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Abstract. This paper introduces a new approach to a problem of data
sharing among multiple parties, without disclosing the data between the
parties. Our focus is data sharing among parties involved in a data mining
task. We study how to share private or confidential data in the follow-
ing scenario: multiple parties, each having a private data set, want to
collaboratively conduct association rule mining without disclosing their
private data to each other or any other parties. To tackle this demanding
problem, we develop a secure protocol for multiple parties to conduct the
desired computation. The solution is distributed, i.e., there is no central,
trusted party having access to all the data. Instead, we define a protocol
using homomorphic encryption techniques to exchange the data while
keeping it private.

Keywords: Privacy, security, association rule mining.

1 Introduction

In this paper, we address the following problem: multiple parties are cooperating
on a data-rich task. Each of the parties owns data pertinent to the aspect of the
task addressed by this party. More specifically, the data consists of instances, all
parties have data about all the instances involved, but each party has its own
view of the instances - each party works with its own attribute set. The overall
performance, or even solvability, of this task depends on the ability of performing
data mining using all the attributes of all the parties. The parties, however,
may be unwilling to release their attribute to other parties, due to privacy or
confidentiality of the data. How can we structure information sharing between
the parties so that the data will be shared for the purpose of data mining,
while at the same time specific attribute values will be kept confidential by the
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parties to whom they belong? This is the task addressed in this paper. In the
privacy-oriented data mining this task is known as data mining with vertically
partitioned data (also known as heterogeneous collaboration [6].) Examples of
such tasks abound in business, homeland security, coalition building, medical
research, etc.

The following scenarios illustrate situations in which this type of collabora-
tion is interesting: (1) Multiple competing supermarkets, each having an extra
large set of data records of its customers’ buying behaviors, want to conduct
data mining on their joint data set for mutual benefit. Since these companies
are competitors in the market, they do not want to disclose too much about their
customers’ information to each other, but they know the results obtained from
this collaboration could bring them an advantage over other competitors. (2)
Success of homeland security aiming to counter terrorism depends on combina-
tion of strength across different mission areas, effective international collabora-
tion and information sharing to support coalition in which different organizations
and nations must share some, but not all, information. Information privacy thus
becomes extremely important: all the parties of the collaboration promise to
provide their private data to the collaboration, but neither of them wants each
other or any other party to learn much about their private data. (3) Vidya and
Clifton [6] provide the following convincing example in the area of automotive
safety: Ford Explorers with Firestone tires from a specific factory had tread sep-
aration problems in certain situations. Early identification of the real problem
could have avoided at least some of the 800 injuries that occurred in accidents
attributed to the faulty tires. Since the tires did not have problems on other
vehicles, and other tires on Ford Explorers did not pose a problem, neither side
felt responsible. Both manufacturers had their own data, but only early gener-
ation of association rules based on all of the data may have enabled Ford and
Firestone to collaborate in resolving this safety problem.

Without privacy concerns, all parties can send their data to a trusted central
place to conduct the mining. However, in situations with privacy concerns, the
parties may not trust anyone. We call this type of problem the Privacy-preserving
Collaborative Data Mining problem. Homogeneous collaboration means that each
party has the same sets of attributes [7]. As stated above, in this paper we are
interested in heterogeneous collaboration where each party has different sets of
attributes [6].

Data mining includes a number of different tasks, such as association rule
mining, classification, and clustering. This paper studies the association rule
mining problem. The goal of association rule mining is to discover meaningful
association rules among the attributes of a large quantity of data. For example,
let us consider the database of a medical study, with each attribute represent-
ing a characteristic of a patient. A discovered association rule pattern could be
“70% of patients who suffer from medical condition C have a gene G”. This
information can be useful for the development of a diagnostic test, for pharma-
ceutical research, etc. Based on the existing association rule mining technologies,
we study the Privacy-preserving Collaborative Association Rule Mining problem
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defined as follows: multiple parties want to conduct association rule mining on a
data set that consists of all the parties’ private data, but neither party is willing
to disclose her raw data to each other or any other parties. In this paper, we
develop a protocol, based on homomorphic cryptography, to tackle the problem.

