
Ymer: A Statistical Model Checker�

H̊akan L.S. Younes

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract. We present Ymer, a tool for verifying probabilistic transient
properties of stochastic discrete event systems. Ymer implements both
statistical and numerical model checking techniques. We focus on two
features of Ymer: distributed acceptance sampling and statistical model
checking of nested probabilistic statements.

1 Introduction

Ymer is a tool for verifying probabilistic transient properties of stochastic dis-
crete event systems. Properties are expressed using the logics PCTL [2] and
CSL [1]. For example, the CSL property ¬P≥ 0.01[� U [0,15.07] faulty=n] asserts
that the probability of n servers becoming faulty within 15.07 seconds is less than
0.01. In general, Φ U [τ1,τ2] Ψ is a path formula and is evaluated over execution
paths for a stochastic system. The formula P≥ θ[ϕ], where ϕ is a path formula,
holds if and only if the probability measure of the set of paths that satisfy ϕ is
at least θ. To solve CSL model checking problems, one can attempt to compute
the probability measure of a set of paths using numerical techniques, but this
is infeasible for systems with complex dynamics (e.g. generalized semi-Markov
processes) or large state spaces. Existing CSL model checkers—ETMCC [3] and
PRISM [5]—are limited to finite-state Markov chains.

To handle the generality of stochastic discrete event systems, Ymer imple-
ments the statistical model checking techniques, based on discrete event simula-
tion and acceptance sampling, for CSL model checking developed by Younes and
Simmons [12] (see also [10–Chap. 5]). To verify a formula P≥ θ[ϕ], Ymer uses dis-
crete event simulation to generate sample execution paths and verifies the path
formula ϕ over each execution path. The verification result over a sample ex-
ecution path is the outcome of a chance experiment (Bernoulli trial), which is
used as an observation for an acceptance sampling procedure. Ymer implements
both sampling with a fixed number of observations and sequential acceptance
sampling. Ymer includes support for distributed acceptance sampling, i.e. the
use of multiple machines to generate observations, which can result in significant
speedup as each observation can be generated independently.

Ymer currently supports time-homogeneous generalized semi-Markov pro-
cesses specified using an extension of the PRISM input language. PRISM and

� Supported by the Army Research Office (ARO) under contract no. DAAD190110485
and a grant from the Royal Swedish Academy of Engineering Sciences (IVA).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 429–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 H.L.S. Younes

ETMCC work only with Markov processes, but support a richer set of properties
than Ymer, including steady-state properties and unbounded until operators in
path formulae. Ymer can use numerical techniques for continuous-time Markov
chains (CTMCs) as it includes the hybrid engine from the PRISM tool for CTMC
model checking. Numerical and statistical techniques can be used in combination
to solve nested CSL queries for CTMCs as described by Younes et al. [11].

2 Distributed Acceptance Sampling

Statistical solution methods that use samples of independent observations are
trivially parallelizable. One can use multiple computers to generate the observa-
tions, as noted already by Metropolis and Ulam [7–p. 340], and expect a speedup
linear in the added computing power. To ensure that observations are indepen-
dent, some care needs to be taken when generating pseudorandom numbers on
each machine. Ymer uses the scheme proposed by Matsumoto and Nishimura [6],
which encodes a process identifier into the pseudorandom number generator. This
effectively creates a different generator for each unique identifier.

Ymer adopts a master/slave architecture (Fig. 1) for the distributed verifica-
tion task. One or more slave processes register their ability to generate observa-
tions with a single master process. The master process collects observations from
the slave processes and performs an acceptance sampling procedure. Each slave
process is assigned a unique identifier by the master process to ensure that the
slave processes use different pseudorandom number generators. The right side of
Fig. 1 illustrates a typical communication session.

When using distributed sampling with a sequential test, such as Wald’s [9]
sequential probability ratio test, it is important not to introduce a bias against
observations that take a longer time to generate. For probabilistic model check-
ing, each observation involves the generation of a path prefix through discrete
event simulation and the verification of a path formula over the generated path
prefix. If we simply use observations as they become available, then the guaran-
tees of the acceptance sampling test may no longer hold. For example, negative

MASTER
acceptance sampling

SLAVE
simulation

SLAVE
simulation

. . .

SLAVE MASTER
register

model and property

observation

..

.

observation

done
⎭
⎪
⎬
⎪
⎫

repeat

Fig. 1. Master/slave architecture and communication protocol for distributed accep-
tance sampling

Ymer: A Statistical Model Checker 431

observations for the path formula � U [0,1000] Ψ require simulation for 1000 time
units, while positive observations may be fast to generate if Ψ is satisfied early
(cf. [10–Example 5.4]).

Such bias is avoided by committing, a priori, to the order in which obser-
vations are taken into account. Observations that are received out-of-order are
buffered until it is time to process them. Ymer maintains a dynamic schedule
of the order in which observations are processed. At the beginning, we sched-
ule to receive one observation from each slave process in a specific order. We
then reschedule the processing of the next observation for a slave process at the
arrival of an observation. This gives us a schedule that automatically adjusts
to variations in performance of slave processes without the need for explicit
communication of performance characteristics.

To show the effect of distributed sampling, we use the model of an n-station
symmetric polling system described by Ibe and Trivedi [4]. In this model, each
station has a single-message buffer and the stations are attended by a single
server in cyclic order. The server begins by polling station 1. If there is a message
in the buffer of station 1, the server starts serving that station. Once station i
has been served, or if there is no message at station i when it is polled, the
server starts polling station i + 1 (or 1 if i = n). We verify the CSL property
m1=1 → P≥ 0.5[� U [0,20] poll1], which states that if station 1 is full, then it is
polled within 20 time units with probability at least 0.5. We do so in the state
where station 1 has just been polled and the buffers of all stations are full.

