
Secure Model Management Operations

for the Web

Guanglei Song, Kang Zhang, Bhavani Thuraisingham, and Jun Kong

University of Texas at Dallas, Richardson, Texas 75083-0688 USA
{gxs017800, kzhang, bhavani.thuraisingham, jxk019200}@utdallas.edu

Abstract. The interoperability among different data formats over the
Internet has drawn increasing interest recently due to more and more
heterogeneous data models are used in different Web services. In or-
der to ease the manipulation of data models for heterogeneous data,
generic model management has been intensively researched and also
implemented in a prototype since its first introduction. Access control
specifications attached to each individual data model require significant
amount of efforts to manually specify. Based on a general security model
for access control specifications on heterogeneous data models and its vi-
sual representation, we present secure model management operators for
managing access control specifications.The secure model management
operators disccussed in the paper include a secure match operator and a
secure merge operator. We introduce a novel graphical schema matching
algorithm and extend the algorithm to make a secure match operator.
The paper also discusses secure merge principles for the integration of
data models.

1 Introduction

The huge success of the Web as a platform for information dissemination has
brought an increasing awareness of the fact that document exchange over the
Internet should meet security requirements such as fine-grained authenticity and
access control [24]. XML [4,5] and database [9] access control models have been
a hot research topic. Recently, the continuing demand for information sharing
has shifted interests from stand-alone XML repositories and databases to inter-
connected and large-scale cooperative systems [6].

Manually manipulating heterogeneous data models has been a time-
consuming and error-prone process. Therefore a new approach to metadata man-
agement, i.e. Model Management, has been proposed [2]. Model management
offers a high-level programming interface and avoids object-at-a-time primitives
by manipulating models with generic operators. Our previous work provides a
visual model management architecture, which eases the use of the generic oper-
ators [23]. The visual architecture, however, does not provide secure interfaces
for managing access control specifications, which are associated with data mod-
els. These specifications can only be managed manually, and the procedure for
managing secure models, therefore, cannot be fully realized by current model

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 237–251, 2005.

c© IFIP International Federation for Information Processing 2005

238 G. Song et al.

management systems. This paper focuses on the security properties of model
management, and explores various issues and solutions to achieve secure model
management of data models.

One challenge of secure model management comes from the heterogeneity of
data formats. Data encoded in different formats needs to be exchanged in co-
operative systems, thus achieving interoperability. Even though every individual
data model may have highly secure access control specifications and enforcement
mechanism, the federation of data models is not necessarily secure. Security of
a union of systems is determined by the weakest link. When information of
different models is interchanging, it opens a window for attack. The security
extensions presented in the paper ease the manipulation of models with access
control specifications and provide a guidance for generating safe mappings and
unions of models.

The remainder of the paper is organized as follows. Section 2 introduces a
uniform access control model and an illustrative example. Section 3 proposes
a graphical schema matching algorithm and the security extension to the algo-
rithm. Section 4 presents security extensions to other model management op-
erators. Section 5 discusses the future research directions. Section 6 compares
related works and Section 7 concludes the paper.

2 A Uniform Access Control Model

Our uniform access control model consists of a set of rules, each being a tuple of
five elements: subject, object, action, authorization, and propagation [24]. Access
control regulates access to the data, such as XML documents, and databases
called objects. Those who try to access these objects are called subjects. A subject
is represented by a unique user-defined identifier called UPath [24], e.g. tables
and columns of a relational schema, elements and attributes of an XML schema.
Actions include read, write, update, and delete. An authorization specifies the
negative or positive response to a request, i.e. allow or deny. The propagation
can be either local or recursive, referring to the influence of the object locally or
recursively to its child objects.

We visualize the access control rules by node-edge diagrams [24]. As shown in
Figure 1, a rule is represented as a link and a subject is represented by a labeled
rectangle connecting to objects (as labeled ellipses). A gray eclipse represents
recursive access, and a white eclipse indicates local access. The label of each
link, R or W, represents the activity. The circle and the cross on a link represent
allow and deny of access respectively.