The paper is organized as follows: The related work is discussed in Section 2.
We describe the association rule mining procedure in Section 3. We then present
our proposed secure protocols in Section 4. We give our conclusion in Section 5.

2 Related Work

2.1 Secure Multi-party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds
one of the inputs, while ensuring that no more information is revealed to a
participant in the computation than can be inferred from that participant’s
input and output. The SMC problem literature was introduced by Yao [13].
It has been proved that for any polynomial function, there is a secure multi-
party computation solution [5]. The approach used is as follows: the function F
to be computed is firstly represented as a combinatorial circuit, and then the
parties run a short protocol for every gate in the circuit. Every participant gets
corresponding shares of the input wires and the output wires for every gate. This
approach, though appealing in its generality and simplicity, is highly impractical
for large datasets.

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [8] propose
a solution to privacy-preserving classification problem using oblivious transfer
protocol, a powerful tool developed by secure multi-party computation (SMC)
research. The techniques based on SMC for efficiently dealing with large data
sets have been addressed in [6], where a solution to the association rule mining
problem for the case of two parties was proposed.

Randomization approaches were firstly proposed by Agrawal and Srikant in
[3] to solve privacy-preserving data mining problem. In addition to perturbation,
aggregation of data values [11] provides another alternative to mask the actual
data values. In [1], authors studied the problem of computing the kth-ranked
element. Dwork and Nissim [4] showed how to learn certain types of boolean
functions from statistical databases in terms of a measure of probability differ-
ence with respect to probabilistic implication, where data are perturbed with
noise for the release of statistics. In this paper, we focus on privacy-preserving
among the intra-party computation.

The work most related to ours is [12], where Wright and Yang applied homo-
morphic encryption [10] to the Bayesian networks induction for the case of two
parties. However, the core protocol which is called Scalar Product Protocol can
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be easily attacked. In their protocol, since Bob knows the encryption key e, when
Alice sends her encrypted vector (e(a1), · · · , e(an)) where ais are Alice’s vector
elements, Bob can easily figure out whether ai is 1 or 0 through the following
attack: Bob computes e(1), and then compares it with e(ai). If e(1) = e(ai),
then ai = 1, otherwise ai = 0. In this paper, we develop a secure two-party
protocol and a secure multi-party protocol based on homomorphic encryption.
Our contribution not only overcomes the attacks which exist in [12], but more
importantly, a general secure protocol involving multiple parties is provided.

3 Mining Association Rules on Private Data

Since its introduction in 1993 [2], the association rule mining has received a great
deal of attention. It is still one of most popular pattern-discovery methods in the
field of knowledge discovery. Briefly, an association rule is an expression X ⇒ Y ,
where X and Y are sets of items. The meaning of such rules is as follows: Given
a database D of records, X ⇒ Y means that whenever a record R contains X
then R also contains Y with certain confidence. The rule confidence is defined
as the percentage of records containing both X and Y with regard to the overall
number of records containing X. The fraction of records R supporting an item
X with respect to database D is called the support of X.

3.1 Problem Definition

We consider the scenario where multiple parties, each having a private data set
(denoted by D1, D2, · · · and Dn respectively), want to collaboratively conduct
association rule mining on the concatenation of their data sets. Because they are
concerned about their data privacy, neither party is willing to disclose its raw
data set to others. Without loss of generality, we make the following assumptions
about the data sets (the assumptions can be achieved by pre-processing the data
sets D1, D2, · · · and Dn, and such a pre-processing does not require one party
to send her data set to other parties): (1) all the data sets contain the same
number of transactions. Let N denote the total number of transactions for each
data set. (2) The identities of the ith (for i ∈ [1, N ]) transaction in all the data
sets are the same.