Fig. 2 shows the reduction in verification time for the symmetric polling sys-
tem when using two machines to generate observations. The first machine is
equipped with a 733 MHz Pentium III processor. If we also generate observa-
tions, in parallel, on a machine with a 500 MHz Pentium III processor, we get
the relative performance indicated by the solid curve. The verification time with
two machines is roughly 70 % of the verification time with a single machine.
Fig. 3 shows the fraction of observations used from each machine, with m1 being

|S|102 104 106 108 1010 1012 1014

%

0

20

40

60

80

100

Fig. 2. Fraction of verification time as a
function of state space size for the sym-
metric polling system when using two ma-
chines instead of one

|S|102 104 106 108 1010 1012 1014

%

0

20

40

60

80

100 m1
m2

Fig. 3. Distribution of workload as a func-
tion of state space size for the symmetric
polling system when using two machines
to generate observations

432 H.L.S. Younes

the faster of the two machines. We can see that these fractions are in line with
the relative performance of the machines.

3 Nested Probabilistic Operators

To illustrate the use of nested probabilistic operators, we consider the robot grid
world described by Younes et al. [11]. A robot is moving in an n × n grid from
the bottom left corner to the top right corner. The objective is for the robot to
reach the top right corner within 100 time units with probability at least 0.9,
while maintaining at least a 0.5 probability of periodically (every 9 time units)
communicating with a base station. Let c be a Boolean state variable that is
true when the robot is communicating, and let x and y be two integer-valued
state variables holding the current location of the robot. The CSL property
P≥ 0.9

[P≥ 0.5[� U [0,9] c] U [0,100] x=n ∧ y=n
]

expresses the desired objective.
The path formula for the outer probabilistic statement contains a probabilis-

tic operator and cannot be verified without error with statistical techniques.
Younes et al. [11] present a mixed solution method using statistical sampling for
top-level probabilistic operators and numerical methods for nested probabilistic
operators. Younes [10–Sect. 5.2] provides a purely statistical approach, which is
made practical through the use of heuristics for selecting observation errors and
memoization [8] to avoid repeated effort. Ymer implements both techniques.

Fig. 4 plots the verification time for the robot grid world property as a func-
tion of state space size. The results were generated on a machine with a 3 GHz
Pentium 4 processor. The purely statistical approach is slower for smaller state
spaces, but handles larger state spaces than the other two solution methods
without exhausting memory resources (800 MB in this case). The dotted line
shows where the property goes from being true to being false as the state space
grows larger. The use of sequential acceptance sampling gives the peak in the
curve for the mixed solution method, but the peak is not present in the curve
for the purely statistical method thanks to memoization. The data shows that

|S|102 104 106 108 1010 1012

t (s)

10−2

10−1

100

101

102

103

104

numerical
mixed

statisitcal

Fig. 4. Comparison of solution methods for robot grid world property with nested
probabilistic operators

Ymer: A Statistical Model Checker 433

no method strictly dominates any other method in terms of verification time, al-
though one should keep in mind that the correctness guarantees are different for
all three methods. Numerical methods can guarantee high numerical accuracy,
while statistical methods provide only probabilistic correctness guarantees.

4 Implementation Details and Availability

Ymer is implemented in C (the random number generator) and C++, and uses
the CUDD package for symbolic data structures (BDDs and MTBDDs) used by
the hybrid CTMC model checking engine. The part of the code implementing
numerical analysis of CTMCs has been adopted from the PRISM tool. Ymer is
free software distributed under the GNU General Public License (GPL), and is
available for download at http://www.cs.cmu.edu/˜lorens/ymer.html.

References

1. Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P. Model-checking
algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

2. Hansson, H. and Jonsson, B. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

3. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M. A Markov chain
model checker. In Proc. 6th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, volume 1785 of LNCS, pages 347–362.
Springer, 2000.

4. Ibe, O. C. and Trivedi, K. S. Stochastic Petri net models of polling systems. IEEE
Journal on Selected Areas in Communications, 8(9):1649–1657, 1990.

5. Kwiatkowska, M., Norman, G., and Parker, D. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142, 2004.

6. Matsumoto, M. and Nishimura, T. Dynamic creation of pseudorandom number
generators. In Monte-Carlo and Quasi-Monte Carlo Methods 1998, pages 56–69.
Springer, 2000.

7. Metropolis, N. and Ulam, S. M. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

8. Michie, D. “Memo” functions and machine learning. Nature, 218(5136):19–22,
1968.

9. Wald, A. Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics, 16(2):117–186, 1945.

10. Younes, H. L. S. Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Computer Science Department, Carnegie Mellon
University, 2005. CMU-CS-05-105.

11. Younes, H. L. S., Kwiatkowska, M., Norman, G., and Parker, D. Numerical vs.
statistical probabilistic model checking. International Journal on Software Tools
for Technology Transfer, 2005. Forthcoming.

12. Younes, H. L. S. and Simmons, R. G. Probabilistic verification of discrete event
systems using acceptance sampling. In Proc. 14th International Conference on
Computer Aided Verification, volume 2404 of LNCS, pages 223–235. Springer, 2002.

	Introduction
	Distributed Acceptance Sampling
	Nested Probabilistic Operators
	Implementation Details and Availability
	References