Subject

O O

W

3O
2

1

Fig. 1. Visual representation of access control

Secure Model Management Operations for the Web 239

Item

Name

Price

ID

Discount

Description

I_Name

Item

I_Price

I_ID

Detail

Desc

Specific

Map1_2

=

====

=

=

=

=

Fig. 2. Online shopping schemas for two companies

Table 1. Access Rules for Model A

Subject Object Action Authorization Propagation

1 Customer /Item/ Read Allow R

2 Vendor /Item/ Read Allow R

3 Administrator /Item/ Read Allow R

4 Administrator /Item/Description Write Allow L

5 Administrator /Item/Discount Write Allow L

6 Administrator /Item/Price Write Allow L

Table 2. Access Rules for Model B

Subject Object Action Authorization Propagation

1 Cust /Item/ Read Allow R

2 Provider /Item/ Read Allow R

3 Admin /Item/ Read Allow R

4 Admin /Item/Detail Write Allow R

5 Admin /Item/Price Write Allow L

Consider the following example. Two companies Ac and Bc want to offer a
joint online solution for customers and vendors. Figure 2 shows the two schemas,
A and B, for companies Ac and Bc.

Companies Ac and Bc have local access control rules as shown in Tables 1
and 2 respectively.

A model management system eases the process by providing generic operators
like Match and Merge. Figure 3 shows the scenario of unifying the two models
by the two operators [24]. ACRA and ACRB are access control rules for models
MA and MB respectively. Mu is the unified model of MA and MB. ACRu is
a set of access control rules for model Mu. The system matches and merges
MA and MB to generate Mu, but cannot automatically generate ACRu. Users

240 G. Song et al.

Mu

ACR u

MA MB

ACR A ACR B

User

?

Fig. 3. Unified online shopping system

have to construct ACRu manually from scratch. It is highly risky to manually
manipulate access control rules in a large scale such as an online store site.
To ease the process, a security extension for model management operators (like
Match) is desirable for automatically managing access control rules.

3 Secure Schema Matching

This section introduces a new matching algorithm for graphical generation of
schema mappings, and adapts the algorithm by adding a security extension.

3.1 A Graphical Schema Matching Algorithm

Schema matching is to find semantic correspondences among elements of two
schemas. Most of the proposed approaches [20] concentrated on the similarity
of individual elements or at most neighborhood information, rather than on the
global semantics of the schemas. We propose a novel approach to the schema
matching problem utilizing global semantics. A schema is represented by an
acyclic directed graph, where nodes represent elements or attributes and links
represent the containment relationships.

a 1

a 2 a 3

b 1

b 2

b 3

a 1

a 2 a 3

b 1

b 2

b 3

III

Fig. 4. I.A mapping with semantic contradiction; II. A harmonic mapping

Schemas are represented by acyclic graphs, which do not allow containment
cycles that cause a semantic contradiction. If a semantic mapping between two
schemas has no semantic contradiction, we call the mapping harmonic. Figure

Secure Model Management Operations for the Web 241

S2
S1

Linguistic
Matcher

Data type
Matcher

Other
Matchers

Similarity
Table

Phase 1

Mapping
pairs

Cycle
detection

M1_2

Phase 2 Phase 3

Matcher repository

NOYES

Break

cycle?

Fig. 5. Mapping generation process in GGS

4 shows an example of mapping with semantic contradiction and the other be-
ing harmonic. Figure 4.I includes mapping pairs (a1, b2) and (a3, b1), while
a1contains a3and b1 contains b2. From the graphical representation of mapping,
the relationships between (a1, b2) and (a3, b1) produce a non-harmonic cross-
ing, which results in a semantic contradiction when applying the mapping. For
example, in case of merging elements of the schemas based on the mapping in
Figure 4.I, how can an algorithm decide whether the mapping (a1, b2) should
contain the mapping (a3, b1) or the other way? Also the mapping pairs are self-
contradictory due to a1 → a3 ↔ b1 → b2 → a1, i.e. a containment cycle, which
is contradictory to the acyclic representation of schemas.