Privacy-Preserving Collaborative Association Rule Mining problem: Party 1 has
a private data set D1, party 2 has a private data set D2, · · · and party n has a
private data set Dn. The data set [D1∪D2∪· · ·∪Dn] forms a database, which is
actually the concatenation of D1, D2, · · · and Dn (by putting D1, D2, · · · and Dn

together so that the concatenation of the ith row in D1, D2, · · · and Dn becomes
the ith row in [D1∪D2∪· · ·∪Dn]). The n parties want to conduct association rule
mining on [D1 ∪ D2 ∪ · · · ∪ Dn] and to find the association rules with support
and confidence being greater than the given thresholds. We say an association
rule (e.g., xi ⇒ yj) has confidence c% in the data set [D1 ∪ D2 ∪ · · · ∪ Dn]
if in [D1 ∪ D2 ∪ · · · ∪ Dn] c% of the records which contain xi also contain yj
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(namely, c% = P (yj | xi)). We say that the association rule has support s% in
[D1 ∪ D2 ∪ · · · ∪ Dn] if s% of the records in [D1 ∪ D2 · · · ∪ Dn] contain both xi

and yj (namely, s% = P (xi ∩ yj)). Consequently, in order to learn association
rules, one must compute the candidate itemsets, and then prune those that do
not meet the preset confidence and support thresholds. In order to compute
confidence and support of a given candidate itemset, we must compute, for a
given itemset C, the frequency of attributes (items) belonging to C in the entire
database (i.e., we must count how many attributes in C are present in all records
of the database, and divide the final count by the size of the database which
is N .) Note that association rule mining works on binary data, representing
presence or absence of items in transactions. However, the proposed approach
is not limited to the assumption about the binary character of the data in the
content of association rule mining since non-binary data can be transformed to
binary data via discreterization.

3.2 Association Rule Mining Procedure

The following is the procedure for mining association rules on [D1∪D2 · · ·∪Dn].

1. L1 = large 1-itemsets
2. for (k = 2; Lk−1 �= φ; k++) do begin
3. Ck = apriori-gen(Lk−1)
4. for all candidates c ∈ Ck do begin
5. Compute c.count (c.count divided by the total number of records

is the support of a given item set. We will show how to compute it in Sec-
tion 3.3.)

6. end
7. Lk = {c ∈ Ck|c.count ≥ min-sup}
8. end
9. Return L = ∪kLk

The procedure apriori-gen is described in the following (please also see [2]
for details).

apriori-gen(Lk−1: large (k-1)-itemsets)

1. insert into Ck

2. select p.item1, p.item2, · · ·, p.itemk−1,q.itemk−1

3. from Lk−1 p, Lk−1 q
4. where p.item1 =q.item1, · · · , p.itemk−2 =q.itemk−2, p.itemk−1 <q.itemk−1;

Next, in the prune step, we delete all itemsets c ∈ Ck

such that some (k-1)-subset of c is not in Lk−1:

1. for all itemsets c ∈ Ck do
2. for all (k-1)-subsets s of c do
3. if(s /∈ Lk−1) then
4. delete c from Ck;
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3.3 How to Compute c.count

In the procedure of association rule mining, the only steps accessing the ac-
tual data values are: (1) the initial step which computes large 1-itemsets, and
(2) the computation of c.count. Other steps, particularly computing candidate
itemsets, use merely attribute names. To compute large 1-itemsets, each party
selects her own attributes that contribute to large 1-itemsets. As only a single
attribute forms a large 1-itemset, there is no computation involving attributes of
other parties. Therefore, no data disclosure across parties is necessary. However,
to compute c.count, a computation accessing attributes belonging to different
parties is necessary. How to conduct this computations across parties without
compromising each party’s data privacy is the challenge we address.

If all the attributes belong to the same party, then c.count, which refers to the
frequency counts for candidates, can be computed by this party. If the attributes
belong to different parties, they then construct vectors for their own attributes
and apply our secure protocols, which will be discussed in Section 4, to obtain
c.count. We use an example to illustrate how to compute c.count among two
parties. Alice and Bob construct vectors Ck1 and Ck2 for their own attributes
respectively. To obtain c.count, they need to compute

∑N
i=1(Ck1[i] ·Ck2[i]) where

N is the total number of values in each vector. For instance, if the vectors are
as depicted in Fig.1, then

∑N
i=1(Ck1[i] · Ck2[i]) =

∑5
i=1(Ck1[i] · Ck2[i]) = 3. We

provide a secure protocol in Section 4 for the two parties to compute this value
without revealing their private data to each other.

