
Two-Pass Authenticated Encryption Faster

Than Generic Composition

Stefan Lucks

University of Mannheim, Germany
http://th.informatik.uni-mannheim.de/people/lucks/

Abstract. This paper introduces CCFB and CCFB+H, two patent-free
authenticated encryption schemes. CCFB+H also supports the authenti-
cation of associated data. Our schemes can employ any block cipher and
are provably secure under standard assumptions. The schemes and their
proofs of security are simple and straightforward. CCFB and CCFB+H
restrict the sizes of nonce and authentication tags and can, depending on
these sizes, perform significantly better than both generic composition
and other two-pass schemes for authenticated encryption, such as the
EAX mode.

Keywords: authenticated encryption, associated data, provable secu-
rity, OMAC.

1 Introduction

An Authenticated Encryption (AE) scheme is a secret-key cryptosystem designed
for simultaneously protecting both a message’s privacy and its authenticity. Tra-
ditionally, these two security goals had been handled separately by the means
of encryption schemes and message authentication codes (MACs). In practice,
however, the same message often needs to be kept both private and authentic,
and gluing together encryption and message authentication is surprisingly tricky
and error-prone. Hence, a couple of block cipher based AE schemes have been
developed recently.

Even more recently, people discovered that AE is not quite sufficient. Often,
some header (associated data, AD) is not confidential, but vital for authentica-
tion. Authenticated Encryption with Associated Data (AEAD) schemes authen-
ticate both the message and the associated data, but only encrypt the message.
Most of today’s AE and AEAD schemes are either “two-pass” schemes and thus
as slow as encrypting and authenticating independently, or “one-pass” schemes
whose usage is hindered by the patent situation. This paper proposes a new two-
pass scheme. Depending on the size of the authentication tag, our solution can
run significantly faster than generic composition or other non-patented two-pass
AE(AD) schemes. Another advantage is simplicity: compared to other AE(AD)
schemes, our solution and its proof of security is very simple and straightforward.

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 284–298, 2005.
c© International Association for Cryptologic Research 2005

http://th.informatik.uni-mannheim.de/people/lucks/

Two-Pass Authenticated Encryption Faster Than Generic Composition 285

1.1 The Development of Authenticated Encryption

In 2000, Bellare and Namprempre proposed generic composition: a privacy-
protecting encryption scheme and a MAC are used jointly (but securely) under
independent keys [3]. This is not very efficient – it takes the time to encrypt plus
the time to authenticate and makes block cipher based authenticated encryption
twice as slow as either encryption or authentication. The generic approach can
provide AEAD as well as AE. Generic composition can be minimal-expanding1,
i.e. the size of a ciphertext is the plaintext size plus τ bit for the authentication
tag, where τ is a plaintext-size-independent constant, and the forgery probability
is close to 1/2τ .

In the same year, Katz and Yung presented the RPC block cipher mode for
authenticated encryption [8]. It is a single-pass AE scheme, but the message
expansion is not minimal – it is linear in the plaintext size. Depending on the
size of the authentication tag, RPC can run significantly faster than generic AE,
but always less than twice as fast2. For historical reasons, the authors of RPC
did not consider AEAD.

In 2001, several single-pass minimal-expanding AE schemes have been pro-
posed: IAPM, OCB and XCBC [7, 13, 4]. These combine minimal expansion with
a close-to-optimal running time: for large messages, these schemes are almost as
fast as conventional encryption (without authenticity), i.e. twice as fast as the
generic approach. In 2002, a single-pass AEAD scheme based on OCB has been
proposed [12].

Unfortunately, several patents cover the usage of the fast single-pass schemes.
The patent situation has turned out to be a significant deterrence. To avoid
patents, new two-pass AEAD schemes have been developed, with one pass for
encryption and another one for authentication. The first was CCM [15], followed
by EAX, CWC, and GCM [1, 2, 9, 10, 11], which addressed some shortcomings
[14] of CCM. All these modes are minimal expanding, but as (in)efficient as
generic composition. Their main advantage over generic composition is that a
single block cipher key suffices for the entire scheme.

1.2 Contributions and Outline of This Paper

This paper proposes CCFB (Counter-CipherFeedBack) – another two-pass AE
mode for block ciphers, but with a different separation of duties between the
passes. It has been developed with low-end devices in the mind, such as smart-
cards, small embedded systems, sensor network motes, and RFID tags. CCFB
is related to RPC, which has been published before the patented single-pass
schemes. The first pass of CCFB is for privacy and “local” authentication, while
the second computes a single “global” authentication tag from the local ones.
CCFB+H is

1 ... depending on the underlying encryption and MAC scheme.
2 E.g., AES-RPC with 32-bit authentication tags is 50 % faster than AES-based

generic composition.

