
JVer: A Java Verifier

Ajay Chander1, David Espinosa1, Nayeem Islam1,
Peter Lee2, and George Necula3

1 DoCoMo Labs USA, San Jose, CA
{chander, espinosa, islam}@docomolabs-usa.com

2 Carnegie Mellon University, Pittsburgh, PA
Peter.Lee@cs.cmu.edu

3 University of California, Berkeley, CA
necula@eecs.berkeley.edu

fax 408-573-1090

1 Introduction

We describe JVer, a tool for verifying Java bytecode programs annotated with
pre and post conditions in the style of Hoare and Dijkstra. JVer is similar to
ESC/Java [1], except that: (1) it produces verification conditions for Java byte-
code, not Java source; (2) it is sound, because it makes conservative assumptions
about aliasing and heap modification; (3) it produces verification conditions di-
rectly using symbolic simulation, without an intermediate guarded-command
language; (4) by restricting predicates to conjunctions of relations between in-
tegers, it produces verification conditions that are more efficient to verify than
general first-order formulae; (5) it generates independently verifiable proofs using
the Kettle proof-generating theorem prover [2].

We initially designed JVer as a tool for verifying that downloaded Java byte-
code programs do not abuse the computational resources available on a cell phone
[3]. These resources include physical resources such as CPU, memory, storage,
and network bandwidth, and virtual resources such as handles and threads.
However, since JVer uses standard pre and post conditions, it has many uses not
limited to resource certification, such as bug finding and security hole detection.
We describe JVer’s implementation, as well as an experiment using it to limit
the resources consumed by a cell phone version of tetris.

2 Verifier

Figure 1 shows our annotation language, which is a subset of JML. It includes
the usual Hoare-style pre and post conditions, global invariants, loop invariants,
and side-effect annotations. The exsures annotation means that the method
terminates with an exception of the given class.

Predicates are conjunctions of literals. Literals are of the form e0 ≥ e1 or
e0 = e1. Expressions include only the usual Java operators, without method
calls. Expressions can refer to class fields and instance fields. Expressions in
post conditions can include the keyword result to refer to the method’s return
value (in ensures) or thrown exception (in exsures).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 144–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

JVer: A Java Verifier 145

JVER uses true as the default loop invariant. If necessary for verification,
the user must supply a stronger invariant, which is located by program counter
value. In this respect, JVer differs from ESC/Java, which unrolls loops a fixed
number of times and is therefore unsound.

annotation ::=
invariant pred |
ghost class.field |
static ghost class.field |
type class.method (type argument, ...)
method-annotation*

method-annotation ::=
requires pred |
ensures pred |
exsures class pred |
loop invariant pc, pred

pred ::= literal ∧ · · · ∧ literal

literal ::= exp relop exp

exp ::= int | argument | class.field | exp.field |
exp binop exp | \old(exp) | \result

relop ::= = | != | < | <= | > | >=

binop ::= + | - | * | / | % | << | >> | >>> | & | | | ^

Fig. 1. Annotation definition

To verify Java bytecode, we use a standard verification condition generator
(VCG) based on weakest pre conditions. The verifier begins at the start of a
method and at each loop invariant and traces all paths through the code. Each
path must terminate either at the end of the method, or at a loop invariant. If
a path loops back on itself without encountering a loop invariant, the verifier
raises an error and fails to verify the program.

Along each path, the verifier begins with a abstract symbolic state containing
logical variables for the method’s arguments and for all class fields. It simulates
the bytecode using a stack of expressions. At the end of the path, it produces the
VC that if the pre condition (or initial loop invariant) holds of the initial state,
and all of the conditionals hold at their respective intermediate states, then the
post condition (or final loop invariant) holds of the final state.

The VC for the program is the conjunction of the VCs for the methods. The
VC for the method is the conjunction of the VCs for the execution paths. The
VC for each path is an implication between conjunctions of literals, of the form

146 A. Chander et al.

a1 ∧ · · · ∧ am ⇒ b1 ∧ · · · ∧ bn

where the ai and bi are literals. This implication is valid if and only if

a1 ∧ · · · ∧ am ∧ ¬bi

is unsatisfiable for each bi, which we check with a decision procedure for sat-
isfiability of conjuncts of literals. In essence, we check the original formula for
validity by converting it to CNF [4].