1                                     1

0                                     1

  1   1

1 1

1 0

Alice                               Bob

Fig. 1. Raw Data For Alice and Bob

4 Collaborative Association Rule Mining Protocol

How the collaborative parties jointly compute c.count without revealing their
raw data to each other presents a great challenge. In this section, we develop
two secure protocols to compute c.count for the case of two parties as well as
the case of multiple parties, respectively.

4.1 Introducing Homomorphic Encryption

In our secure protocols, we use homomorphic encryption [10] keys to encrypt
the parties’ private data. In particular, we utilize the following characterizer of
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the homomorphic encryption functions: e(a1) × e(a2) = e(a1 + a2) where e is
an encryption function; a1 and a2 are the data to be encrypted. Because of the
property of associativity, e(a1 +a2 + ..+an) can be computed as e(a1)× e(a2)×
· · · × e(an) where e(ai) �= 0. That is

e(a1 + a2 + · · · + an) = e(a1) × e(a2) × · · · × e(an) (1)

4.2 Secure Two-Party Protocol

Let us firstly consider the case of two parties (n = 2). Alice has a vector A1

and Bob has a vector A2. Both vectors have N elements. We use A1i to denote
the ith element in vector A1, and A2i to denote the ith element in vector A2.
In order to compute the c.count of an itemset containing A1 and A2, Alice and
Bob need to compute the scalar product between A1 and A2.

Firstly, one of parties is randomly chosen as a key generator. For simplicity,
let’s assume Alice is selected as the key generator. Alice generates an encryption
key (e) and a decryption key (d). She applies the encryption key to the addition
of each value of A1 and Ri ∗ X (e.g., e(A1i + Ri ∗ X)), where Ri is a random
integer and X is an integer which is greater than N. She then sends e(A1i +
Ri ∗ X)s to Bob. Bob computes the multiplication

∏n
j=1[e(A1j + Ri ∗ X) ×

A2j ] when A2j = 1 (since when A2j = 0, the result of multiplication doesn’t
contribute to the c.count). He sends the multiplication results to Alice who
computes [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X)])modX =
(A11 +A12 + · · ·+A1j +(R1 +R2 + · · ·+Rj)∗X)modX and obtains the c.count.
In more detail, Alice and Bob apply the following protocol:

Protocol 1. (Secure Two-Party Protocol)

1. Alice performs the following:
(a) Alice generates a cryptographic key pair (d, e) of a homomorphic encryp-

tion scheme. Let’s use e(.) denote encryption and d(.) denote decryption.
Let X be an integer number which is chosen by Alice and greater than
N (i.e., the number of transactions).

(b) Alice randomly generates a set of integer numbers R1, R2, · · ·, RN and
sends e(A11 + R1 ∗ X), e(A12 + R2 ∗ X), · · ·, and e(A1N + RN ∗ X) to
Bob.

2. Bob performs the following:
(a) Bob computes E1 = e(A11 + R1 ∗X) ∗A21, E2 = e(A12 + R2 ∗X) ∗A22,

· · · and EN = e(A1N + RN ∗ X) ∗ A2N . Since A2i is either 1 or 0,
e(A1i + Ri ∗ X) ∗ A2i is either e(A1i + Ri ∗ X) or 0. Note that R1,
R2, · · ·, and RN are unrelated random numbers.