286 S. Lucks

– a new minimal-expanding and two-pass AEAD scheme (avoiding the patents
on single-pass schemes 3, similarly to EAX, CWC, and GCM),

– which can run significantly faster thanpreviouslypublished two-pass schemes4,
especially on low-end devices.

Like EAX, CWC, and GCM,

– CCFB+H can use any block cipher and even a pseudorandom function
(PRF) as the underlying primitive,

– it uses a single block cipher (or PRF) key for all its work, and a block cipher
is only used in encryption mode,

– CCFB+H allows the (pre-)processing of the header, independently from the
message,

– CCFB+H is provably secure under standard assumptions on the security of
the underlying block cipher or PRF,

– and we analyse our schemes’ concrete security.

A drawback, inherited from RPC, is that the sizes for nonces and authentication
tags are limited (in contrast to EAX, CWC, and GCM). More specifically, if n
is the block size of the underlying block cipher or PRF, then

δ
︷ ︸︸ ︷

maximum size of nonce =

n
︷ ︸︸ ︷

block size−
τ

︷ ︸︸ ︷

size of authentication tag .

Section 2 describes CCFB, Section 4 analyses it with respect to the notions
of security defined in Section 3. Section 5 extends CCFB to an AEAD scheme
CCFB+H (CCFB with Header). Using OMAC [5, 6], a block cipher based mes-
sage authentication code, Sections 6 and 7 develop a block cipher based in-
stantiation of CCFB. Section 8 compares CCFB+H and EAX security-wise and
performance-wise. The proof of Theorem 2 and some figures are deferred to the
appendix.

2 CCFB Authenticated Encryption

We define CCFB authenticated encryption under a function F : {0, 1}n →
{0, 1}n. Fix the tag size τ ≤ n/2. Set δ = n − τ . The notation “(d, t) := F (·)”
implies d ∈ {0, 1}δ and t ∈ {0, 1}τ . For i ∈ {1, . . . , 2τ − 1}, we write 〈i〉τ for the
corresponding τ -bit string. We write “‖” for the concatenation of bit-strings.

3 We neither have, nor are aware of any patents or pending patents relevant to
CCFB+H. We do not intend to apply for such patents.

4 EAX and our instantiation of CCFB+H are dominated by the block cipher operations,
and can run on any low-end device capable of running block cipher operations. This
enables a “platform-independent” performance evaluation by counting the number of
block cipher calls, see Section 8. In the same section, we also explain why CWC and
GCM appear to be poor choices for low-end devices.

Two-Pass Authenticated Encryption Faster Than Generic Composition 287

If X is a bit-string of length ≥ λ, we write MSBλ(X) for the first λ bits of
X . The input for CCFB encryption consists of a nonce N ∈ {0, 1}δ (shorter
nonces can be padded), and a message M of any length |M | between 1 bit and
(2τ − 3)δ bit. The algorithm is described in Figure 1. See also Figures 2 and 3
for an illustration of CCFB encryption.

Algorithm: CCFB encryption.
Input: nonce N ∈ {0, 1}δ and M ∈ {0, 1}∗, 1 ≤ |M | ≤ (2τ − 3)δ;
First pass:

1. parse M as (M1, . . . , Mm) with
|M1| = · · · = |Mm−1| = δ, |Mm| ∈ {1, . . . , δ};

2. C0 := N ;
3. for 1 ≤ i ≤ m − 1: (tmp, Ai) := F (Ci−1, 〈i〉τ);

Ci := tmp ⊕ Mi;
4. (tmp, Am) := F (Cm−1, 〈m〉τ);
5. if |Mm| = δ then d := 1; pad := ()(∗empty string∗);

else d := 2; pad := (1||0δ−|Mm|−1);
6. Cm := MSB|Mm|(tmp) ⊕ Mm;
7. C′ := tmp ⊕ (Mm||pad);
8. (dummy, Am+1) := F (C′, 〈m + d〉τ);

Second pass:
9. T := A1 ⊕ · · · ⊕ Am+1;

Output: ciphertext (C1, . . . , Cm, T) with
C1, . . . , Cm−1 ∈ {0, 1}δ, and Cm ∈ {0, 1}|Mm|.