A harmonic mapping, such as the one in Figure 4.II, is desirable. We present
a schema matching algorithm for producing harmonic mappings. Our schema
matching algorithm proceeds in 3 phases as shown in Figure 5:
1. Use various types of matchers to compare element names and calculate sim-

ilarity of data types and produce a similarity table for each pair of elements;
2. Produce an initial set of mapping pairs by selecting possible mappings from

the initial similarity table;
3. Search and break cycles that exist, and go to Phase 1 for the next iteration

until no cycle exists or when the number of iterations reaches a predefined
upper bound (beyond which the computational cost is no longer worthwhile
for users).

A single matcher generates a similarity table consisting of similarity values for
any two input elements. A similarity value is a number between 0 (strong dis-
similarity) and 1 (strong similarity). Our matching algorithm combines these
similarity tables by computing weighted averages. Assume n single similarity
tables, table1 to tablen, each having a similarity value Simi (a, b), i =1..n, for
any pair of elements (a, b). For each pair of elements (a, b) from schemas A and
B, the overall similarity Sim (a, b) can be calculated by:

242 G. Song et al.

Sim(a, b) =

n∑

i=1
(Simi(a,b)×wi)

n , where
n∑

i=1

(wi) = 1, and Simi is a similarity

table produced by matcher i.
Phase 2 generates mapping pairs based on the combined similarity table

by choosing the best match for each element in the table. Then in Phase 3,
our matching algorithm, as shown in Algorithm 3.1, detects cycles by checking
the decedents and ancestors of each element of a mapping pair to see if they
contribute a pair in the mapping. If so, a cycle exits.

Algorithm 3.1 cycle detection
Require: Table table

for each pair p(ai, bj) in pairs; do
Topsort(pairs);
if ((decedents(ai) X ancestors(bj)) U (ancestors (ai) X decedents (bj))) ∩ pairs
�= empty) then

returntrue;
end if

end for

If a cycle exists in the mapping pairs, the algorithm needs to choose a mapping
pair to adjust to remove the cycle. Conceptually, the pair that generates the most
crossings should be removed, i.e. the key contradiction pair. For the example in
Figure 4, the initial mapping pairs are produced from the similarity table as {(a1,
b2), (a2, b3), (a3, b1)}. The algorithm detects that mapping pair (a1, b3) produces
most contradictions with other mappings pairs, and therefore the pair as the key
mapping pair needs to be adjusted. Then our algorithm breaks the cycle by find-
ing the second most suitable mapping for the element in the table. Algorithm 3.2
describes the procedure: it finds the key contradiction by calculating the maximal
intersection set between mapping pairs and decedents and ancestors of a mapping
pair, and then chooses the second best mapping for the element.

Algorithm 3.2 breaking cycles
Require: Table table

for each pair p(ai, bj) in pairs; do
Topsort(pairs);
if (|((decedents(ai) X ancestors(bj)) U (ancestors (ai) X decedents (bj))) ∩ pairs
| is max) then

Choose the second biggest similarity for ai

end if
end for

After breaking cycles, the algorithm generates mapping pairs based on the
new similarity table and iteratively finds and breaks new crossings until no more

Secure Model Management Operations for the Web 243

Algorithm 3.3 the matching algorithm
Require: Data models m1 and m2

Table table = construct (m1, m2);
Itno = 0;
while into< bound do

if (cycle (table) then
Break(table);

end if
Into ++;

end while
Produce the mapping pairs from table;

crossing can be found or a threshold is reached. The pseudo code is described in
Algorithm 3.3.

3.2 Schema Matching with Security Property

The Match operator takes models A and B as input, and produces mapping
Map1 2, called object mapping, but not mapping for access control rules. Subject
matching matches the subjects of two access control rules. For example, “Cust”
in Table 1 is mapped to “Customer” in Table 2. Match with a security extension
takes two input models, each having a set of access control rules. The extended
Match operator is defined as follows:

Definition 1: (Mapo,Maps) = Match ((M 1, ACR1), (M2, ACR2)), where M1

and M2 are two data models, ACR1 and ACR2 are access control rules of models
M1 and M2 respectively.