(b) Bob multiplies all the Eis for those A2is that are not equal to 0. In other
words, Bob computes the multiplication of all non-zero Eis, e.g., E =∏

Ei where Ei �= 0. Without loss of generality, let’s assume only the first
j elements are not equal to 0s. Bob then computes E = E1∗E2∗· · ·∗Ej =
[e(A11+R1∗X)×A21]×[e(A12+R2∗X)×A22]×· · ·×[e(A1j+Rj∗X)×A2j ]
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= [e(A11 + R1 ∗ X) × 1] × [e(A12 + R2 ∗ X) × 1] × · · · × [e(A1j + Rj ∗
X)× 1] = e(A11 + R1 ∗X)× e(A12 + R2 ∗X)× · · · × e(A1j + Rj ∗X) =
e(A11 + A12 + · · ·+ A1j + (R1 + R2 + · · ·+ Rj) ∗X) according to Eq. 1.

(c) Bob sends E to Alice.
3. Alice computes d(E)modX which is equal to c.count.

4.3 Analysis of Two-Party Protocol

Correctness Analysis. Let us assume that both parties follow the protocol.
When Bob receives each encrypted element e(A1i +Ri ∗X), he computes e(A1i +
Ri) ∗ A2i. If A2i = 0, then c.count does not change. Hence, Bob computes
the product of those elements whose A2is are 1s and obtains

∏
e(A1j + Rj) =

e(A11 +A12 + · · ·+A1j +(R1 +R2+ · · ·+Rj)∗X) (note that the first j terms are
used for simplicity in explanation), then sends it to Alice. After Alice decrypts
it, she obtains [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X))]modX
= (A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X)modX which is equal to
the desired c.count. The reasons are as follows: when A2i = 1 and A1i = 0,
c.count does not change; only if both A1i and A2i are 1s, c.count changes. Since
(A11 + A12 + · · · + A1j) ≤ N < X , (A11 + A12 + · · · + A1j + (R1 + R2 +
· · · + Rj) ∗ X)modX = (A11 + A12 + · · · + A1j). In addition, when A2i = 1,
(A11 + A12 + · · · + A1j) gives the total number of times that both A1i and A2i

are 1s. Therefore, c.count is computed correctly.

Complexity Analysis. The bit-wise communication cost of this protocol is
α(N + 1) where α is the number of bits for each encrypted element. The cost
is approximately α times of the optimal cost of a two-party scalar product. The
optimal cost of a scalar product is defined as the cost of conducting the product
of A1 and A2 without privacy constraints, namely one party simply sends its
data in plaintext to the other party.

The computational cost is caused by the following: (1) the generation of a
cryptographic key pair; (2) the total number of N encryptions, e.g., e(A1i+Ri∗X)
where i ∈ [1, N ]; (3)at most 3N-1 multiplications; (4) one decryption; (5) one
modulo operation; (6) N additions.

Privacy Analysis. All the information that Bob obtains from Alice is e(A11 +
R1 ∗ X), e(A12 + R2 ∗ X), · · · and e(A1N + RN ∗ X). Bob does not know the
encryption key e, Ris, and X . Assuming the homomorphic encryption is secure,
he cannot know Alice’s original element values. The information that Alice ob-
tains from Bob is

∏
[e(A1i + Ri ∗ X) ∗ A2i] for those is that A2i = 1. After

Alice computes [d(
∏

e(A1i + Ri ∗ X) ∗ A2i)]modX for those is that A2i = 1,
she only obtains c.count, and can’t exactly know Bob’s original element values.
Note that the trouble with binary data presented in [6] does not exist for our
protocol. More importantly, [6] only deals with the case of two parties; however,
our protocol can cope with the case of two parties as well as the case of multiple
parties.
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4.4 Secure Multi-party Protocol

We have discussed our secure protocol for two parties. In this section, we develop
a protocol to deal with the case where more than two parties are involved.
Without loss of generality, assuming Party 1 has a private vector A1, Party 2
has a private vector A2, · · · and Party n has a private vector An. For simplicity,
we use Pi to denote Party i.