Fig. 1. CCFB encryption under F : {0, 1}δ × {0, 1}τ → {0, 1}δ × {0, 1}τ

Observe that if the length |M | of M is a multiple of δ, i.e., |Mm| = δ, steps
3 to 8 simplify to the following short algorithm:

– for 1 ≤ i ≤ m: (tmp, Ai) := F (Ci−1, 〈i〉τ);
Ci := tmp ⊕ Mi;

– (dummy, Am+1) := F (Cm, 〈m + 1〉τ);

�
�
�
�
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

m+dm321

C[1] C[2] C[3]

M[1] M[2] M[3]

C[m]

A[1] A[2] A[3] A[m] A[m+1]

M[n]

pad

C[0]

N

C’

Fig. 2. 1st phase of CCFB encryption: compute the Ci and the local tags Ai; d ∈ {1, 2}

288 S. Lucks

��������

��������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

321

C[1] C[2] C[3]

M[1] M[2] M[3] M[n]

m

C[m]

pad

m+d

TN

C[0] C’

Fig. 3. Full CCFB encryption: The global tag T is computed in the second phase

An |M |-bit message M is split into m =
|M |/δ�+1 blocks Mi, and encrypt-
ing M requires 2m XORs and m + 1 random function (or block cipher) calls.
Thus, CCFB runs at essentially the same speed as RPC [8]. The most important
differences between CCFB and RPC, cf. Figure 7 in the appendix, are:

– CCFB employs CipherFeedBack, where RCB uses the ECB mode. Accord-
ingly, RPC assumes F to be a permutation.

– The output of RPC consists of the encryption blocks Ci and the local au-
thentication tags Ai. CCFB extends RPC by the second pass, which makes
CCFB minimal-expanding. The output of CCFB is a single “global” authen-
tication tag T =

⊕

Ai.
– To protect against cut-and-paste attacks, RPC requires a message encoding

with reserved “start” and “stop” blocks. CCFB does not need a message
encoding.

Given a nonce N ∈ {0, 1}δ and a ciphertext C = (C1, . . . , Cm, T), CCFB de-
cryption is straightforward and needs as much computation as the encryption,
see Figure 6 in the appendix.

As ususal for modes of operations, nonces must not be re-used. E.g., if we
encrypt two messages (M1, . . . , Mm) and (M ′

1, . . . , M
′
m′) under the same nonce,

the corresponding first ciphertext blocks satisfy C1 ⊕ C′
1 = M1 ⊕ M ′

1.

3 Notions of Security for Authenticated Encryption

Before we analyse the security of CCFB (and later CCFB+H), we have to specify
what we mean by “secure”. Our notions of security are standard, see e.g. [1, 2].
An AEAD scheme is a pair (E, D) of deterministic algorithms E for encryption
and D for decryption:

E : key × nonce× header × message → ciphertext,

D : key × nonce× header × ciphertext → message ∪ (none).

The sets key, nonce, header, message, and ciphertext are bit-strings, i.e.,
subsets of {0, 1}∗. For simplicity, we assume key to be finite. An adversary
with access to an encryption oracle E(K, ·, ·, ·) chooses triples (N1, H1, M1),
. . . , (N q, Hq, M q) ∈ nonce×header×message and receives the corresponding

Two-Pass Authenticated Encryption Faster Than Generic Composition 289

ciphertexts Ci = E(K, N i, Hi, M i). The adversary is nonce-respecting, if for
all i = j, N i = N j . If nonce is finite, a nonce-randomising adversary chooses
a fresh uniformly distributed random N i ∈ nonce for each query (N i, Hi, M i).

In a privacy attack, the adversary is either given access to the real encryption
oracle, or to a fake oracle F (K, ·, ·, ·), which on input (N i, Hi, M i) returns a
random ciphertext F (N i, Hi, M i) of the same length as the real ciphertext Ci =
E(K, N i, Hi, M i). The adversay has to distinguish between both oracles. Let K
be a random key. An AEAD scheme is p-private against a class of adversaries,
if for all adversaries A of that class, the advantage in distinguishing E from F is

∣

∣

∣Pr
[

AE(K,·,·,·) = 1
] − Pr

[

AF (·,·,·) = 1
]
∣

∣

∣ ≤ p.

A forger asks queries (N1, H1, M1), . . . , (N q, Hq, M q), receives the corre-
sponding ciphertexts C1, . . . , Cq, and finally chooses a ciphertext C, a nonce
N , and a header H . The forger succeeds, if (C, H) ∈ {(C1, H1) . . . , (Cq , Hq)}5

and D(K, N, H, C) = (none).
An AEAD scheme is p-authentic against a class of forgers, if for all forgers

AF of that class and a random key K

Pr [AF succeeds] ≤ p.

An AE scheme is an AEAD scheme without a choice for the headers:
header = {0}.