Customer

Vendor

Administrator

Cust

Provider

Admin

Fig. 6. The Maps example

The result (Mapo,Maps) contains two mappings, Mapo between objects and
Maps between subjects. Figure 6 shows an example of subject mapping.

Object matching algorithms can be used for subject matching without con-
sidering security properties of access control rules, and thus may produce poor
and even risky mappings. A security extension of match should avoid risky map-
pings and produce safe mappings defined as follows.

244 G. Song et al.

Assume models M1 and M2 have access control rules ACR1 and ACR2 re-
spectively. S1 and S2 are subjects of ACR1 and ACR2. Map1 2 is the object
mapping between M1 and M2. Maps is a subject mapping between S1 and S2.

Definition 2: Maps is safe if and only if (∀ (s1, s2) ∈Maps ∀ (o1,
o2) ∈Map1 2 a ∈A (allow (s1, o1, a) iffallow (s2, o2, a))), where s1 and
s2 are subjects of S1 and S2, o1 and o2 are objects of M1 and M2, a is an action
in set A (all actions), allow (s1, o1, a) means that s1 is allowed to perform action
a on o1.

To produce safe subject mappings, three options can be considered:
1. Security filter: The most straightforward approach is to transplant an

object matching algorithm to match subjects with a security filter attached to
the back end. Once the filter finds a violation, it removes the mapping pair. The
approach is safe, but may impair effectiveness of the matching algorithm. For
example, as described in Section 2, if another element called Supervisor in model
B has full access to model B like Administrator of model A, and security filter
cannot match Supervisor with Administrator, since Administrator is chosen to
match Admin in the first place.

2. Security dimension: The approach provides security as another dimen-
sion of similarity. Careful scrutiny of this approach shows that violating map-
pings may be produced due to the influence of the other dimensions of similarity
(e.g. data type or naming similarity).

3. Security isomorphism: The approach calculates the similarity of sub-
jects based on not only subject names but also semantics of access control rules.
It compares the access control rules of every pair of subjects from the graphi-
cal representation and generates subject mapping based on the isomorphism of
ACRs.

Among the above three options, the security isomorphism algorithm gener-
ates more accurate mappings than security filter does, and can also be proved to
be safe. Therefore we choose the third approach as the security extension to our
matching algorithm presented in Section 3.1. The algorithm matches subjects’
access rules to calculate the similarity of two subjects. The similarity of two
subjects consists of SS (subject similarity) and AS (access similarity). If s is a
subject of access rules, we denote G (s) as a set of objects that S has access and
D (s) as the set of objects that S is prohibited from access.

Definition 3: The overlap set between two subjects is defined as: O (s1, s2) =
{(o1, o2)| o1 ∈G (s1) and o2 ∈ G (s2), and s1 and s2 are two subjects, and (o1,
o2) is a mapping}.
Definition 4: The access similarity between two subject nodes is defined as:
AS(s1, s2) = |O (s1, s2)|/ N, where N = |G(s1)| + |G(s2)| − |O (s1, s2)|, and no
mapping (o, p) exists such that o∈G(s1) and p∈D(s2) or o∈G(s2) and p∈D(s1).
Otherwise, AS(s1, s2) = -1.

As shown in Figure 7, the overlap set O (Vendor, Provider) = {(1, a)}. We
use Algorithm 3.4 to compute the similarity of two subjects, and then match
subjects by choosing the best match in the similarity table.