In our protocol, P1, P2, · · · and Pn−1 share a cryptographic key pair (d, e) of
a homomorphic encryption scheme and a large integer X which is greater than
N. P1 modifies every element of its private vectors with R1i ∗ X , where R1i is a
random integer number, then encypts and sends them to Pn. Like P1, all other
parties send their encrypted values to Pn too. Pn will multiply received values
with her own element, e.g., Ei = e(A1i + R1i ∗ X) ∗ e(A2i + R2i ∗ X) ∗ · · · ∗
e(A(n−1)i + R(n−1)i ∗ X) ∗ Ani. Pn randomly permutes Eis and divides those
non-zero Eis into n-1 parts with each part having approximately equal number
of elements, and sends them to n-1 other parties who compute [d(Ei)]modX =
[d(e(A1i + R1i ∗ X) ∗ e(A2i + R2i ∗ X) ∗ · · · ∗ e(A(n−1)i + R(n−1)i ∗ X))]modX
= (A1i + A2i + · · · + A(n−1)i + (R1i + R2i + · · · + R(n−1)i) ∗ X)modX = (A1i +
A2i + · · ·+A(n−1)i). Suppose P1 gets the above [d(Ei)mod]X . P1 then compares
whether (A1i + A2i + · · ·+A(n−1)i) = n− 1. If it is true, then c.count1 increases
by 1. Consequently, P1 gets c.count1. Similarly, P2 gets c.count2, · · · and Pn−1

gets c.countn−1.
To avoid Pi knowing c.countj, where i �= j, we perform the following steps:

Pn generates another cryptographic key pair (e1, d1) of a homomorphic encryp-
tion scheme and sends the encryption key e1 to P1, P2, · · · and Pn−1 who com-
pute e1(c.count1), e1(c.count2), · · · and e1(c.countn−1) respectively. One of those
n-1 parties (e.g., Pj) is randomly chosen. All other parties Pks where k �= j
send e1(c.countk)s to Pj . Pj multiplies all the encrypted counts and obtains the
encrypted c.count. That is e1(c.count1) ∗ e1(c.count2) ∗ · · · ∗ e1(c.countn−1) =
e1(c.count1 + c.count2 + · · · + c.countn−1) = e1(c.count). Pj sends e1(c.count)
to Pn who computes d1(e1(c.count)) and gets c.count.

Protocol 2. (Secure Multi-Party Protocol)

1. P1, P2, · · ·, and Pn−1 perform the following:
(a) P1, P2, · · · and Pn−1 jointly generate a cryptographic key pair (d, e) of

a homomorphic encryption scheme. Let’s use e(.) denote encryption and
d(.) denote decryption. They also generate the number, X, where X is
an integer which is greater than N .

(b) P1 generates a set of random integers R11, R12, · · ·, R1N and sends
e(A11 + R11 ∗ X), e(A12 + R12 ∗ X), · · ·, and e(A1N + R1N ∗ X) to
Pn; P2 generates a set of random integers R21, R22, · · ·, R2N and sends
e(A21 + R21 ∗ X), e(A22 + R22 ∗ X), · · ·, and e(A2N + R2N ∗ X) to
Pn, · · ·, Pn−1 generates a set of random integers R(n−1)1, R(n−1)2, · · ·,
R(n−1)N and sends e(A(n−1)1 + R(n−1)1 ∗X), e(A(n−1)2 + R(n−1)2 ∗X),
· · ·, e(A(n−1)N + R(n−1)N ∗ X) to Pn.
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2. Pn performs the following:
(a) Pn computes E1 = e(A11+R11∗X) ∗ e(A21+R21∗X) ∗ · · · ∗ e(A(n−1)1+