4 Analysis of CCFB Authenticated Encryption

Consider a chosen plaintext scenario where the adversary A selects q messages
M1 = (M1

1 , . . . , M1
m1

), . . . , M q = (M q
1 , . . . , M q

mq
) with r =

∑

1≤i≤q mi blocks
in total. We write N1 = C1

0 , . . . , N q = Cq
0 for the corresponding nonces chosen

by A, and C1 = (C1
1 , . . . , C1

m1
, T 1), . . . , Cq = (Cq

1 , . . . , C1
mq

, T q) for the
ciphertexts. Consider the inputs for F :

Di
k =

{

(Ci
k, k + 1) if k < mi

((C′)i, mi + d) if k = mi (d = 1 if |Mm| = δ, else d = 2). (1)

Here (C′)i corresponds to the “internal” value C′ from Figure 1. An “input-
collision” is an input-pair (Di

k, Dj
k) with

Di
k = Dj

k with 1 ≤ i < j ≤ q and k ∈ {0, . . . , min{mi, mj}}. (2)

We assume the adversaries to ask q queries to the encryption oracle with, in
total, r message blocks, i.e. r =

∑

1≤i≤q mi.

5 Even if the forger is nonce-respecting N ∈ {N1, . . . , Nq} is permissable.

290 S. Lucks

Lemma 1. For CCFB encryption under a random function F , the probability
for any nonce-respecting adversary to generate an input-collision is at most

qr

2δ+1
.

Similarly, the probability for any nonce-randomising adversary to generate an
input-collision is at most

q(r + q)
2δ+1

.

Proof. First, consider a nonce-respecting adversary. There is no input-collision
with k = 0. Thus, we can concentrate on k ≥ 1.

A collision Di
k = Dj

k implies F (Di
k−1) = F (Dj

k−1), and if Di
k−1 = Dj

k−1,
then Pr[Di

k = Dj
k] ≤ 1/2δ. The number of triples (i, j, k) with 1 ≤ i < j ≤ q and

1 < k ≤ min{mi, mj}, is at most (q − 1)r/2. The probability that at least one
of these triples collides is thus at most (q−1)r

2 ∗ 1
2δ = (q−1)r

2δ+1 .
Second, consider a nonce-randomising adversary. If there is no input-collision

with k = 0, then the adversary happens to be nonce-respecting. The additional
chance to generate an input-collision at the level k = 0 – which is in fact a
nonce-collision – is a most (q(q − 1)/2)/2δ ≤ q2/2δ+1. The second claim follows
from qr + q2 = q(r + q). ��

Theorem 1 (Information-Theoretic Privacy of CCFB).
CCFB encryption using a random F is

qr

2δ+1
-private against nonce-respecting adversaries and

q(r + q)
2δ+1

-private against nonce-randomising adversaries.

Proof. Without any input-collision Di
k (k ≥ 0), all the inputs to the random

function F are different, all of its outputs are distributed uniformly at random.
Thus, the outputs from the “real” ecnryption oracle and the fake oracle are
distributed equally. To distinguish the oracles, the adversary would need an
input-collision. The claims follow from the bounds given in Lemma 1. ��

Theorem 2 (Information-Theoretic Authenticity of CCFB).
CCFB encryption, using a random F , is

(

qr

2δ+1
+

1
2τ

)

-authentic with respect to nonce-respecting adversaries and

(

q(r + q)
2δ+1

+
1
2τ

)

-authentic with respect to nonce-randomising adversaries.

The proof will be given in the appendix.

Two-Pass Authenticated Encryption Faster Than Generic Composition 291

5 The CCFB+H AEAD Mode and Its Analysis

Let F ′ : {0, 1}∗ → {0, 1}δ be an additional random function, chosen indepen-
dently from F . Note that F ′ is defined for a variable input length, in contrast to
F . We write H ∈ {0, 1}∗ for the associate (“header”) data and tweak both the
CCFB encryption algorithm and its decryption counterpart by changing instruc-
tion 2 in Figure 1 and in Figure 6: replace C0 := N ; by: C0 := N ⊕ F ′(H);
see Figure 4 for an illustration of the modified encryption. Since CCFB+H is a
tweaked CCFB, we conveniently inherit most the analysis from CCFB.

��������

��������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

21

C[1]

M[1] M[n]

m

C[m]

pad

m+d

TC[2]

M[2]

H

N

C[0] C’

Fig. 4. CCFB Authenticated Encryption of Message M [·] with Associated Data H

Recall the definition of q and r from the previous section.