Secure Model Management Operations for the Web 245

Vendor

a b

R

Provider

1 2

RR R

Fig. 7. Matching for access control rules

Algorithm 3.4 Subject matching
Require: Data models o1, o2, subjects s1, s2

Use graphical global schema matching algorithm to produce subject similarity table
SS(s1, s2) and mapping M;
AS(s1,s2) = 0;
for each pair of subjects do

for every rule in ACR do
if allow(s1, o1, a) and allow(s2 , o2, a) and (o1,o2) ∈ M then

O(s1, s2) ⇓ (o1,o2);
end if
if violation exists then

AS(s1, s2)=-1; break;
end if
if (AS(s1,s2) != -1 then

AS(s1, s2) = | O(s1, s2)|/ N;
end if
if AS(s1, s2) >=0 then

SIM(s1, s2) = w* AS(s1, s2) + (1-w) * SS(s1, s2);
else

SIM(s1, s2) = -1;
end if

end for
end for
for each subject s1 in S1 do

if Max (SIM(s1, s2)) and SIM(s1,s2) >0 then
aps ⇓ (s1, s2);

end if
end for

Theorem 1: Algorithm 3.4 generates safe mappings.

Proof: The algorithm computes the similarity between any pair of subjects in
two input models based on the object mapping. Any possible violation will be
identified by marking the semantic similarity as -1. The AS value will finally pre-
vent mapping between any two violating subjects. Hence the algorithm generates
the mapping between those pairs of subjects that have no possible violation of
access control rules. According to Definition 2, the generated mapping is safe.

246 G. Song et al.

4 Merge with Security Property

Having the mapping between two models, one can merge the two models to gen-
erate a federation and exchange information. The security extension of Merge
eases the process by automatically generating access control rules for the out-
put data model. We define the Merge operator with security extension as the
following:

Definition 5: (M3, ACR3, Map1 3, Map2 3) = Merge (M1, M2, Map1 2, ACR1,
ACR2, Mapa), where M1 and M2 are input data models, and Map1 2 represents
the mapping between M1 and M2. Mapa represents the mapping between two
access control rules ACR1and ACR2. A Merge operator generates M3, Map1 3,

Item

Name ID Price Discount

Desc

Detail

Specific

Fig. 8. Result merged schema

and Map2 3. The result model M3 for the previous example is shown in Figure
8. Mapped elements in M1 and M2 are collapsed into one element in the new
model, such as Name and C Name into Name. Other than object merge, the
security extension of the Merge operator merges access control rules into a new
set of access control rules, i.e. ACR3. The process of merging two access control
rules is called access merge.

Access merge is based on subject mappings. As shown in Figure 6, Mapa

denotes the relationship between all possible subjects of two input access con-
trol rules. The two mapped subjects should be collapsed into one subject, such
as Customer and Cust into Customer, and share the same access authorization.
The access merge is represented by graph transformation as in visual model man-
agement [23], and should ensure a safe output by preventing violating accesses
while keeping maximum access for subjects.

Suppose the Merge operator takes input models M1 and M2. If the mapped
subjects have the same access to the same mapped objects in both models, then
the related two rules can be merged into one output rule, e.g. Rule 1 of ACR1

(in Table 1) and Rule 1 of ACR2 (in Table 2).
Apart from the above case, three other cases need to be handled carefully as

follows:
1. Unmapped subjects, subject S1 for M1 is not mapped and is a new

subject to M2. Since it is only effective on the elements in M1, we simply add
the related access control rules to the result.

Secure Model Management Operations for the Web 247

2. Unmapped objects, object O1 for M1 is not mapped and is a new object
to M2. We simply add the two rules to the result.

3. Conflict, conflict occurs when a prohibited access is allowed. The follow-
ing three access conflicts are discussed and corresponding solutions are presented.

a. Allow vs. Deny
Suppose Rule 1 allows subject S1 the access to object O1 in model M1 and

Rule 2 denies the access of S2 to O2, where S1 mapped to S2, O1 mapped to
O2. Conflict arises when two subjects and their respective objects are merged,
i.e. S1 and S2 into one subject (called S3) and O1 and O2 into one object (O3).
Whether to allow the access of S3 to O3 would be a delicate issue. Possible
solutions include:

