dr. Roberts’ organization, Doctors without Borders, would have
obtained a SAML assertion from the CSR, specified as shown in Figure 4.

5.2 Access Request Specification and Evaluation

XACML defines several functional components that work together to perform access
control. We make use of the following components at the CAP. The functionalities
supported by our CAP include: (i) a XACML Policy Enforcement Point (PEP), which
assesses external resource requests and enforces authorization decisions (ii) a Policy
Decision Point (PDP), which evaluates applicable policy and makes authorization de-
cisions, and (iii) a Policy Information Point (PIP), which provides attribute values for
outgoing requests as well as environmental attribute values such as time and date as
necessary. Not included in our CAP is the Policy Administration Point functionality
(PAP) which is the system used to create policies. A common policy system for all

A Credential-Based Approach for Facilitating Automatic Resource Sharing 265

<Request>
<Subject>

<SubjectAttribute>
specialty = cr:doctor.specialty

</SubjectAttribute>
<SubjectAttribute>

location = cr:work.site
</SubjectAttribute>

</Subject>
<Resource>

<ResourceAttribute>
RID = 517 AND RID = 730

</ResourceAttribute>
</Resource>
<Action>

Read
</Action>

</Request>

Fig. 5. Access Request

policies (local and external) is important to ensure that policies are not conflicting and
carefully administered. This is out of scope of this paper.

Looking at our example again from end-to-end, Dr. Roberts would first search the
CSR and find information that could be useful to him relevant to his relief work in
Turkey is available from the Red Cross CAP. Triggered by his request, his organization
submits its organizational level credentials to the registry, which verifies the credentials
and then returns a signed SAML assertion to be used at the Red Cross CAP. The request
can be expressed as: Request = 〈SAML Assertion, Credential-set, Resource, Action〉.
It consists of the SAML Assertion from the CSR, a credential set associated with Dr.
Roberts that meets the requirements of the access control rules for the requested re-
sources, the resources and finally the action requested. The last two items as well as a
reference to the portions of the submitted credentials that are applicable will be referred
to as the “Req”. The “Req” can be expressed in XACML with the 〈SubjectAttribute〉
tags referring to the portions of the submitted credentials that apply.

For example, Dr. Robert’s request would consist of
〈SAML-Assertion-for-Doctors-without-Borders, doctor-credential, work-credential,
Req〉 where Req would be formatted in XACML policy language as shown in Fig-
ure 5. The Red Cross CAP would match the request with the associated policy for the
requested resources and validate the credentials if necessary. If there is a match, access
is allowed. If not, access is denied.

6 Conclusions and Future Work

In this paper, we have presented a coalition-based access control system designed to
automatically translate coalition level policies into subject-resource level policies by
employing an attribute-based approach. It considers the attributes associated with user
credentials and those associated with resources, making the formation of specific groups
of subjects and resources unnecessary. Our system extends the original model proposed
[1] in the following three directions: First, our system is capable of catering to “true”
ad-hoc dynamic coalition by facilitating a coalition service registry where resources to

266 J. Warner, V. Atluri, and R. Mukkamala

be shared among potential coalition entities are advertised. Organizations can obtain
tickets to access the resources if they satisfy the required organizational-level creden-
tials. Second, our system is capable of assessing the exact credentials necessary by a
remote user and be able to map the access request as if it was an access request from a
local user. Finally, we have demonstrated how our CBAC system can be implemented
using OASIS XML-based standards, including XACML, UDDI, and SAML.

Our DCBAC model assumes that the local policies are mapped to credential-based
to facilitate external users to access the local resources. However, we have not addressed
how this mapping can be accomplished. Our future work includes mapping of different
types of local policies, including DAC, MAC, RBAC, etc., into credential based policies.
Moreover, CSR and ticket issuing function could become a performance bottleneck. We
are exploring the issue of distributing/replicating the CSR so that some of the functional-
ities of the CSR can be accomplished by the coalition entities themselves. The challenge
is to accomplish this without having to have a trusted coalition entity. We are also ex-
ploring the case where resources are not owned by only one entity in the coalition, but
instead are shared by several entities. We intend to extend our approach to facilitate such
cooperative environments similar to the work on cooperative role-based administration
in [12]. Finally, we believe that delegation is an important feature, which must be sup-
ported in coalition-based systems [4] and we intend to include this support as well.

References

1. V. Atluri and J. Warner. Automatic enforcement of access control policies among dynamic
coalitions. In International Conference on Distributed Computing and Internet Technology
(ICDCIT) 2004, December 2004.

2. V. Bharadwaj and J. Baras. A framework for automated negotiation of access control policies.
Proceedings of DISCEX III, 2003.

3. E. Cohen, W. Winsborough, R. Thomas, and D. Shands. Models for coalition-based access
control (cbac). SACMAT, 2002.

4. P. Freudenthal, K. Pesin, Keenan Port, and Karamcheti. drbac: Distributed role-based access
control for dynamic coalition environments. ICDCS, July 2002.

5. H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor, and J. Baras.
Integrated security services for dynamic coalitions. Proc. of the DISCEX III, 2003.

6. OASIS. extensible access control markup language (XACML), version 2. OASIS Standard,
February 2005.

7. OASIS. Universal description discovery and integration (UDDI), version 3.0.2. OASIS Stan-
dard, February 2005.

8. OASIS. Assertions and protocols for the oasis security assertion markup language (saml),
version 2. OASIS Standard, January 2005.

9. C. Philips, E. Charles, T. Ting, and S. Demurjian. Towards information assurance in dynamic
coalitions. IEEE IAW, USMA, February 2002.

10. C. Philips, T.C. Ting, , and S. Demurjian. Information sharing and security in dynamic
coalitions. SACMAT, 2002.

11. A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts with Java. John Wiley
and Sons, 6 edition, 2004.

12. H. F. Wedde and M. Lischka. Cooperative role-based administration. SACMAT, 2003.
13. T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and sensitive poli-

cies through interoperable strategies for automated trust negotiation. ACM Transactions on
Information and System Security, 6(1):1–42, February 2003.

	Introduction
	The Preliminaries
	The DCBAC System
	Coalition Service Registry
	The DCBAC Layers
	The Request-Response Protocol

	Policy Specification
	Coalition Level Policies
	Resource Level Policies

	Access Request Evaluation
	SAML Assertion
	Access Request Specification and Evaluation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