Lemma 2. For CCFB encryption under a random F , the probability for a
nonce-respecting or nonce-randomising adversary to generate an input-collision
is at most

q(r + q)
2δ+1

.

Proof. For a nonce-randomising adversary, the result follows immediately from
the second claim of Lemma 1. We will show that for a nonce-respecting adversary,
the probability for an input-collision at level k = 0 is no more than q2/2δ+1. We
write Hi for the header of the i-th chosen ciphertext query. If Hi = Hj, then
Di = Dj , since the adversary is nonce-respecting.

Consider Hi = Hj and ∆(i, j) := F ′(Hi)⊕F ′(Hj) ∈ {0, 1}δ. We get Ci
0 = Cj

0

if and only if N i⊕N j = ∆(i, j), i.e. with at most the probability 1/2δ. There are
q(q−1)/2 pairs (i, j) with 1 ≤ i < j ≤ q, so the probability for an input-collision
at level k = 0 is q(q − 1)/2δ+1. ��

The proofs for privacy and authenticity of CCFB+H are the same as their
counterparts in Section 4. We consider adversaries, who are either nonce-respec
ting or nonce-randomising.

Theorem 3 (Information-Theoretic Privacy of CCFB+H).
CCFB encryption using a random F is

qr + q2

2δ+1
-private.

292 S. Lucks

Theorem 4 (Information-Theoretic Authenticity of CCFB+H). CCFB
encryption using a random F is

(

qr + q2

2δ+1
+

1
2τ

)

-authentic.

6 Using a Single Random Function f

For CCFB, we can instantiate the random function F : {0, 1}n → {0, 1}n by a
PRF – or by a block cipher EK under a secret key K. Thus, CCFB can obviously
be viewed as a block cipher mode of operation. But for CCFB+H, we need an
additional random function F ′ : {0, 1}∗ → {0, 1}δ, which is supposed to be
independent from F .

We propose to use a single variable-input-length random functionf :{0, 1}∗→
{0, 1}n, defining F and F ′ by

F (x) = f(x) for x ∈ {0, 1}n

F ′(y) = MSB|Mm|(f(0n||y)) for y ∈ {0, 1}∗

By the definition of CCFB and CCFB+H, the first τ bits of any input for
F represent a number between 1 and 2τ−1, i.e. are never zero. Thus, inputs
x and 0n||y for f are never the same,6 and F and F ′ behave exactly like two
independent random functions.

7 Instantiating f by OMAC

OMAC [5, 6], described in Figure 5,7 is a message authentication code under a
function EK : {0, 1}n → {0, 1}n. It

– can use any block cipher or PRF as the underlying primitive,
– uses a block cipher E only in encryption mode,
– uses a single block cipher (or PRF key) K,
– and is provably secure in the standard model, see Theorem 5 for OMAC’s

information-theoretical security as a variable-input-size PRF in a
concrete security setting.

6 In fact, we could replace 0n||y by 0τ ||y. The only reason why we propose the longer
0n-prefix is the improved efficiency for our OMAC based instantiation of f .

7 [6] describes two flavours of OMAC, OMAC1 and OMAC2. In this paper, we set
OMAC=OMAC1, but we could use OMAC2 just as well.

For the definition of u and “∗” in GF(2n) see [5, 6]. We stress that computing L∗u
and L ∗ u2 can be done very efficiently by shifting and conditional XORing.

Two-Pass Authenticated Encryption Faster Than Generic Composition 293

Algorithm: OMAC.
Init: L0 := EK(0); L1 := L0 ∗ u; L2 := (L0 ∗ u2); (∗ in GF(2n) ∗)
Input: X ∈ {0, 1}n.

1. parse X as X1, . . . Xm;
2. Z := 0n;
3. for i in 1 ≤ i ≤ m − 1: Y := Xi ⊕ Z;

Z := EK(Y);
4. if |Mm| = n then Y := Y ⊕ L1;

else Y := Y ⊕ L2;
Output: authentication tag EK(Y).

Fig. 5. OMAC

Theorem 5 (Lemma 5.2 of [6]). Consider OMAC under a random permu-
tation EK : {0, 1}n → {0, 1}n. An adversary asking at most q′ queries, each at
most µ < 2n/4 blocks long, cannot distinguish OMAC from a random function
with an advantage exceeding

(5µ2 + 1)q′

2n
.

Thus, we propose to instantiate f by OMAC under a block cipher E (e.g.,
E=AES) and a secret block cipher key K. The performance figures are:

– Computing F ′(H) = OMACK(0n||H) can be done by calling the block cipher
EK only
|H |/n� times. The first iteration of the loop in Figure 5 can easily
be optimised away, since it produces EK(0) = L0, which has been computed
before, in the initialisation phase.