2.1 Java Features

Java includes several features that make it more difficult to verify than a hy-
pothetical “simple imperative language”: concurrency, exceptions, inheritance,
and the object heap. We address these issues in turn.

Concurrency. Since most cell phone applets are single-threaded, JVER does
not handle concurrency. In particular, we assume that each method has exclusive
access to shared data for the duration of its execution. In contrast, ESC/Java
detects unprotected shared variable access and discovers race conditions using a
user-declared partial order.

Exceptions. Java has three sources of exceptions: explicit throw instruc-
tions, instructions that raise various exceptional conditions, such as NullPointer
or ArrayIndexOutOfBounds, and calling methods that themselves raise excep-
tions. Since our control flow analyzer produces a set of possible next instruc-
tions, it handles exceptions without difficulty. In essence, an exception is a
form of multi-way branch, like the usual conditionals, or the JVM instructions
tableswitch and lookupswitch. ESC/Java provides essentially the same sup-
port for exceptions.

Inheritance. If class B extends class A, then when invoking method m on
an object of class A, we may actually execute B.m instead of A.m. Thus, the pre
condition for B.m must be weaker than the pre condition for A.m, while the post
condition for B.m must be stronger than the post condition for A.m. Thus, when
we compute the post condition for B.m, we conjoin the post condition for A.m.
And when we compute the pre condition for A.m, we conjoin the pre condition
for B.m. Thus, we inherit post conditions downwards and pre conditions upwards.
On the other hand, if class B defines method m, but class A does not, then we do
not inherit pre or post conditions in either direction.

Inheritance of pre and post conditions is convenient, because we can state
them just once, and JVer propagates them as necessary. However, to determine
the specification for a method, we need the specification for the methods related
to it by inheritance, both up and down. However, once we know its specification,
we can verify each method in isolation. ESC/Java inherits pre conditions down-
wards, which is unsound in the presence of multiple inheritance via interfaces.

Object Heap. At the moment, we use Java’s type system to automatically
over-estimate the set of heap locations that each method modifies. That is, we
assume that the assignment a.x = e modifies the x field of all objects whose
type is compatible with a. We also determine automatically which static class

JVer: A Java Verifier 147

variables each method modifies. In the future, we plan to experiment with more
precise alias analysis algorithms. If the user requires more precise modification
information, he can declare explicitly in the post condition that x = \old(x).
ESC/Java requires the user to state explicitly which heap locations each method
modifies, but since it does not verify this information, its heap model is unsound.

3 Applications

We are using JVer to enforce resource bounds on downloaded cell phone applets
using proof-carrying code [3]. Thus, we need a prover that can generate proofs
and a small, fast verifier that can check them on the handset.

Our resource-verification technique uses a static ghost variable pool to ensure
that the applet dynamically allocates the resources that it uses. Allocations
increment pool, while uses decrease it. We use JVer to check the invariant that
pool remains non-negative.

In an experiment, we verified the security of a Tetris game / News display
cell phone applet running on DoCoMo’s DoJa Java library. The security policy
limited the applet’s use of the network, persistent storage, and backlight. The
1850-line applet required 111 lines of annotation and verified in less than one
second. By checking network use once per download of the news feed rather than
once per byte, we reduced the number of dynamic checks by a factor of roughly
5000.

4 Conclusion

Unlike ESC/Java, JVer is sound, simple, efficient, and produces independently-
verifiable proofs from Java bytecode, not source. It accomplishes these goals
by restricting the properties that it checks and by requiring more user-supplied
annotations. We have found in practice that JVer is a useful and efficient tool
for verifying properties of cell phone applets.

References

1. Flanagan, C., Leino, R., Lilibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended
static checking for Java. In: Programming Language Design and Implementation,
Berlin, Germany (2002)

2. Necula, G.C., Lee, P.: Efficient representation and validation of proofs. In: Logic in
Computer Science, Indianapolis, Indiana (1998)

3. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: Enforcing resource bounds
via static verification of dynamic checks. In: European Symposium on Programming,
Edinburgh, Scotland (2005)

4. Paulson, L.: ML for the Working Programmer. Cambridge University Press (1996)

	Introduction
	Verifier
	Java Features

	Applications
	Conclusion
	References