(1) Deny the subject’s access in the resulting rule;
(2) Allow the subject’s access in the resulting rule;
(3) Separately create two rules for each subject, and remove the mapping

between the two subjects;
(4) Request a user intervention.
Allowing all the access will break the access control rule for M2. Solution (3)

separates mapped objects thus breaks the mapping. Solution (4) requires users’
intervention and will produce a result depending on the policy. Users’ interven-
tion requires a user interface with the security extension for model management
to be user friendly, i.e. a visual environment. Our solution is a hybrid of solutions
(1) and (4), i.e. denies the subject’s access and requests users’ intervention, thus
provides safe suggestions that are customizable.

b. Local vs. Recursive
The mapped subjects may have different propagations, e.g. Rule 1 allows

access of S1 to O1 locally while Rule 2 allows access of S2 to O2 recursively.
Possible solutions to the conflict include:

(1) Restrict the access to be local in the resulting rule;
(2) Allow the access to be recursive.
Solution (2) gives more access to users than solution (1) does, but can produce

possible violation. It would be safe to provide only local access with solution (1).

c. Read vs. Write
A conflict arises if a rule of mapped subjects has different actions to mapped

objects, e.g. Rule 1 allows read access of S1 to O1 while Rule 2 allows write
access of S2 to O2. Possible solutions include:

(1) Give only read access in the resulting rule;
(2) Allow write access.

For the similar reason as above, we choose solution (1) as the result.
Overall, our solution assures the maximum safe access for users, and prevents

security violation caused by Merge while still being flexible and adjustable by
security officers according to the application domains. Table 3 shows the resulting
access rules for merged models.

248 G. Song et al.

Table 3. Access Control Rules for Merged Model

Subject Object Action Authorization Propagation

1 Customer /Item/ Read Allow R

2 Vendor /Item/ Read Allow R

3 Administrator /Item/ Read Allow R

4 Administrator /Item/Detail Write Allow R

5 Administrator /Item/Price Write Allow L

5 Discussion and Directions for Future Research

We have discussed access control for model management, and have essentially
provided the foundation for work on secure model management.

5.1 Formalization and Other Operators

The access control models discussed here are somewhat informal. The next step
is to expand on the work proposed here and develop a formal model and prove
that security properties are maintained during the mappings. The access control
rules essentially control access that a user can have to the various documents.
However a user can receive legitimate responses and subsequently make sensitive
associations. Such a problem has come to be known as the inference problem.
Extensive work has been carried out on applying security constraint processing
for the inference problem [26]. We need to apply intelligent inference to the
access rules to achieve more personalized model management.

Other operators also need to extend with security properties, such as Model-
Gen. After the ModelGen operation, some objects of the original model may be
removed, and the security extension of the ModelGen operator needs to adjust
the access control rules for the generated model. We will extend other visual
model management operators with security properties as our future work.

5.2 Future Work

Future work will proceed in three directions. One is to apply the secure model
management for RDF (Resource Description Framework) document. RDF is
a critical part of the semantic web. The RDF data model is a syntax-neutral
way of rep-resenting RDF expressions. The basic data model consists of three
object types, resources, properties, and statements. A RDF model can be rep-
resented by a directed graph. Therefore, any node in the RDF model can have
multiple children and multiple parents. RDF is a foundation for processing meta-
data; it provides interoperability between applications that exchange machine-
understandable information on the Web. RDF emphasizes facilities which enable
the automated processing of Web resources. Since RDF is designed to describe
the re-sources and the relationship among them without assumption, the defini-
tion mechanism should be domain neutral, and can be applied to any domain.

Secure Model Management Operations for the Web 249

RDF essentially utilizes XML syntax. Therefore, we need to extend the model
driven operators for RDF syntax as well as semantics.

The second direction is to extend the concepts for secure information sharing
in heterogeneous and federated environments. Organizations are forming coali-
tions to share data but at the same time maintain security and privacy. We need
to integrate the heterogeneous data sources and at the same time enforce the
various security policies. The model management approach needs to be examined
for secure heterogeneous and federated data integration.