– Each computation of a value F (Ci−1, i) or F (C′, m + d) boils down to a
single block cipher call.

⇒ Computing CCFB+H(H ,M) thus needs
⌈ |H |

n

⌉

+
⌈ |M |

δ
+ 1

⌉

block cipher calls. (3)

8 A Comparison: EAX ↔ CCFB+H

In this section, we extrapolate the performance of CCFB+H from EAX’ perfor-
mance. Based on these results, one can compare the performance of CCFB+H
with other modes, such as CWC and GCM, and one can verify these findings by
benchmarking CCFB+H directly.

This has not been done in the current paper, which’s focus is on low-end
systems. As stressed in [9], CWC has not been developed for low-end devices.
CWC combines counter-mode encryption with a Carter-Wegman hash function
over GF(2127 − 1). Due to the heavy use of large-scale integer multiplications,
CWC actually appears to be very unattractive for low-end devices. Similarly to

294 S. Lucks

CWC, GCM combines counter-mode encryption with a universal hash function,
namely a polynomial hash over some binary field GF(2w). Efficient software
implementations would need large tables, i.e. more storage space than available
on usual low-end systems. It thus seems natural to consider EAX as the main
“competitor” for CCFB+H.

To the security architect, CCFB offers a trade-off between the size τ of the
authentication tag and the size δ of the message blocks. This has an obvious
impact on the performance, but also determines the security level. Table 1 high-
lights this. Apart from the bound on τ , what is the impact of replacing a term
Θ(r2/2n) (for EAX) by Θ(qr/2n−τ) (for CCFB+H)?

Table 1. Asymptotical Security of EAX and CCFB+H

provable privacy provable authenticity limit for τ

EAX Θ
(

r2

2n

)

Θ
(

min
{

r2

2n , 1
2τ

})

τ ≤ n

CCFB+H Θ
(

qr
2n−τ

)

Θ
(

min
{

qr
2n−τ , 1

2τ

})

τ ≤ n − δ

r =
∑

mi: accumulated number of message blocks q: number of messages

The maximum message length for CCFB+H is (n− τ)(2τ − 3) bit, i.e. appx-
oximately 2τ blocks. Thus, if the average message size is large, CCFB+H can be
about as secure as EAX. On the other hand, CCFB+H has been designed with
low-end devices in mind. Typical applications for low-end devices mostly trans-
mit small messages. So let us consider a concrete example with small messages:

block cipher: E=AES, and thus n = 128,
tag size: τ = 32, and thus δ = 128− 32 = 96,
number of messages in the lifetime of a secret key: q ≤ 228

average message size: ≤ 16 blocks (16 ∗ δ = 1536bit) ⇒ r ≤ 232.

While EAX would provide better security than CCFB+H, we still get good
privacy and almost the authenticity we would expect from an ideal MAC with
32-bit authentication tags:

privacy (Thm. 3): qr+q2

2δ+1 ≈ 260/297 ≈ 2−37

authenticity (Thm. 4): qr+q2

2δ+1 + 1
2τ ≈ 2−37 + 2−32 ≈ 2−32

The above results apply in an information-theoretic setting. Since we propose
to use OMAC as a pseudorandom function, Theorem 5 comes into play. Note
that each header H and each message block Mi in the CCFB+H setting is, from
OMAC’s point of view, a message of its own right – OMAC thus authenticates
q′ = q+r messages. Theorem 5 also considers the length µ of the largest message

Two-Pass Authenticated Encryption Faster Than Generic Composition 295

(in blocks). By the specification of CCFB, we have µ ≤ 2τ −3. Even if we assume
µ ≈ 2τ , the advantage is bounded by

the pseudorandomness of OMAC (Thm. 5):
(5µ2 + 1)q′

2n
≤ 2−64.

This is negligible, compared to the 2−37 and 2−32 from above.
Finally, we also compare the performance of the concrete CCFB+H example

with the security of AES-based EAX. CCFB+H allows the precomputation of
a header checksum F ′(H) in advance, before knowing M . EAX offers a similar
feature. Thus, in Table 2, we consider authenticated encryption with and without
header precomputation. It turns out that

– The header-dependent work is the exactly same for EAX and CCFB+H:
Computing OMAC(H) by making
|H |/128� AES calls.