R(n−1)1) ∗ An1 = e(A11+A21+· · ·+A(n−1)1+(R11+R21+· · ·+R(n−1)1)∗
X) ∗ An1,
E2 = e(A12+R12∗X) ∗ e(A22+R22∗X) ∗ · · · ∗ e(A(n−1)2+R(n−1)2∗X)
∗ An2 = e(A12+A22+· · ·+A(n−1)2+(R12+R22+· · ·+R(n−1)2)∗X)∗An2,
E3 = e(A13+R13∗X) ∗ e(A23+R23∗X) ∗ · · · ∗ e(A(n−1)3+R(n−1)3∗X)
∗ An3 = e(A13+A23+· · ·+A(n−1)3+(R13+R23+· · ·+R(n−1)3)∗X)∗An3,
· · ·, and
EN = e(A1N + R1N ∗ X) ∗ e(A2N + R2N ∗ X) ∗ · · · ∗ e(A(n−1)N +
R(n−1)N ∗ X) ∗ AnN = e(A1N + A2N + · · · + A(n−1)N + (R1N + R2N +
· · · + R(n−1)N ) ∗ X) ∗ AnN .
Since Ani is either 1 or 0, E1 is either e(A11 + A21 + · · · + A(n−1)1 +
(R11 + R21 + · · · + R(n−1)1) ∗ X) or 0; E2 is either e(A12 + A22 + · · · +
A(n−1)2 + (R12 + R22 + · · · + R(n−1)2) ∗ X) or 0; · · ·; and EN is either
e(A1N + A2N + · · ·+ A(n−1)N + (R1N + R2N + · · ·+ R(n−1)N) ∗X) or 0.

(b) Pn randomly permutes [9] the E1, E2, · · · and EN , then obtains the
permuted sequence D1, D2, · · · and DN .

(c) From computational balance point of view, we want each party among
P1, P2, · · · and Pn−1 to decrypt some of non-zero Dis. 1 Consequently,
in our protocol Pn divides those non-zero elements from D1, D2, · · · and
DN into n− 1 parts with each part having approximately equal number
of elements.

(d) Pn sends the n − 1 parts to P1, P2, · · · and Pn−1 respectively, so that
P1 gets the first part, P2 gets the second part, · · · and Pn−1 gets the
(n − 1)th part.

3. Compute c.count
(a) P1, P2, · · · and Pn−1 decrypt the encrypted terms received from Pn, then

modulo X. Due to the properties of homomorphic encryption, this gives
them the correct value of c.count for a candidate itemset consisting of
attributes A1, A2, · · · and An. Note that if a decrypted term is equal
to n-1 mod X, it means the values of P1, P2, · · ·, Pn−1 and Pn are all
1s2. For example, if Pi obtains Ei, she then computes d(Ei) mod X
= (A1i + A2i + · · · + A(n−1)i + (R1i + R2i + · · · + R(n−1)i) ∗ X) mod X
= A1i +A2i + · · ·+A(n−1)i. Consequently, P1, P2, · · · and Pn−1 compare
whether each decrypted term is equal to n − 1 modX. If yes, then each
Pi (i = 1, 2, · · · and n-1) increases her c.counti by 1.

(b) What remains is the computation of c.count by adding the c.countis.
Since we do not want a party Pi to know the countj for j �= i, we use the
following cryptographic scheme avoiding this disclosure: Pn generates

1 We assume that the number of non-zero elements of Dis (Let’s denote the number
by ND) is ≥ n-1. If not, we randomly select the number of ND parties from P1,
P2, · · · and Pn−1, and send each non-zero element to each of the selected parties.
Moreover, in practice N � n.

2 The value of Pn must be 1 because Pn doesn’t send the Dis to those n − 1 parties
if Di = 0.
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another cryptographic key pair (d1, e1) of a homomorphic encryption
scheme3. She then sends e1 to P1, P2, · · · and Pn−1. Pi (i = 1, 2, · · · , n−1)
encrypts c.counti by using e1. In other words, P1 computes e1(c.count1),
P2 computes e1(c.count2), · · · and Pn−1 computes e1(c.countn−1).

(c) One of parties among P1, P2, · · · and Pn−1 (e.g., Pj) is randomly se-
lected. Other parties Pks among P1, P2, · · · and Pn−1 (k �= j) send
their encrypted c.countk to Pj , who then multiplies all the encrypted
counts including her own e1(c.countj) and obtains the encrypted c.count.
That is, e1(c.count) = e1(c.count1) ∗ e1(c.count2) ∗ e1(c.count3) ∗ · · · ∗
e1(c.countn−1) = e1(c.count1 + c.count2 + · · · + c.countn−1).