The third direction is to examine other access control policies and models.
Notable among them are role based access control (RBAC) and Usage control
(UCON) models [21] and [18]. RBAC is about users being allowed aces to object
depending on other roles. Usage control model proposed recently subsumes sev-
eral others models proposed in the literature. UCON consists of six components:
subjects and their attributes, objects and their attributes, rights, authorizations,
obligations and conditions. Subject must possess rights to access objects. In ad-
dition certain obligations have to be met and conditions have to be satisfied.
Applying model management for RBAC and UCON needs to be examined.

6 Related Work

Since its first introduction in a vision paper [2], many implementations model
management have been presented, such as Cupid [14,15] and SFA [16] as match
operator implementations, Merge operator presented by Pottinger et al [19].
While most of the approaches only concentrate on individual operators of the
model management, Rondo [17] is the first prototype of the generic model man-
agement system. None of these proposals addresses security extensions for any
model management operators.

Many proposals on access control mechanisms have been presented in both
database literature [9,11,10,12,22] and XML area [3,5,7]. There are however few
proposals on access controls across heterogeneous data models, and the most
related works are those on secure XML federations [27] and XML security mod-
els using relational databases [13]. Tan also proposed an idea of using RDBMS
to handle access controls for XML documents, in a rather limited setting [25].
Farkas et al. developed algorithms to automate the access control rules transfor-
mation process, while preserving the Access Control requirements of the original
systems [8]. They studied and developed methods for automatically translating
Access Control Lists and Bell-LaPadula models to ASL. They concentrated only
on the access control rules while our system can manipulate the related schemas
at the same time.

In addition, there has been lot of work on access control on temporal models,
multimedia models, geospatial information systems and multimedia systems [1].
While these works concentrate on domain-specific access controls, our approach
provides security extensions to generic systems and can be applied to virtually
any data models.

250 G. Song et al.

7 Conclusion

This paper has discussed uniform access control rules for heterogeneous data
models and a visual representation of the access control model. We presented
approaches for automatic generation of subject matching. We proved that the
security isomorphism algorithm generates safe mappings. The paper also dis-
cussed the security issues involved in the Merge operator and other operators,
and addressed the principles of a secure Merge operator. The security extensions
to our previous work on visual model management operators provides automatic
generation mechanism for managing access control specifications to allow het-
erogeneous Web data models to exchange information over public networks.

Model management is becoming an important technology for Web informa-
tion management. It is critical that security be incorporated into the process at
the beginning and not as an afterthought. The major contribution of this paper
is attempting to incorporate security into the model management process.

References

1. V. Atluri and S. Chun, An Authiruization, Model for Geospatial Data, IEEE Trans-
actions on Depoendable and Secure Computing, Volume 1, #4, 2005.

2. P.A.Bernstein, A. Halevy, and R.A. Pottinger, A Vision for Management of Com-
plex Models, SIGMOD Record, 29(4), 55-63, 2000.

3. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents,
IEEE Trans. Information and System Security (TISSEC), 5(3): 290 – 331, Aug.
2002.

4. Bray, T., Paoli, J., Sperberg-Mcqueen, C., and Maler, E. Extensible Markup
Language (XML) 1.0 (2nd Edition), World Wide Web Consortium (W3C),
http://www.w3.org/TR/REC-xml, 2000.

5. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Securing
XML Documents. Proc. EDBT 2000 Konstanz, Germany, Lecture Notes in Com-
puter Science, Vol. 1777, Springer, New York, March, 2000, 121–135.

6. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Fine Grained
Access Control for SOAP E-Services, Proc. 10th Int. World Wide Web Conference,
Hong Kong, China, May, 2001.

7. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, A Fine-
Grained Access Control System for XML Documents, ACM Trans. Information
and System Security (TISSEC), 5(2)169-202, May 2002.

8. C. Farkas, A. Stoica, P. Talekar, APTA: an Automated Policy Translation Archi-
tecture, Int. Conf. Computer, Communication and Control Technologies, 2003.