– Apart from the header-dependent work, we see the following:
• For short messages (|M | ≤ 96), CCFB+H makes two AES calls, while

EAX makes three. E.e., CCFB+H is 50% faster than EAX.
• With |M | increasing, CCFB+H is at least as fast as EAX (97 ≤ |M | ≤

128), and at most 66.7% faster (128 ≤ |M | ≤ 192).
• In the long run, EAX makes about |M |/64 calls. CCFB+H with |M |/96

calls is 50% faster.

Table 2. Performance of AES-based EAX and CCFB+H in # of AES calls

full computation header has been preprocessed

EAX
⌈ |M |

128

⌉

+
⌈ |M |

128

⌉

+ 1 +
⌈ |H |

128

⌉ ⌈ |M |
128

⌉

+
⌈ |M |

128

⌉

+ 1

CCFB+H
⌈ |M |

96

⌉

+ 1 +
⌈ |H |

128

⌉ ⌈ |M |
96

⌉

+ 1

|M | = message length |H | = header length nonce-length ≤ 128 bit

Acknowledgement

The author thanks Ulrich Kühn for suggesting the name “Counter CFB”, Nico
Schmoigl for his survey on EAX and CWC, and the referees for their support in
improving this presentation.

References

1. M. Bellare, P. Rogaway, D. Wagner. EAX: a conventional authenticated encryption
mode. FSE 2004.

2. M. Bellare, P. Rogaway, D. Wagner. EAX: a conventional authenticated encryp-
tion mode. Extended version of [1]. http://www.cs.berkeley.edu/˜daw/papers/eax-
fse04.ps

296 S. Lucks

3. M. Bellare, C. Namprempre. Authenticated Encryption: relations among notions
and analysis of the generic composition paradigm. Asiacrypt 00.

4. V. Gligor, P. Donescu. Fast encryption and authentication: XCBC encryption and
XECB authentication modes. FSE 01.

5. T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Fast Software Encryp-
tion, FSE 03.

6. T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Extended Version of [5].
http://crypt.cis.ibaraki.ac.jp/omac/docs/omac.pdf

7. C Jutla. Encryption modes with almost free message integrity. Eurocrypt 01.
8. J. Katz, M. Yung. Unforgeable encryption and adaptively secure modes of opera-

tion. FSE 00.
9. T. Kohno, J. Viega, D. Whiting. CWC: a high performance conventional authen-

ticated encryption mode. FSE 04.
10. T. Kohno, J. Viega, D. Whiting. CWC: a high performance con-

ventional authenticated encryption mode. Extended version of [9].
http://eprint.iacr.org/2003/106.ps.gz

11. D. McGrew, J. Viega. The Security and Performance of the Galois/Counter Mode
of Operation (Full Version). http://eprint.iacr.org/2004/193

12. P. Rogaway. Authenticated encryption with associated data. Computer and Com-
munications Security, ACM, 2002.

13. P. Rogaway, M. Bellare, J. Black, T. Krovetz. OCB: A block-cipher mode of op-
eration for efficient authenticated encryption. Computer and Communications Se-
curity, ACM, 2001.

14. P. Rogaway, D. Wagner. A critique of CCM. Unpublished manuscript. February 2,
2003. http://www.cs.berkeley.edu/∼{}daw/papers/ccm.html

15. D. Whiting, R. Hously, N. Ferguson. Counter with CBC-MAC (CCM). Submission
to NIST.

Appendix: Deferred Proof and Figures

Theorem 2 (Information-Theoretic Authenticity of CCFB)
CCFB encryption, using a random F , is

(

qr

2δ+1
+

1
2τ

)

-authentic with respect to nonce-respecting adversaries and

(

q(r + q)
2δ+1

+
1
2τ

)

-authentic with respect to nonce-randomising adversaries.

Proof. We will show that the chance to succeed in forging a message without hav-
ing found an input-collision is at most 1/2τ . The claimed theorem then follows
from Lemma 1.

The adversary’s knowledge about the local authentication tags Ai
j can be

described by

q linear equations T i = Ai
1 ⊕

⊕

2≤j≤mi+1

Ai
j with 1 ≤ i ≤ q

http://crypt.cis.ibaraki.ac.jp/omac/docs/omac.pdf
http://eprint.iacr.org/2003/106.ps.gz
http://eprint.iacr.org/2004/193
http://www.cs.berkeley.edu/~{ }daw/papers/ccm.html

Two-Pass Authenticated Encryption Faster Than Generic Composition 297

Algorithm: CCFB decryption.
Input: nonce N ∈ {0, 1}δ and C ∈ {0, 1}∗, τ + 1 ≤ |C| ≤ (2τ − 3)δ + τ ;
First pass:

1. parse C as (C1, . . . , Cm, T) with
|C1| = · · · = |Cm−1| = δ, |Cm| ∈ {1, . . . , δ}, |T | = δ;