(d) Pj sends e1(c.count) to Pn.
(e) Pn computes d1(e1(c.count)) = c.count. Finally, Pn obtains c.count and

shares with P1, P2, · · · and Pn−1.

4.5 Analysis of Multi-party Protocol

Correctness Analysis. Assuming all of the parties follow the protocol, to show
the c.count is correct, we need to consider:

– If the element of Pn is 1 (e.g., Ani = 1), and A1i+A2i+ · · ·+A(n−1)i = n−1,
then c.count increases by 1. Since [d(e(A1i +R1i ∗X)∗e(A2i +R2i ∗X)∗ · · ·∗
e(A(n−1)i + R(n−1)i ∗X))] mod X = [d(e(A1i + A2i + · · ·+ A(n−1)i + (R1i +
R2i + · · · + R(n−1)i) ∗ X))] mod X = A1i + A2i + · · · + A(n−1)i, if Ani = 1
and A1i + A2i + · · ·+ A(n−1)i = n− 1, that means A1i, A2i, · · ·, A(n−1)i and
Ani are all 1s, then c.count should increase by 1. For other scenarios, either
Ani = 0 or A1i +A2i + · · ·+A(n−1)i �= n−1 or both, c.count doesn’t change.

– In the protocol, Pn permutes Eis before sending them to P1, P2, · · · and
Pn−1. Permutation does not affect c.count. We evaluate whether each ele-
ment contributes to c.count, we then sum those that contribute. Summation
is not affected by a permutation. Therefore, the final c.count is correct.

Complexity Analysis. The bit-wise communication cost of this protocol is
at most 2αnN where α is the number of bits for each encrypted element. The
following contributes to the computational cost: (1) the generation of two cryp-
tographic key pairs; (2) the total number of nN + (n-1) encryptions; (3) the
total number of n(N + 1)− 1 multiplications; (4) the generation of permutation
function; (5) the total number of N permutations; (6) at most N decryptions;
(7) at most N modulo operations; (8) (n-1)N additions.

Privacy Analysis. Pn obtains all the encrypted terms from other parties. Since
Pn does not know the encryption key, Rij , and X, she cannot know the original
values of other parties’ elements. Each party of P1, P2, · · · and Pn−1 obtains
some of Dis. Since Dis are in permuted form and those n-1 parties don’t know
the permutation function, they cannot know the Pn’s original values either.
3 (d1, e1) is independent from (d, e).



164 J. Zhan, S. Matwin, and L. Chang

In our protocol, those n−1 parties’ c.counts are also preserved because of the
encryption. What Pj receives from other n − 2 parties is the encrypted counts.
Since Pj doesn’t know the encryption key e1, Pj cannot know other n−2 parties’
counts. What Pn receives from Pj is the multiplication of all c.countis. Therefore,
she doesn’t know each individual Pi’s count ( i = 1, 2, · · ·, n-1).

We also emphasis that Step (2b) are required, the goal is to prevent other
parties from knowing Pn’s values. Step (2c) is for the consideration of compu-
tational balance among P1, P2, · · ·, and Pn−1. Step (3b) to (3e) is to further
prevent parties from knowing c.countis each other. If the collaborative parties
allow sharing c.countis each other, some of steps can be removed and communi-
cation cost is saved.

5 Concluding Remarks

In this paper, we consider the problem of privacy-preserving collaborative asso-
ciation rule mining. In particular, we study how multiple parties can collabora-
tively conduct association rule mining on their joint private data. We develop
a secure collaborative association rule mining protocol based on homomorphic
encryption scheme. In our protocol, the parties do not send all their data to a
central, trusted party. Instead, we use the homomorphic encryption techniques
to conduct the computations across the parties without compromising their data
privacy. Privacy analysis is provided. Correctness of our protocols is shown and
complexity of the protocols is addressed as well. As future work, we will develop
a privacy measure to quantitatively measure the privacy level achieved by our
proposed secure protocols. We will also apply our technique to other data mining
computations, such as secure collaborative clustering.
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