9. P. P. Griffiths and B. W. Wade, An Authorization Mechanism for a Relational
Database System, ACM Trans. Database System (TODS), 1(3): 242 – 255, Sep.
1976.

10. S. Jajodia and R. Sanhu, “Toward a Multilevel Secure Relational Data Model”,
ACM SIGMOD, May 1990.

11. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino, A Unified Framework
for Enforcing Multiple Access Control Policies, ACM SIGMOD, 474 – 485, May
1997.

Secure Model Management Operations for the Web 251

12. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, Flexible Support
for Multiple Access Control Policies, ACM Trans. Database Systems (TODS), 26
(2): 214 – 260, June, 2001.

13. B. Luo, D. Lee, W. Lee, P. Liu, A Flexible Framework for Architecting XML
Access Control Enforcement Mechanisms, Proc. VLDB Workshop on Secure Data
Management in a Connected World (SDM), Toronto, Canada, August 2004.

14. J. Madhavan, P. A. Bernstein, and E. Rahm, Generic Schema Matching Using
Cupid, Proc. 27th VLDB Conf., Roma, Italy, Sep, 2001, 49-58.

15. J. Madhavan and A. Y. Halevy, Composing Mappings Among Data Sources, Proc.
29th VLDB Conf., Berlin, German, Sep 2003, 572-583.

16. S. Melnik, H. Garcia-Molina and E. Rahm: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching, Proc. 18th ICDE,
San Jose CA, Feb 2002.

17. S. Melnik, E. Rahm, and P. A. Bernstein, Rondo: A Programming Platform for
Generic Model Management, Proc. SIGMOD 2003 Conf., San Dieago, CA, June
2003, 193-204.

18. J. Park and R. Sandhu, The UCONABC Usage Control Model, ACM Transactions
on Information and System Security, Volume 7, Number 1, February 2004.

19. R. A. Pottinger and P. A. Bernstein, Merging Models Based on Given Correspon-
dences, Proc. 29th VLDB Conf., Berlin, Germany, 2003, 826-873.

20. Rahm, Erhard and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching, VLDB Journal, 10(4): 334-350, 2001.

21. R. Sandhu, E. Coyne, H. Feinstein and C. Youman, Role-Based Access Control
Models, IEEE Computer, Volume 29, Number 2, February 1996.

22. R. Sandhu, F. Chen, The Multilevel Relational (MLR) Data Model, IEEE Trans.
Information and System Security (TISSEC), 1 (1), 1998.

23. G.L. Song, K. Zhang, and J. Kong, Model Management Through Graph Transfor-
mations, Proc. 2004 IEEE Symp. Visual Languages and Human-Centric Comput-
ing, IEEE CS Press, Rome, Italy, September 2004, 75-82.

24. G.L. Song, K. Zhang, B. Thuraisingham, J. Cao, Towards Access Control of Visual
Web Model Management, Proc. 2005 IEEE International Conf. on e-Technology,
e-Commerce and e-Service (EEE-05), IEEE CS Press, Hong Kong, March 2005.

25. K.-L. Tan, M. L. Lee, and Y. Wang. Access Control of XML Documents in Rela-
tional Database Systems, Proc. Int. Conf. on Internet Computing (IC), Las Vegas,
NV, Jun. 2001.

26. B. Thuraisingham. Security Constraint Processing in Multilevel Secure Distributed
Systems, IEEE Transaction on Knowledge and Data Engineering, Vol. 7, #2, April
1995.

27. L. Wang, D. Wijesekera and S. Jajodia., Towards Secure XML Federations, Proc.
16th IFIP WG11.3 Working Conference on Database and Application Security,
July 28-31, 2002.

	Introduction
	A Uniform Access Control Model
	Secure Schema Matching
	A Graphical Schema Matching Algorithm
	Schema Matching with Security Property

	Merge with Security Property
	Discussion and Directions for Future Research
	Formalization and Other Operators
	Future Work

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