2. C0 := N ;
3. for 1 ≤ i ≤ m − 1: (tmp, Ai) := F (Ci−1, 〈i〉τ);

Mi := tmp ⊕ Ci;
4. (tmp, Am) := F (Cm−1, 〈m〉τ);
5. if |Cm| = δ then d := 1; pad := ()(∗empty string∗);

else d := 2; pad := (1||0δ−|Cm|−1);
6. Mm := MSB|Cm|(tmp) ⊕ Cm;
7. C′ := tmp ⊕ (Mm||pad);
8. (dummy, Am+1) := F (C′, 〈m + d〉τ);

Second pass:
9. T ′ := A1 ⊕ · · · ⊕ Am+1;

Output: If T = T ′

then output plaintext (M1, . . . , Mm) with
M1, . . . , Mm−1 ∈ {0, 1}δ, and Mm ∈ {0, 1}|Mm|

else output (none).

Fig. 6. CCFB decryption under F : {0, 1}δ × {0, 1}τ → {0, 1}δ × {0, 1}τ

over GF(2τ). We stress that only the T i are known – the unknowns Ai
j (j ≥ 1)

are uniformly distributed independent random values from GF(2τ) (since we
assumed no input-collision). Due to the statistical independence of the Ai

1, all q
linear equations are linearly independent.

A forgery (C0, C) with C = (C1, . . . , Cm−1, Cm, T) succeeds if and only if C
is different from all the other ciphertexts Ci and the linear equation

T = A1 ⊕
⊕

2≤j≤m+1

Aj (4)

holds. We claim that Equation 4 is linearly independent from the q equations
above. I.e., we show that the sum of Equation 4 with any subset of equations
T i = . . . is the sum of some non-dissappearing unknowns Ai

j or Aj with j ≥ 1
and 1 ≤ i ≤ q.

If D0 ∈ {D1
0, . . . , D

q
0},8 the term A1 cannot dissappear. So assuming w.l.o.g.

D0 = D1
0, this is equivalent to C0 = C1

0 , from which A1
1 = A1 follows. By adding

T and T 1, we get

T 1 ⊕ T =
⊕

2≤j≤m1+1

A1
j ⊕

⊕

2≤j≤m+1

Aj .

8 The inputs Dj for F are defined similarly to the Di
j in Equation 1.

298 S. Lucks

��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

M[2]M[1]start
N+2 N+m

stopM[n]

N C[0] C[1] C[2] C[m] C[m+1]
A[0] A[1] A[2] A[m] A[m+1]

N+1 N+m+1

plaintext: (M1, . . . Mm) ∈ {0, 1}δm, Mi �∈ {start, stop};
nonce: N ∈ {0, 1}τ ; ciphertext: ((C0, A0), . . . , (Cm+1, Am+1)) ∈ {0, 1}n(m+2)

Fig. 7. RPC encryption under a permutation

Any terms A1
j = Aj cancel out if Dj = Dk

j . We define the set

A∗ = {A1
j |2 ≤ j ≤ m1 + 1, D1

j = Dj} ∪ {Aj |2 ≤ j ≤ m + 1, Dj = D1
j }

of terms which don’t cancel out and rewrite T 1 ⊕ T as

T 1 ⊕ T =
⊕

A∈A∗
A.

Since C = Ci, the set A∗ is not empty.9 For i > 1, each equation T i = . . . with
i > 1 added to T 1⊕T introduces a non-disappearing term Ai

1 to the sum. Thus,
equation 4 is linearly independent from the equations for the T i, as claimed.

Since Equation 4 is linearly independent from the q equations for the T i, the
sum T = A1⊕

⊕

2≤j≤m+1 Aj can take any value in T ∈ GF(2τ), and the number
of solutions for each T is the same. All T ∈ GF(2τ) are equally likely to be the
“correct” solution, which finally yields the claimed probability 1/2τ . ��

9 Technically, C �= Ci could mean T �= T i, m = mi, and Cj = Ci
j for 1 ≤ j ≤ m. But

this type of forgery would fail: A∗ = {} and thus T 1 ⊕ T = 0, contradicting T �= T i.

	Introduction
	The Development of Authenticated Encryption
	Contributions and Outline of This Paper

	CCFB Authenticated Encryption
	Notions of Security for Authenticated Encryption
	Analysis of CCFB Authenticated Encryption
	The CCFB+H AEAD Mode and Its Analysis
	Using a Single Random Function f
	Instantiating f by OMAC
	A Comparison: EAX CCFB+H

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

